Fractal


Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas.[1]​ El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal. La propiedad matemática clave de un objeto genuinamente fractal es que su dimensión métrica fractal es un número racional mayor que su dimensión topológica.

Si bien el término "fractal" es reciente, los objetos hoy denominados fractales eran bien conocidos en matemáticas desde principios del siglo XX. Las maneras más comunes de determinar lo que hoy denominamos dimensión fractal fueron establecidas a principios del siglo XX en el ámbito de la teoría de la medida.

La definición de fractal desarrollada en los años 1970 dio unidad a una serie de ejemplos, algunos de los cuales se remontaban a un siglo antes. A un objeto geométrico fractal se le atribuyen las siguientes características:[2]

No basta con una sola de estas características para definir un fractal. Por ejemplo, la recta real no se considera un fractal, pues a pesar de ser un objeto autosimilar carece del resto de características exigidas.

Un fractal natural es un elemento de la naturaleza que puede ser descrito mediante la geometría fractal. Las nubes, las montañas, el sistema circulatorio, las líneas costeras[3]​ o los copos de nieve son fractales naturales. Esta representación es aproximada, pues las propiedades atribuidas a los objetos fractales ideales, como el detalle infinito, tienen límites en el mundo natural.

Para encontrar los primeros ejemplos de fractales debemos remontarnos a finales del siglo XIX: en 1872 apareció la función de Weierstrass, cuyo grafo hoy en día consideraríamos fractal, como ejemplo de función continua pero no diferenciable en ningún punto.


En la naturaleza también aparece la geometría fractal y se ejemplifica en muchos casos, como en este brécol romanesco
Sucesivos pasos de la construcción de la Curva de Koch
En negro, imagen del Conjunto de Mandelbrot superpuesto con los conjuntos de Julia rellenos representados por algunos de sus puntos (en rojo los conjuntos de Julia conexos y en azul los no conexos).
Cuasiautosimilitud en el conjunto de Mandelbrot: al variar la escala obtenemos copias del conjunto con pequeñas diferencias.
Autosimilitud estadística de un fractal generado por el proceso de agregación limitada por difusión.
Fracción de un fractal de Mandelbrot
Un atractor extraño: el atractor de Lorenz.
Imagen generada con el programa Apophysis.