Promedio


En lenguaje coloquial, un promedio es un solo número tomado como representante de una lista de números. Se utilizan diferentes conceptos de promedio en diferentes contextos. A menudo, "promedio" se refiere a la media aritmética, la suma de los números dividida por cuántos números se promedian. En estadística, la media, la mediana y la moda se conocen como medidas de tendencia central, y en el uso coloquial cualquiera de estos podría llamarse un valor promedio. La mayoría de nosotros entendemos la palabra "promedio" porque el uso diario generalmente se refiere a números o grupos que tienen una distribución normal o curva en campana, por ejemplo, las alturas de las personas o sus mediciones de presión arterial. Sin embargo, si la distribución de esos números no es normal, entonces lo que generalmente consideramos "promedio" estará sesgado. Los ejemplos incluyen el número de dedos: a algunas personas les faltan dedos, muy raramente las personas tienen extra, y casi nunca más que uno extra, lo que lleva a una situación en la que el número promedio real de dedos (más de 9 pero menos de 10) no es una información particularmente útil.

La media aritmética, la media geométrica y la media armónica se conocen colectivamente como las medias pitagóricas.

El tipo más común de promedio es la media aritmética. Si se dan n números, cada número denotado por ai (donde i = 1,2, ..., n), la media aritmética es la suma de a dividida por n o

La media aritmética, a menudo simplemente llamada la media, de dos números, como 2 y 8, se obtiene al encontrar un valor A tal que 2 + 8 = A + A. Uno puede encontrar que A =   (2 + 8) / 2 = 5) Cambiar el orden de 2 y 8 para leer 8 y 2 no cambia el valor resultante obtenido para A. La media 5 no es menor que el mínimo 2 ni mayor que el máximo   8) Si aumentamos el número de términos en la lista a 2, 8 y 11, la media aritmética se encuentra resolviendo el valor de A en la ecuación 2 + 8 + 11 = A + A + A. Uno encuentra que A = (2 + 8 + 11) / 3 = 7)

La media geométrica de n números positivos se obtiene por ellos multiplicando todos juntos y luego tomar la enésima raíz. En términos algebraicos, la media geométrica de a1, a2, ... an se define como

La media geométrica puede considerarse como el antilog de la media aritmética de los registros de los números.


Comparación de la media aritmética, la mediana y la moda de dos distribuciones log-normales con diferente asimetría.