Efecto fotoeléctrico


El efecto fotoeléctrico consiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética (luz visible o ultravioleta, en general).[1]​ A veces se incluyen en el término otros tipos de interacción entre la luz y la materia:

El efecto fotoeléctrico fue descubierto y descrito por Heinrich Hertz, en 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensión alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. La explicación teórica fue hecha por Albert Einstein, quien publicó en 1905 el revolucionario artículo Heurística de la generación y conversión de la luz, basando su formulación de la fotoelectricidad en una extensión del trabajo sobre los cuantos de Max Planck. Más tarde Robert Andrews Millikan pasó diez años experimentando, en el intento de demostrar que la teoría de Einstein no era correcta, para finalmente concluir que sí lo era. Eso permitió que Einstein y Millikan fueran galardonados con Premios Nobel en 1921 y 1923, respectivamente.

Se podría decir que el efecto fotoeléctrico es lo opuesto a los rayos X, ya que el efecto fotoeléctrico indica que los fotones pueden transferir energía a los electrones. Los rayos X (no se sabía la naturaleza de su radiación, de ahí la incógnita "X") son la transformación en un fotón de toda o parte de la energía cinética de un electrón en movimiento. Esto se descubrió casualmente antes de que se dieran a conocer los trabajos de Planck y Einstein (aunque no se comprendió entonces).

Los fotones tienen una energía característica determinada por la frecuencia de onda de la luz. Si un átomo absorbe energía de un fotón que tiene más energía que la necesaria para expulsar un electrón del material y además posee una trayectoria dirigida hacia la superficie, entonces el electrón puede ser expulsado del material. Si la energía del fotón es demasiado pequeña, el electrón es incapaz de escapar de la superficie del material. Los cambios en la intensidad de la luz no modifican la energía de sus fotones, tan solo el número de electrones que pueden escapar de la superficie sobre la que incide y por tanto la energía de los electrones emitidos no depende de la intensidad de la radiación que le llega, sino de su frecuencia. Si el fotón es absorbido, parte de la energía se utiliza para liberarlo del átomo y el resto contribuye a dotar de energía cinética a la partícula libre.

En principio, todos los electrones son susceptibles de ser emitidos por efecto fotoeléctrico. En realidad los que más salen son los que necesitan menos energía para ser expulsados y, de ellos, los más numerosos.


Diagrama ilustrando la emisión de electrones (en rojo) de una placa metálica al recibir suficiente energía transferida desde los fotones incidentes (líneas onduladas).
Heinrich Hertz, alrededor de 1890, descubridor del efecto fotoeléctrico.
Célula fotoeléctrica donde "1" es la fuente lumínica, "2" es el cátodo y "3", el ánodo.