Física estadística


La física estadística es una rama de la física que evolucionó a partir de una base de la mecánica estadística, que utiliza métodos de la teoría de probabilidad y la estadística, y en particular las herramientas matemáticas para tratar con grandes poblaciones y aproximaciones, para resolver problemas físicos. Puede describir una amplia variedad de campos con una naturaleza inherentemente estocástica. Sus aplicaciones incluyen muchos problemas en los campos de la física, la biología, la química, la neurociencia. Su objetivo principal es aclarar las propiedades de la materia en conjunto, en términos de las leyes físicas que rigen el movimiento atómico.[1]

La mecánica estadística desarrolla los resultados fenomenológicos de la termodinámica a partir de un examen probabilístico de los sistemas microscópicos subyacentes. Históricamente, uno de los primeros temas de la física donde se aplicaron métodos estadísticos fue el campo de la mecánica clásica, que se ocupa del movimiento de partículas u objetos cuando se someten a una fuerza.

La física estadística explica y describe cuantitativamente la superconductividad, la superfluidez, la turbulencia, los fenómenos colectivos en sólidos y plasma, y las características estructurales de los líquidos. Subyace en la astrofísica moderna. En la física del estado sólido, la física estadística ayuda al estudio de los cristales líquidos, las transiciones de fase y los fenómenos críticos. Muchos estudios experimentales de la materia se basan enteramente en la descripción estadística de un sistema. Estos incluyen la dispersión de neutrones fríos, rayos X, luz visible y más. La física estadística también desempeña un papel en la ciencia de los materiales, la física nuclear, la astrofísica, la química, la biología y la medicina (por ejemplo, el estudio de la propagación de enfermedades infecciosas).

La mecánica estadística proporciona un marco para relacionar las propiedades microscópicas de átomos y moléculas individuales con las propiedades macroscópicas o a granel de los materiales que se pueden observar en la vida cotidiana, por lo que explica la termodinámica como un resultado natural de la estadística, la mecánica clásica y la mecánica cuántica a nivel microscópico. Debido a esta historia, la física estadística a menudo se considera sinónimo de mecánica estadística o termodinámica estadística.[note 1]

Una de las ecuaciones más importantes de la mecánica estadística (similar a en la mecánica newtoniana, o la ecuación de Schrödinger en la mecánica cuántica) es la definición de la función de partición , que es esencialmente una suma ponderada de todos los estados posibles disponible para un sistema.