Teoría del caos


La teoría del caos es la rama de la matemática, la física y otras ciencias (biología, meteorología, economía, entre ellas) que trata ciertos tipos de sistemas complejos y sistemas dinámicos no lineales muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro, imposibilitando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor deterministas, es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.

Esta teoría declara que existen cierto tipo de sistemas cuyo comportamiento es prácticamente imposible de predecir, pues este es dependiente de diversas variables como pueden serlo el tiempo, en sistemas dinámicos, e interacciones, por la complejidad del sistema. Como ejemplo, si dejamos que una hoja viaje con el viento, será imposible para nosotros conocer dónde se encontrará esta hoja tras el paso de unas simples horas, aún más lo será si tratamos de predecir dónde estará la hoja tras el paso de varios meses.

Una de las principales características tanto de los sistemas inestables como los caóticos es que tienen una gran dependencia de las condiciones iniciales (esto diferencia a ambos tipos de los sistemas estables). De un sistema del que se conocen sus ecuaciones de evolución temporal características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas son el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los incrementos de población.[1]

El caos determinista comprende una serie de fenómenos encontrados en la teoría de sistemas dinámicos, la teoría de ecuaciones diferenciales y la mecánica clásica. En términos generales el caos determinista da lugar a trayectorias asociadas a la evolución temporal de forma muy irregular y aparentemente azarosa que sin embargo son totalmente deterministas, a diferencia del azar genuino. La irregularidad de las trayectorias está asociada a la imposibilidad práctica de predecir la evolución futura del sistema, aunque esta evolución sea totalmente determinista.

No hay una definición universal sobre el caos, pero hay tres ingredientes en los que todos los científicos están de acuerdo:


Diagrama de la trayectoria del sistema de Lorenz para los valores r = 28, σ = 10, b = 8/3.
El péndulo doble es uno de los sistemas caóticos más simples que existen. Se observa su trayectoria irregular, además dando al péndulo una posición inicial ligeramente diferente se obtiene una trayectoria completamente diferente pasado un tiempo.
La mariposa es un ejemplo muy utilizado de la teoría del caos
Tiempo de horizonte. Exponente de Lyapunov.
Modelo matemático.
Atractor de Rössler.
Secciones estroboscópicas del atractor de Duffing: mirando con atención el gráfico, se ve claramente la transformación del panadero. Esto es, se aprecia cómo a la vez que se estira se pliega sobre sí mismo.
Atractor de Lorenz.