Ecuación diferencial


Una ecuación diferencial es una ecuación matemática que relaciona una función con sus derivadas. En las matemáticas aplicadas, las funciones usualmente representan cantidades físicas, las derivadas representan sus razones de cambio y la ecuación define la relación entre ellas. Como estas relaciones son muy comunes, las ecuaciones diferenciales juegan un rol primordial en diversas disciplinas, incluyendo la ingeniería, la física, la química, la economía y la biología.

En las aplicaciones de las matemáticas, a menudo surgen problemas en los que se desconoce la dependencia de un parámetro con respecto a otro, pero es posible escribir una expresión para la tasa de cambio de un parámetro en relación con otro (derivada). En este caso, el problema se reduce a encontrar una función por su derivada relacionada con algunas otras expresiones.

En las matemáticas puras, las ecuaciones diferenciales se estudian desde perspectivas diferentes, la mayoría concernientes al conjunto de las soluciones de las funciones que satisfacen la ecuación. Solo las ecuaciones diferenciales más simples se pueden resolver mediante fórmulas explícitas; sin embargo, se pueden determinar algunas propiedades de las soluciones de una cierta ecuación diferencial sin hallar su forma exacta.

Si la solución exacta no puede hallarse, esta puede obtenerse numéricamente, mediante una aproximación usando computadoras. La teoría de sistemas dinámicos hace énfasis en el análisis cualitativo de los sistemas descritos por ecuaciones diferenciales, mientras que muchos métodos numéricos han sido desarrollados para determinar soluciones con cierto grado de exactitud.

Las ecuaciones diferenciales aparecieron por primera vez en los trabajos de cálculo de Newton y Leibniz. En 1671, en el Capítulo 2 de su trabajo Método de las fluxiones y series infinitas,[1]​ Isaac Newton hizo una lista de tres clases de ecuaciones diferenciales:

Resolvió estas ecuaciones y otras usando series infinitas y discutió la no unicidad de las soluciones.


Visualización de transferencia de calor en una cámara de una bomba, creada resolviendo la ecuación de calor. El calor se genera internamente en la cámara y se enfría en los bordes, dando un estado estacionario de distribución de temperatura.
Tapa del Método de las fluxiones y series infinitas, obra que fue publicada en 1736, a pesar de que Newton la había terminado en 1671.
Ondas estacionarias en una cuerda vibrante. Se observa el modo fundamental y los primeros cinco sobretonos de la serie armónica.
La trayectoria de un proyectil lanzado desde un cañón sigue una curva definida por una ecuación diferencial ordinaria que se obtiene a partir de la segunda ley de Newton.
Variación del perfil de temperaturas solución de la ecuación del calor en un problema bidimensional.
Ecuación de Laplace sobre una corona (r=2 y R=4) con condiciones de contorno de Dirichlet: u(r=2)=0 y u(r=4)=4sin(5*θ).
Representación de la curvatura dada por la ecuación de campo de Einstein sobre el plano de la eclíptica de una estrella esférica: Dicha ecuación relaciona la presencia de materia con la curvatura adquirida por el espacio-tiempo.