Diatermancia


Se denomina diatermancia a la propiedad del aire atmosférico de ser atravesado por los rayos solares sin calentarse por ello (de "día", a través, y "termancia", calentamiento). No hay que confundir este término con el de diatermia, que es el tratamiento médico de diversas afecciones con el empleo de radiaciones de calor (infrarrojas) por medios eléctricos o electromagnéticos. En idioma inglés, se emplea el término diathermancy con el mismo significado que aquí se desarrolla y diathermanous (diatérmano) a aquellos cuerpos que son transparentes a las radiciones térmicas, es decir, que se dejan atravesar directamente por los rayos solares (espectro visible) sin calentarse. Los principales estudios sobre la diatermancia se deben a Heinrich Magnus, químico y físico alemán del siglo XIX.[1]

Se denomina calor claro al del espectro visible de la luz solar, en el que su longitud de onda está directamente relacionada con la mayor o menor capacidad de transportar calor (por eso se llaman colores cálidos a los más próximos al rojo y fríos al de los colores azules o violetas). En cambio, el calor "oscuro" es el de los rayos infrarrojos, que son propiamente las radiaciones de calor, y se conoció con este nombre desde hace tiempo, por estar fuera del espectro visible para el ojo humano. Esta razón explica el surgimiento de la fotografía infrarroja, que destaca los objetos de acuerdo a su temperatura y no a su color. En la fotografía infrarroja, los objetos de mayor temperatura (la vegetación, por ejemplo) aparecen de color rojo y los más fríos, en color azul. Esta técnica fotográfica constituye una gran ayuda en el campo de los sensores remotos: por ejemplo, en las grandes zonas de vegetación de bosques, el color rojo se identifica como árboles sanos y el amarillo (menor temperatura) como partes de árboles enfermos por algún motivo determinado.

Para aclarar algo más este concepto, es preciso tener en cuenta que el aire no es completamente transparente a la radiación solar referida al espectro visible ya que, como se ha señalado, su calentamiento depende de la mayor o menor longitud de onda de esa radiación y dentro del espectro visible (los rayos que forman el arco iris), la diferencia entre el color rojo y el violeta es considerable y el color rojo calienta el aire más que el azul o violeta. Y para concluir, también hay que tener en cuenta que no todos los rayos infrarrojos (los no visibles) tienen el mismo poder calorífico ya que, como se sabe, también los rayos infrarrojos tienen distintas longitudes de onda, teniendo mayor poder calorífico los de mayor longitud de onda.


Reproducción fotográfica de un retrato de Heinrich Gustav Magnus, quien desarrolló los estudios más relevantes sobre la diatermancia en el siglo XIX.
Un ejemplo de la diatermancia atmosférica y de la absorción de la radiación solar por los ríos ya que el agua no es diatérmina sino que absorbe toda la radiación que recibe en su superficie siempre y cuando su temperatura sea inferior a la del aire. Río Congo y afluentes.Imagen de la NASA.
Imagen que registra el vapor de agua existente para el 11-DIC-2013-10 AM en el mar Caribe y en el océano Pacífico Septentrional. Un claro ejemplo de calentamiento de la atmósfera por la evaporación de las aguas oceánicas.
Desembocadura del Amazonas en el océano Atlántico en la que puede verse la ausencia de nubes sobre las aguas fluviales, y también sobre las marinas. La isla grande es la de Marajó. La imagen está dirigida hacia el sur.
Otra imagen satelital más detallada, también del río Amazonas en Santarem (Pará), en la confluencia con el río Tapajós que es de aguas negras. Imagen dirigida hacia el norte. Esta zona queda a unos 400 km aguas arriba del delta del Amazonas en la otra imagen. También puede verse la ausencia de nubes sobre los ríos y sus áreas de inundación con mayor cantidad de agua en el suelo, lo que explica esa ausencia o escasez de nubes.
La extensa planicie de la cuenca del río Zambezi, en Mozambique, antes de las inundaciones tan severas del año 2000. Puede verse la escasez de nubes sobre la mayor parte del territorio que abarca la imagen de satélite. Las lagunas de la parte sur de la zona inundada (parte inferior de las imágenes) sirven de referencia de que el territorio representado en las dos imágenes viene a ser el mismo.
El mismo territorio de la imagen anterior después de que las inundaciones de marzo del año 2000 crearan una especie de lago muy extenso pero de escasa profundidad. Puede verse en la imagen que sobre el territorio inundado casi no existen nubes por el fenómeno explicado de la toma de la imagen durante horas de la mañana, cuando las aguas de la zona inundada están absorbiendo la radiación solar y no convierten todavía ese calor de la radiación en evaporación lo que daría como resultado la formación de nubes.
Niebla matinal en el Gran Cañón.
Octubre es el mes que presenta mayor diferencia de temperatura, en el hemisferio Norte, entre los océanos (más calientes) y los continentes que ya comienzan a enfriarse de cara al invierno. Como consecuencia, la mayor nubosidad corresponde a los océanos, mientras que esa nubosidad es menor en las tierras emergidas (América Central y norte de América del Sur). En el caso del Pacífico Oriental, junto a las costas de América Central puede verse una abundante nubosidad en las dos imágenes, lo que tiene que ver con la latitud del ecuador térmico. El color más oscuro indica la mayor sequedad atmosférica (climas secos).
En el mes de junio, la temperatura de los continentes en el hemisferio norte es muy elevada mientras que la de los océanos es más baja. Como consecuencia, los océanos se ven más libres de nubes mientras que las tierras se encuentran cubiertas, con mayor intensidad de las lluvias originadas por convección ya que el calor desprendido de las tierras hace ascender el aire que se condensa formando esa mayor nubosidad (puede verse ahora la diferencia de nubosidad en América Central y en el norte de América del Sur). A su vez, dicha convección puede acentuar el efecto orográfico de las cordilleras sobre la lluviosidad.
Imagen de satélite del Mar Caribe y Océano Atlántico del 10 de octubre de 2012, en la que se pueden ver la mayor cantidad de nubes y tormentas sobre las aguas marinas y no tanto en los continentes, como corresponde a un mes (octubre) en el que las aguas marinas siguen estando relativamente calientes en comparación a los continentes. Puede verse una depresión de tamaño considerable (casi 1000 km de diámetro) al este de Venezuela, depresión que unos días después se convirtió en el huracán Rafael.
Imagen de satélite del Atlántico Norte y Mar Caribe el 12 de octubre de 2012. Pueden verse los restos de la tormenta tropical Patty y al Huracán Rafael que poco después absorbió dichos restos.