Cristal fotónico


Un cristal fotónico es un material estructurado de forma que su función dieléctrica varíe periódicamente en el espacio. Aunque existen manifestaciones naturales de estos materiales, como los ópalos o ciertas estructuras microscópicas que dan lugar a coloraciones en las alas de algunas mariposas, se trata de materiales relativamente novedosos propuestos simultánea e independientemente por los profesores Ely Yablonovitch y Sajeev John para inhibir la emisión espontánea y para producir localización de luz respectivamente.

Los cristales fotónicos[1]​ son nanoestructuras ópticas periódicas que están diseñadas para afectar el movimiento de los fotones de un modo similar al que la periodicidad de un cristal semiconductor afecta al movimiento de los electrones. Los cristales fotónicos aparecen en la naturaleza y han sido estudiados por los científicos con diversos intereses durante los últimos 100 años.

Los cristales fotónicos están compuestos de nanoestructuras dieléctricas o metal-dieléctricas periódicas que afectan a la propagación de las ondas electromagnéticas (EM) del mismo modo que el potencial periódico en un semiconductor afecta el movimiento de los electrones, definiendo bandas de energía permitidas y prohibidas. Básicamente, los cristales fotónicos contienen regiones internas con constantes dieléctricas altas y bajas que se repiten de forma regular. Las ondas de luz que tiene permitido propagarse se conocen como modos, los grupos de modos forman las bandas. Las bandas de longitudes de ondas no permitidas se llaman bandas prohibidas. Esto da lugar a diferentes fenómenos ópticos como la inhibición de emisión espontánea, espejos de alta-reflexión omni-direccionales y guías de onda con pérdidas bajas, entre otros. Debido a que el fenómeno físico está basado en la difracción, la periodicidad de la estructura del cristal fotónico ha de estar en el mismo orden de longitud de la mitad de la longitud de onda de las ondas EM, es decir, las regiones de constantes dieléctricas altas y bajas que se repiten han de tener las siguientes dimensiones; desde aproximadamente 200 nm (azul) hasta 350 nm (rojo) para cristales fotónicos operando en la parte visible del espectro. Esto hace que la elaboración de cristales fotónicos sea tediosa y difícil.


El ópalo en este brazalete contiene una microestructura periódica natural responsable del color iridiscente. Es básicamente un cristal fotónico natural, a pesar de no tener una banda prohibida completa.
Estructura de bandas de un cristal fotónico unidimensional, espejo de Bragg, calculada usando el método de aproximación escalar.