De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

El tejido adiposo , la grasa corporal o simplemente la grasa es un tejido conectivo laxo compuesto principalmente por adipocitos . [1] Además de los adipocitos, el tejido adiposo contiene la fracción vascular estromal (FVS) de células que incluyen preadipocitos , fibroblastos , células endoteliales vasculares y una variedad de células inmunes como los macrófagos del tejido adiposo . El tejido adiposo se deriva de los preadipocitos. Su función principal es almacenar energía en forma de lípidos , aunque también amortigua y aíslael cuerpo. Lejos de ser hormonalmente inerte, el tejido adiposo ha sido reconocido en los últimos años como un órgano endocrino importante , [2] ya que produce hormonas como leptina , estrógeno , resistina y citocina (especialmente TNFα ). Los dos tipos de tejido adiposo son el tejido adiposo blanco (WAT), que almacena energía, y el tejido adiposo marrón (BAT), que genera calor corporal. La formación de tejido adiposo parece estar controlada en parte por el gen adiposo . El tejido adiposo, más específicamente el tejido adiposo marrón, fue identificado por primera vez por el naturalista suizo.Conrad Gessner en 1551. [3]

Características anatómicas [ editar ]

Distribución de la grasa blanca en el cuerpo humano.

En los seres humanos, el tejido adiposo se localiza: debajo de la piel ( grasa subcutánea ), alrededor de los órganos internos ( grasa visceral ), en la médula ósea ( médula ósea amarilla ), intermuscular ( sistema muscular ) y en la mama ( tejido mamario ). El tejido adiposo se encuentra en lugares específicos, que se conocen como depósitos adiposos . Aparte de los adipocitos, que comprenden el porcentaje más alto de células dentro del tejido adiposo, están presentes otros tipos de células, denominados colectivamente fracción vascular estromal (FVS) de células. La FVS incluye preadipocitos , fibroblastos , macrófagos del tejido adiposoy células endoteliales .

El tejido adiposo contiene muchos vasos sanguíneos pequeños . En el sistema tegumentario , que incluye la piel, se acumula en el nivel más profundo, la capa subcutánea , proporcionando aislamiento del calor y del frío. Alrededor de los órganos, proporciona un acolchado protector. Sin embargo, su función principal es ser una reserva de lípidos, que pueden oxidarse para satisfacer las necesidades energéticas del cuerpo y protegerlo del exceso de glucosa al almacenar los triglicéridos producidos por el hígado a partir de los azúcares, aunque algunas evidencias sugieren que la mayoría de la síntesis de lípidos de los carbohidratos se produce en el propio tejido adiposo. [4]Los depósitos adiposos en diferentes partes del cuerpo tienen diferentes perfiles bioquímicos. En condiciones normales, proporciona al cerebro información sobre el hambre y la dieta.

Ratones [ editar ]

El ratón obeso de la izquierda tiene grandes reservas de tejido adiposo. No puede producir la hormona leptina . Esto hace que el ratón tenga hambre y coma más, lo que resulta en obesidad. A modo de comparación, a la derecha se muestra un ratón con una cantidad normal de tejido adiposo.

Los ratones tienen ocho depósitos adiposos principales, cuatro de los cuales se encuentran dentro de la cavidad abdominal . [1] Los depósitos gonadales emparejados se adhieren al útero y los ovarios en las mujeres y al epidídimo y los testículos en los hombres; los depósitos retroperitoneales emparejados se encuentran a lo largo de la pared dorsal del abdomen , rodeando el riñón y, cuando son masivos, se extienden hacia la pelvis. El depósito mesentérico forma una red similar a un pegamento que sostiene los intestinos y el depósito omental (que se origina cerca del estómago y el bazo).) y, cuando es masivo, se extiende hacia el abdomen ventral. Tanto el depósito mesentérico como el omental incorporan mucho tejido linfoide como ganglios linfáticos y manchas lechosas , respectivamente.

Los dos depósitos superficiales son los depósitos inguinales emparejados, que se encuentran anterior al segmento superior de las extremidades traseras (debajo de la piel) y los depósitos subescapulares, mezclas mediales emparejadas de tejido adiposo marrón adyacentes a regiones de tejido adiposo blanco, que se encuentran debajo de la piel entre las crestas dorsales de las escápulas. La capa de tejido adiposo marrón en este depósito suele estar cubierta por un "glaseado" de tejido adiposo blanco; a veces, estos dos tipos de grasa (marrón y blanca) son difíciles de distinguir. Los depósitos inguinales encierran el grupo inguinal de ganglios linfáticos. Los depósitos menores incluyen el pericárdico , que rodea el corazón, y los depósitos poplíteos emparejados, entre los músculos principales detrás de las rodillas, cada uno de los cuales contiene un ganglio linfático grande .[5] De todos los depósitos en el ratón, los depósitos gonadales son los más grandes y los más fácilesde disecar, [6] que comprenden aproximadamente el 30% de la grasa diseccionable. [7]

Obesidad [ editar ]

En una persona obesa , el exceso de tejido adiposo que cuelga hacia abajo del abdomen se denomina panículo . Un panículo complica la cirugía del individuo con obesidad mórbida. Puede permanecer literalmente como un "delantal de piel" si una persona con obesidad severa pierde rápidamente grandes cantidades de grasa (un resultado común de la cirugía de bypass gástrico ). La obesidad se trata con ejercicio, dieta y terapia conductual. La cirugía reconstructiva es un método de tratamiento. [8]

Grasa visceral[ editar ]

Obesidad abdominal en hombres ("barriga cervecera")

La grasa visceral o grasa abdominal [9] (también conocida como grasa de órganos o grasa intraabdominal) se encuentra dentro de la cavidad abdominal , empaquetada entre los órganos (estómago, hígado, intestinos, riñones, etc.). La grasa visceral es diferente de la grasa subcutánea debajo de la piel y la grasa intramuscular intercalada en los músculos esqueléticos . La grasa en la parte inferior del cuerpo, como en los muslos y las nalgas, es subcutánea y no es un tejido espaciado uniformemente, mientras que la grasa en el abdomen es principalmente visceral y semifluida. [10] La grasa visceral se compone de varios depósitos adiposos, que incluyen mesentérico , epidídimo tejido adiposo blanco (EWAT) y depósitos perirrenal . La grasa visceral a menudo se expresa en términos de su área en cm 2 (VFA, área de grasa visceral). [11]

Un exceso de grasa visceral se conoce como obesidad central , o "grasa abdominal", en la que el abdomen sobresale excesivamente. Los nuevos desarrollos, como el Índice de volumen corporal (BVI), están diseñados específicamente para medir el volumen abdominal y la grasa abdominal. El exceso de grasa visceral también está vinculada a la diabetes tipo 2 , [12] resistencia a la insulina , [13] enfermedades inflamatorias , [14] y otras enfermedades relacionada con la obesidad. [15] Asimismo, se ha demostrado que la acumulación de grasa en el cuello (o tejido adiposo cervical) está asociada con la mortalidad. [16] Varios estudios han sugerido que la grasa visceral se puede predecir a partir de medidas antropométricas simples,[17] y predice la mortalidad con mayor precisión que el índice de masa corporal o la circunferencia de la cintura. [18]

Los hombres tienen más probabilidades de tener grasa almacenada en el abdomen debido a las diferencias de hormonas sexuales . La hormona sexual femenina hace que la grasa se almacene en las nalgas, los muslos y las caderas de las mujeres. [19] [20] Cuando las mujeres llegan a la menopausia y el estrógeno producido por los ovarios disminuye, la grasa migra desde las nalgas, las caderas y los muslos hasta la cintura; [21] Posteriormente, la grasa se almacena en el abdomen. [10]

El ejercicio de alta intensidad es una forma de reducir eficazmente la grasa abdominal total. [22] [23] Un estudio sugiere que se requieren al menos 10 MET- horas por semana de ejercicio aeróbico para reducir la grasa visceral. [24] Una dieta restringida en energía combinada con ejercicio reducirá la grasa corporal total y la proporción de tejido adiposo visceral a tejido adiposo subcutáneo, lo que sugiere una movilización preferencial de la grasa visceral sobre la grasa subcutánea. [25]

Grasa epicárdica [ editar ]

El tejido adiposo epicárdico (EAT) es una forma particular de grasa visceral que se deposita alrededor del corazón y se encuentra como un órgano metabólicamente activo que genera varias moléculas bioactivas, que podrían afectar significativamente la función cardíaca . [26] Se han observado diferencias marcadas en los componentes al comparar el EAT con la grasa subcutánea , lo que sugiere un impacto específico de depósito de los ácidos grasos almacenados en la función y el metabolismo de los adipocitos. [27]

Grasa subcutánea [ editar ]

Microanatomía de la grasa subcutánea

La mayor parte de la grasa no visceral restante se encuentra justo debajo de la piel en una región llamada hipodermis . [28] Esta grasa subcutánea no está relacionada con muchas de las patologías clásicas relacionadas con la obesidad, como las enfermedades cardíacas , el cáncer y los accidentes cerebrovasculares , y algunas pruebas incluso sugieren que podría ser protectora. [29] El patrón típicamente femenino (o ginecoide) de distribución de la grasa corporal alrededor de las caderas, muslos y glúteos es la grasa subcutánea y, por lo tanto, representa un riesgo menor para la salud en comparación con la grasa visceral. [30] [31]

Como todos los demás órganos grasos, la grasa subcutánea es una parte activa del sistema endocrino, que secreta las hormonas leptina y resistina . [28]

La relación entre la capa adiposa subcutánea y la grasa corporal total en una persona a menudo se modela mediante ecuaciones de regresión. La más popular de estas ecuaciones fue formada por Durnin y Wormersley, quienes probaron rigurosamente muchos tipos de pliegues cutáneos y, como resultado, crearon dos fórmulas para calcular la densidad corporal de hombres y mujeres. Estas ecuaciones presentan una correlación inversa entre los pliegues cutáneos y la densidad corporal: a medida que aumenta la suma de los pliegues cutáneos, la densidad corporal disminuye. [32]

Factores como el sexo, la edad, el tamaño de la población u otras variables pueden hacer que las ecuaciones sean inválidas e inutilizables y, a partir de 2012 , las ecuaciones de Durnin y Wormersley siguen siendo solo estimaciones del verdadero nivel de gordura de una persona. Todavía se están creando nuevas fórmulas. [32]

Grasa de médula [ editar ]

La grasa de la médula ósea, también conocida como tejido adiposo de la médula ósea ( MAT ), es un depósito adiposo poco conocido que reside en el hueso y está intercalado con células hematopoyéticas y elementos óseos. Los adipocitos en este depósito se derivan de células madre mesenquimales (MSC) que pueden dar lugar a células grasas, células óseas y otros tipos de células. El hecho de que MAT aumenta en el contexto de restricción calórica / anorexia es una característica que distingue a este depósito de otros depósitos de grasa. [33] [34] [35] El ejercicio regula MAT, disminuyendo la cantidad de MAT y disminuyendo el tamaño de los adipocitos de la médula. [36] [37] [38] La regulación del ejercicio de la grasa de la médula ósea sugiere que tiene cierta similitud fisiológica con otros depósitos de grasa blanca. Además, el aumento de MAT en la obesidad sugiere una similitud con los depósitos de grasa blanca. [36]

Grasa ectópica [ editar ]

La grasa ectópica es el almacenamiento de triglicéridos en tejidos distintos del tejido adiposo, que se supone que contienen solo pequeñas cantidades de grasa, como el hígado , el músculo esquelético , el corazón y el páncreas . [1] Esto puede interferir con las funciones celulares y, por lo tanto, la función de los órganos y se asocia con la resistencia a la insulina en la diabetes tipo 2. [39] Se almacena en cantidades relativamente altas alrededor de los órganos de la cavidad abdominal , pero no debe confundirse con la grasa visceral.

Se desconoce la causa específica de la acumulación de grasa ectópica. Es probable que la causa sea una combinación de factores genéticos, ambientales y de comportamiento que están involucrados en la ingesta excesiva de energía y la disminución de la actividad física. Una pérdida de peso sustancial puede reducir las reservas de grasa ectópica en todos los órganos y esto se asocia con una mejora de la función de ese órgano. [39]

En el último caso, las intervenciones de pérdida de peso no invasivas como la dieta o el ejercicio pueden disminuir la grasa ectópica (particularmente en el corazón y el hígado) en niños y adultos con sobrepeso u obesidad. [40] [41]

Fisiología [ editar ]

Free fatty acids (FFAs) are liberated from lipoproteins by lipoprotein lipase (LPL) and enter the adipocyte, where they are reassembled into triglycerides by esterifying them onto glycerol. Human fat tissue contains about 87% lipids.[42]

There is a constant flux of FFAs entering and leaving adipose tissue. The net direction of this flux is controlled by insulin and leptin—if insulin is elevated, then there is a net inward flux of FFA, and only when insulin is low can FFA leave adipose tissue. Insulin secretion is stimulated by high blood sugar, which results from consuming carbohydrates.[43]

En los seres humanos, la lipólisis (hidrólisis de triglicéridos en ácidos grasos libres) se controla mediante el control equilibrado de los receptores adrenérgicos B lipolíticos y la antilipólisis mediada por el receptor adrenérgico a2A.

Las células grasas tienen un papel fisiológico importante en el mantenimiento de los niveles de triglicéridos y ácidos grasos libres, así como en la determinación de la resistencia a la insulina . La grasa abdominal tiene un perfil metabólico diferente , siendo más propensa a inducir resistencia a la insulina. Esto explica en gran medida por qué la obesidad central es un marcador de intolerancia a la glucosa y es un factor de riesgo independiente de enfermedad cardiovascular (incluso en ausencia de diabetes mellitus e hipertensión ). [44] Los estudios de monos hembras en la Universidad de Wake Forest (2009) descubrieron que los individuos que sufren de mayorestrés tienen niveles más altos de grasa visceral en sus cuerpos. Esto sugiere un posible vínculo de causa y efecto entre los dos, en el que el estrés promueve la acumulación de grasa visceral, que a su vez provoca cambios hormonales y metabólicos que contribuyen a las enfermedades cardíacas y otros problemas de salud. [45]

Los recientes avances en biotecnología han permitido la recolección de células madre adultas del tejido adiposo, lo que permite la estimulación del recrecimiento del tejido utilizando las propias células del paciente. Además, según se informa, las células madre derivadas de tejido adiposo tanto de humanos como de animales pueden reprogramarse eficazmente en células madre pluripotentes inducidas sin la necesidad de células alimentadoras . [46] El uso de células del propio paciente reduce la posibilidad de rechazo de tejido y evita problemas éticos asociados con el uso de células madre embrionarias humanas . [47] Un creciente cuerpo de evidencia también sugiere que diferentes depósitos de grasa (es decir, abdominal, omental, pericárdico) producen células madre derivadas de tejido adiposo con diferentes características.[47] [48] Estas características dependientes del depósito incluyen la tasa de proliferación , el inmunofenotipo , el potencial de diferenciación , la expresión génica y la sensibilidad a las condiciones de cultivo hipóxicas. [49] Los niveles de oxígeno parecen jugar un papel importante en el metabolismo y, en general, en la función de las células madre derivadas de tejido adiposo. [50]

El tejido adiposo es una fuente periférica importante de aromatasa tanto en hombres como en mujeres, lo que contribuye a la producción de estradiol . [51]

Las hormonas derivadas del tejido adiposo incluyen:

  • Adiponectina
  • Resistir
  • Inhibidor del activador del plasminógeno-1 (PAI-1)
  • TNFα
  • IL-6
  • Leptina
  • Estradiol (E2)

Los tejidos adiposos también secretan un tipo de citocinas (proteínas de señalización de célula a célula) llamadas adipocinas (citocinas adiposas), que desempeñan un papel en las complicaciones asociadas a la obesidad. El tejido adiposo perivascular libera adipocinas como la adiponectina que afectan la función contráctil de los vasos que rodean. [1] [52]

Grasa parda [ editar ]

Célula de grasa marrón

Brown fat or brown adipose tissue (BAT) is a specialized form of adipose tissue important for adaptive thermogenesis in humans and other mammals. BAT can generate heat by "uncoupling" the respiratory chain of oxidative phosphorylation within mitochondria through tissue-specific expression of uncoupling protein 1 (UCP1).[53] BAT is primarily located around the neck and large blood vessels of the thorax, where it may effectively act in heat exchange. BAT is robustly activated upon cold exposure by the release of catecholamines from sympathetic nerves that results in UCP1 activation. BAT activation may also occur in response to overfeeding.[54] UCP1 activity is stimulated by long chain fatty acids that are produced subsequent to β-adrenergic receptor activation.[53] UCP1 is proposed to function as a fatty acid proton symporter, although the exact mechanism has yet to be elucidated.[55] In contrast, UCP1 is inhibited by ATP, ADP, and GTP.[56]

Attempts to simulate this process pharmacologically have so far been unsuccessful. Techniques to manipulate the differentiation of "brown fat" could become a mechanism for weight loss therapy in the future, encouraging the growth of tissue with this specialized metabolism without inducing it in other organs. A review on the eventual therapeutic targeting of brown fat to treat human obesity was published by Samuelson and Vidal-Puig in 2020.[57]

Until recently, brown adipose tissue was thought to be primarily limited to infants in humans, but new evidence has now overturned that belief. Metabolically active tissue with temperature responses similar to brown adipose was first reported in the neck and trunk of some human adults in 2007,[58] and the presence of brown adipose in human adults was later verified histologically in the same anatomical regions.[59][60][61]

Beige fat and WAT browning[edit]

Browning of WAT, also referred to as "beiging", occurs when adipocytes within WAT depots develop features of BAT. Beige adipocytes take on a multilocular appearance (containing several lipid droplets) and increase expression of uncoupling protein 1 (UCP1).[62] In doing so, these normally energy-storing adipocytes become energy-releasing adipocytes.

The calorie-burning capacity of brown and beige fat has been extensively studied as research efforts focus on therapies targeted to treat obesity and diabetes. The drug 2,4-dinitrophenol, which also acts as a chemical uncoupler similarly to UCP1, was used for weight loss in the 1930s. However, it was quickly discontinued when excessive dosing led to adverse side effects including hyperthermia and death.[62] β3 agonists, like CL316,243, have also been developed and tested in humans. However, the use of such drugs has proven largely unsuccessful due to several challenges, including varying species receptor specificity and poor oral bioavailability.[63]

Cold is a primary regulator of BAT processes and induces WAT browning. Browning in response to chronic cold exposure has been well documented and is a reversible process. A study in mice demonstrated that cold-induced browning can be completely reversed in 21 days, with measurable decreases in UCP1 seen within a 24-hour period.[64] A study by Rosenwald et al. revealed that when the animals are re-exposed to a cold environment, the same adipocytes will adopt a beige phenotype, suggesting that beige adipocytes are retained.[65]

Transcriptional regulators, as well as a growing number of other factors, regulate the induction of beige fat. Four regulators of transcription are central to WAT browning and serve as targets for many of the molecules known to influence this process.[66] These include peroxisome proliferator-activated receptor gamma (PPARγ), PR domain containing 16 (PRDM16),[67] peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), and Early B-Cell Factor-2 (EBF2).[68][69][70]

The list of molecules that influence browning has grown in direct proportion to the popularity of this topic and is constantly evolving as more knowledge is acquired. Among these molecules are irisin and fibroblast growth factor 21 (FGF21), which have been well-studied and are believed to be important regulators of browning. Irisin is secreted from muscle in response to exercise and has been shown to increase browning by acting on beige preadipocytes.[71] FGF21, a hormone secreted mainly by the liver, has garnered a great deal of interest after being identified as a potent stimulator of glucose uptake and a browning regulator through its effects on PGC-1α.[62] It is increased in BAT during cold exposure and is thought to aid in resistance to diet-induced obesity[72] FGF21 may also be secreted in response to exercise and a low protein diet, although the latter has not been thoroughly investigated.[73][74] Data from these studies suggest that environmental factors like diet and exercise may be important mediators of browning. In mice, it was found that beiging can occur through the production of methionine-enkephalin peptides by type 2 innate lymphoid cells in response to interleukin 33.[75]

Genomics and bioinformatics tools to study browning[edit]

Due to the complex nature of adipose tissue and a growing list of browning regulatory molecules, great potential exists for the use of bioinformatics tools to improve study within this field. Studies of WAT browning have greatly benefited from advances in these techniques, as beige fat is rapidly gaining popularity as a therapeutic target for the treatment of obesity and diabetes.

DNA microarray is a bioinformatics tool used to quantify expression levels of various genes simultaneously, and has been used extensively in the study of adipose tissue. One such study used microarray analysis in conjunction with Ingenuity IPA software to look at changes in WAT and BAT gene expression when mice were exposed to temperatures of 28 and 6 °C.[76] The most significantly up- and downregulated genes were then identified and used for analysis of differentially expressed pathways. It was discovered that many of the pathways upregulated in WAT after cold exposure are also highly expressed in BAT, such as oxidative phosphorylation, fatty acid metabolism, and pyruvate metabolism.[76] This suggests that some of the adipocytes switched to a beige phenotype at 6 °C. Mössenböck et al. also used microarray analysis to demonstrate that insulin deficiency inhibits the differentiation of beige adipocytes but does not disturb their capacity for browning.[77] These two studies demonstrate the potential for the use of microarray in the study of WAT browning.

RNA sequencing (RNA-Seq) is a powerful computational tool that allows for the quantification of RNA expression for all genes within a sample. Incorporating RNA-Seq into browning studies is of great value, as it offers better specificity, sensitivity, and a more comprehensive overview of gene expression than other methods. RNA-Seq has been used in both human and mouse studies in an attempt characterize beige adipocytes according to their gene expression profiles and to identify potential therapeutic molecules that may induce the beige phenotype. One such study used RNA-Seq to compare gene expression profiles of WAT from wild-type (WT) mice and those overexpressing Early B-Cell Factor-2 (EBF2). WAT from the transgenic animals exhibited a brown fat gene program and had decreased WAT specific gene expression compared to the WT mice.[78] Thus, EBF2 has been identified as a potential therapeutic molecule to induce beiging.

Chromatin immunoprecipitation with sequencing (ChIP-seq) is a method used to identify protein binding sites on DNA and assess histone modifications. This tool has enabled examination of epigenetic regulation of browning and helps elucidate the mechanisms by which protein-DNA interactions stimulate the differentiation of beige adipocytes. Studies observing the chromatin landscapes of beige adipocytes have found that adipogenesis of these cells results from the formation of cell specific chromatin landscapes, which regulate the transcriptional program and, ultimately, control differentiation. Using ChIP-seq in conjunction with other tools, recent studies have identified over 30 transcriptional and epigenetic factors that influence beige adipocyte development.[78]

Genetics[edit]

The thrifty gene hypothesis (also called the famine hypothesis) states that in some populations the body would be more efficient at retaining fat in times of plenty, thereby endowing greater resistance to starvation in times of food scarcity. This hypothesis, originally advanced in the context of glucose metabolism and insulin resistance, has been discredited by physical anthropologists, physiologists, and the original proponent of the idea himself with respect to that context, although according to its developer it remains "as viable as when [it was] first advanced" in other contexts.[79][80]

In 1995, Jeffrey Friedman, in his residency at the Rockefeller University, together with Rudolph Leibel, Douglas Coleman et al. discovered the protein leptin that the genetically obese mouse lacked.[81][82][83] Leptin is produced in the white adipose tissue and signals to the hypothalamus. When leptin levels drop, the body interprets this as a loss of energy, and hunger increases. Mice lacking this protein eat until they are four times their normal size.

Leptin, however, plays a different role in diet-induced obesity in rodents and humans. Because adipocytes produce leptin, leptin levels are elevated in the obese. However, hunger remains, and—when leptin levels drop due to weight loss—hunger increases. The drop of leptin is better viewed as a starvation signal than the rise of leptin as a satiety signal.[84] However, elevated leptin in obesity is known as leptin resistance. The changes that occur in the hypothalamus to result in leptin resistance in obesity are currently the focus of obesity research.[85]

Gene defects in the leptin gene (ob) are rare in human obesity.[86] As of July 2010, only 14 individuals from five families have been identified worldwide who carry a mutated ob gene (one of which was the first ever identified cause of genetic obesity in humans)—two families of Pakistani origin living in the UK, one family living in Turkey, one in Egypt, and one in Austria[87][88][89][90][91]—and two other families have been found that carry a mutated ob receptor.[92][93] Others have been identified as genetically partially deficient in leptin, and, in these individuals, leptin levels on the low end of the normal range can predict obesity.[94]

Several mutations of genes involving the melanocortins (used in brain signaling associated with appetite) and their receptors have also been identified as causing obesity in a larger portion of the population than leptin mutations.[95]

Physical properties[edit]

Adipose tissue has a density of ~0.9 g/ml.[96] Thus, a person with more adipose tissue will float more easily than a person of the same weight with more muscular tissue, since muscular tissue has a density of 1.06 g/ml.[97]

Body fat meter[edit]

A body fat meter is a widely available tool used to measure the percentage of fat in the human body. Different meters use various methods to determine the body fat to weight ratio. They tend to under-read body fat percentage.

In contrast with clinical tools, one relatively inexpensive type of body fat meter uses the principle of bioelectrical impedance analysis (BIA) in order to determine an individual's body fat percentage. To achieve this, the meter passes a small, harmless, electric current through the body and measures the resistance, then uses information on the person's weight, height, age, and sex to calculate an approximate value for the person's body fat percentage. The calculation measures the total volume of water in the body (lean tissue and muscle contain a higher percentage of water than fat), and estimates the percentage of fat based on this information. The result can fluctuate several percentage points depending on what has been eaten and how much water has been drunk before the analysis. Before bioelectrical impedance analysis machines were developed, there were many different ways in analyzing body composition such as skin fold methods using calipers, underwater weighing, whole body air displacement plethysmography (ADP) and DXA.

Animal studies[edit]

Within the fat (adipose) tissue of CCR2 deficient mice, there is an increased number of eosinophils, greater alternative Macrophage activation, and a propensity towards type 2 cytokine expression. Furthermore, this effect was exaggerated when the mice became obese from a high fat diet.[98]

Gallery[edit]

  • Diagrammatic sectional view of the skin (magnified).

  • White adipose tissue in paraffin section

  • Electronic instrument of body fat meter

See also[edit]

  • Adipose differentiation-related protein
  • Adiposopathy
  • Apelin
  • Bioelectrical impedance analysis – a method to measure body fat percentage.
  • Blubber – an extra thick form of adipose tissue found in some marine mammals.
  • Body fat percentage
  • Cellulite
  • Lipolysis
  • Lipodystrophy
  • Human fat used as pharmaceutical in traditional medicine
  • Obesity
  • Starvation
  • Steatosis (also called fatty change, fatty degeneration or adipose degeneration)
  • Stem cells
  • Subcutaneous fat
  • Bariatrics
  • Classification of obesity
  • Classification of childhood obesity
  • EPODE International Network, the world's largest obesity-prevention network
  • World Fit A program of the United States Olympic Committee (USOC), and the United States Olympians and Paralympians Association (USOP)
  • Obesity and walking
  • Social stigma of obesity

References[edit]

  1. ^ a b c d Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (August 2013). "Role of pericytes in skeletal muscle regeneration and fat accumulation". Stem Cells and Development. 22 (16): 2298–314. doi:10.1089/scd.2012.0647. PMC 3730538. PMID 23517218.
  2. ^ Kershaw EE, Flier JS (June 2004). "Adipose tissue as an endocrine organ". The Journal of Clinical Endocrinology and Metabolism. 89 (6): 2548–56. doi:10.1210/jc.2004-0395. PMID 15181022.
  3. ^ Cannon B, Nedergaard J (August 2008). "Developmental biology: Neither fat nor flesh". Nature. 454 (7207): 947–48. Bibcode:2008Natur.454..947C. doi:10.1038/454947a. PMID 18719573. S2CID 205040511.
  4. ^ Aarsland A, Chinkes D, Wolfe RR (June 1997). "Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding". The American Journal of Clinical Nutrition. 65 (6): 1774–82. doi:10.1093/ajcn/65.6.1774. PMID 9174472.
  5. ^ Pond CM (1998). The Fats of Life. Cambridge University Press. ISBN 978-0-521-63577-6.
  6. ^ Cinti S (July 2005). "The adipose organ". Prostaglandins, Leukotrienes, and Essential Fatty Acids. 73 (1): 9–15. doi:10.1016/j.plefa.2005.04.010. PMID 15936182.
  7. ^ Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK (March 2001). "Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice". Physiology & Behavior. 72 (4): 603–13. doi:10.1016/S0031-9384(01)00412-7. PMC 3341942. PMID 11282146.
  8. ^ Wirth, Alfred; Wabitsch, Martin; Hauner, Hans (October 2014). "The Prevention and Treatment of Obesity". Deutsches Ärzteblatt International. 111 (42): 705–713. doi:10.3238/arztebl.2014.0705. ISSN 1866-0452. PMC 4233761. PMID 25385482.
  9. ^ Fat on the Inside: Looking Thin is Not Enough, By Fiona Haynes, About.com
  10. ^ a b "Abdominal fat and what to do about it". President & Fellows of Harvard College. September 2005. Visceral fat more of a health concern than subcutaneous fat
  11. ^ Nagai M, Komiya H, Mori Y, Ohta T, Kasahara Y, Ikeda Y (May 2010). "Estimating visceral fat area by multifrequency bioelectrical impedance". Diabetes Care. 33 (5): 1077–79. doi:10.2337/dc09-1099. PMC 2858179. PMID 20150289.
  12. ^ Montague CT, O'Rahilly S (June 2000). "The perils of portliness: causes and consequences of visceral adiposity". Diabetes. 49 (6): 883–88. doi:10.2337/diabetes.49.6.883. PMID 10866038.
  13. ^ Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (May 2001). "Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance". American Journal of Physiology. Endocrinology and Metabolism. 280 (5): E745–51. doi:10.1152/ajpendo.2001.280.5.e745. PMID 11287357. S2CID 24306481.
  14. ^ Marette A (December 2003). "Molecular mechanisms of inflammation in obesity-linked insulin resistance". International Journal of Obesity and Related Metabolic Disorders. 27 Suppl 3: S46–48. doi:10.1038/sj.ijo.0802500. PMID 14704744.
  15. ^ Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. (January 2003). "Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001". JAMA. 289 (1): 76–79. doi:10.1001/jama.289.1.76. PMID 12503980.
  16. ^ Maresky HS, Sharfman Z, Ziv-Baran T, Gomori JM, Copel L, Tal S (November 2015). "Anthropometric Assessment of Neck Adipose Tissue and Airway Volume Using Multidetector Computed Tomography: An Imaging Approach and Association With Overall Mortality". Medicine. 94 (45): e1991. doi:10.1097/MD.0000000000001991. PMC 4912280. PMID 26559286.
  17. ^ Brown JC, Harhay MO, Harhay MN (2016). "Anthropometrically predicted visceral adipose tissue and blood-based biomarkers: a cross-sectional analysis". European Journal of Nutrition. 57 (1): 191–198. doi:10.1007/s00394-016-1308-8. PMC 5513780. PMID 27614626.
  18. ^ Brown JC, Harhay MO, Harhay MN (2017). "Anthropometrically-predicted visceral adipose tissue and mortality among men and women in the third national health and nutrition examination survey (NHANES III)". American Journal of Human Biology. 29 (1): e22898. doi:10.1002/ajhb.22898. PMC 5241265. PMID 27427402.
  19. ^ "Reduce Abdominal Fat". Archived from the original on 2011-09-28. Retrieved 2009-04-10. Estrogen causes fat to be stored around the pelvic region, hips, butt and thighs (pelvic region)
  20. ^ "Waistline Worries: Turning Apples Back Into Pears". healthywomen.org. Archived from the original on 2009-06-09.
  21. ^ Researchers think that the lack of estrogen at menopause plays a role in driving our fat northward. See: Andrews, Michelle (2006-12-01). "A Matter of Fat". Yahoo Health. Women's Health. Archived from the original on 2007-03-15.
  22. ^ Irving BA, Davis CK, Brock DW, Weltman JY, Swift D, Barrett EJ, Gaesser GA, Weltman A (November 2008). "Effect of exercise training intensity on abdominal visceral fat and body composition". Medicine and Science in Sports and Exercise. 40 (11): 1863–72. doi:10.1249/MSS.0b013e3181801d40. PMC 2730190. PMID 18845966.
  23. ^ Coker RH, Williams RH, Kortebein PM, Sullivan DH, Evans WJ (August 2009). "Influence of exercise intensity on abdominal fat and adiponectin in elderly adults". Metabolic Syndrome and Related Disorders. 7 (4): 363–68. doi:10.1089/met.2008.0060. PMC 3135883. PMID 19196080.
  24. ^ Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I (December 2007). "A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials". International Journal of Obesity. 31 (12): 1786–97. doi:10.1038/sj.ijo.0803683. PMID 17637702.
  25. ^ R, Ross; J, Rissanen (November 1994). "Mobilization of Visceral and Subcutaneous Adipose Tissue in Response to Energy Restriction and Exercise". The American Journal of Clinical Nutrition. 60 (5): 695–703. doi:10.1093/ajcn/60.5.695. PMID 7942575. Retrieved 2020-06-05.
  26. ^ Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O'Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y, et al. (November 2003). "Human epicardial adipose tissue is a source of inflammatory mediators". Circulation. 108 (20): 2460–66. doi:10.1161/01.CIR.0000099542.57313.C5. PMID 14581396.
  27. ^ Pezeshkian M, Noori M, Najjarpour-Jabbari H, Abolfathi A, Darabi M, Darabi M, Shaaker M, Shahmohammadi G, et al. (April 2009). "Fatty acid composition of epicardial and subcutaneous human adipose tissue". Metabolic Syndrome and Related Disorders. 7 (2): 125–31. doi:10.1089/met.2008.0056. PMID 19422139.
  28. ^ a b Hoehn K, Marieb EN (2008). Anatomy & Physiology (3rd ed.). San Francisco, Calif.: Pearson/Benjamin Cummings. ISBN 978-0-8053-0094-9.
  29. ^ Porter SA, Massaro JM, Hoffmann U, Vasan RS, O'Donnel CJ, Fox CS (June 2009). "Abdominal subcutaneous adipose tissue: a protective fat depot?". Diabetes Care. 32 (6): 1068–75. doi:10.2337/dc08-2280. PMC 2681034. PMID 19244087.
  30. ^ "Belly fat in women: Taking – and keeping – it off". MayoClinic.com. 2013-06-08. Retrieved 2013-12-02.
  31. ^ Frayn, K. N.; Karpe, F.; Manolopoulos, K. N. (June 2010). "Gluteofemoral body fat as a determinant of metabolic health". International Journal of Obesity. 34 (6): 949–959. doi:10.1038/ijo.2009.286. ISSN 1476-5497. PMID 20065965.
  32. ^ a b Brodie D, Moscrip V, Hutcheon R (March 1998). "Body composition measurement: a review of hydrodensitometry, anthropometry, and impedance methods". Nutrition. 14 (3): 296–310. doi:10.1016/S0899-9007(97)00474-7. PMID 9583375.
  33. ^ Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML (September 2010). "Caloric restriction leads to high marrow adiposity and low bone mass in growing mice". Journal of Bone and Mineral Research. 25 (9): 2078–88. doi:10.1002/jbmr.82. PMC 3127399. PMID 20229598.
  34. ^ Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CM, Sulston RJ, Burr AA, Das AK, Simon BR, Mori H, Bree AJ, Schell B, Krishnan V, MacDougald OA (February 2016). "Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia". Endocrinology. 157 (2): 508–21. doi:10.1210/en.2015-1477. PMC 4733126. PMID 26696121.
  35. ^ Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A (June 2009). "Increased bone marrow fat in anorexia nervosa". The Journal of Clinical Endocrinology and Metabolism. 94 (6): 2129–36. doi:10.1210/jc.2008-2532. PMC 2690416. PMID 19318450.
  36. ^ a b Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, Xie Z, Zong X, Styner MA, Rubin CT, Rubin J (August 2017). "Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice". Journal of Bone and Mineral Research. 32 (8): 1692–702. doi:10.1002/jbmr.3159. PMC 5550355. PMID 28436105.
  37. ^ Styner M, Pagnotti GM, Galior K, Wu X, Thompson WR, Uzer G, Sen B, Xie Z, Horowitz MC, Styner MA, Rubin C, Rubin J (August 2015). "Exercise Regulation of Marrow Fat in the Setting of PPARγ Agonist Treatment in Female C57BL/6 Mice". Endocrinology. 156 (8): 2753–61. doi:10.1210/en.2015-1213. PMC 4511140. PMID 26052898.
  38. ^ Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J (July 2014). "Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise". Bone. 64: 39–46. doi:10.1016/j.bone.2014.03.044. PMC 4041820. PMID 24709686.
  39. ^ a b Snel M, Jonker JT, Schoones J, Lamb H, de Roos A, Pijl H, Smit JW, Meinders AE, Jazet IM (2012). "Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions". International Journal of Endocrinology. 2012: 1–18. doi:10.1155/2012/983814. PMC 3366269. PMID 22675355.
  40. ^ Hens W, Vissers D, Hansen D, Peeters S, Gielen J, Van Gaal L, Taeymans J (2017). "The effect of diet or exercise on ectopic adiposity in children and adolescents with obesity: a systematic review and meta-analysis". Obesity Reviews. 18 (11): 1310–22. doi:10.1111/obr.12577. hdl:1942/24948. PMID 28913977. S2CID 10876113.
  41. ^ Hens W, Taeyman J, Cornelis J, Gielen J, Van Gaal L, Vissers D (2016). "The Effect of Lifestyle Interventions on Excess Ectopic Fat Deposition Measured by Noninvasive Techniques in Overweight and Obese Adults: A Systematic Review and Meta-Analysis". Journal of Physical Activity & Health. 13 (6): 671–94. doi:10.1123/jpah.2015-0560. hdl:10067/1321600151162165141. PMID 26694194.
  42. ^ Thomas, Lorette W. (1962-04-07). "The Chemical Composition of Adipose Tissue of Man and Mice". Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 47 (2): 179–188. doi:10.1113/expphysiol.1962.sp001589. ISSN 1469-445X. PMID 13920823.
  43. ^ Amitani, Marie; Asakawa, Akihiro; Amitani, Haruka; Inui, Akio (2013). "The role of leptin in the control of insulin-glucose axis". Frontiers in Neuroscience. 7: 51. doi:10.3389/fnins.2013.00051. ISSN 1662-453X. PMC 3619125. PMID 23579596.
  44. ^ Dhaliwal SS, Welborn TA (2009). "Central obesity and multivariable cardiovascular risk as assessed by the Framingham prediction scores". Am J Cardiol. 103 (10): 1403–07. doi:10.1016/j.amjcard.2008.12.048. PMID 19427436.
  45. ^ Park A (2009-08-08). "Fat-Bellied Monkeys Suggest Why Stress Sucks". Time. Archived from the original on December 20, 2013. Retrieved 2013-12-19.
  46. ^ Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, et al. (February 2010). "Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells". Proceedings of the National Academy of Sciences. 107 (8): 3558–63. Bibcode:2010PNAS..107.3558S. doi:10.1073/pnas.0910172106. PMC 2840462. PMID 20133714.
  47. ^ a b Atzmon G, Yang XM, Muzumdar R, Ma XH, Gabriely I, Barzilai N (November 2002). "Differential gene expression between visceral and subcutaneous fat depots". Hormone and Metabolic Research. 34 (11–12): 622–28. doi:10.1055/s-2002-38250. PMID 12660871.
  48. ^ Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Di Franco A, Borgogni E, Frontera S, Nesi G, Liotta F, Lucchese M, Perigli G, Francini F, Forti G, Serio M, Luconi M (4 May 2012). "Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell". PLOS ONE. 7 (5): e36569. Bibcode:2012PLoSO...736569B. doi:10.1371/journal.pone.0036569. PMC 3344924. PMID 22574183.
  49. ^ Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE (February 2014). "Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications". Stem Cells Translational Medicine. 3 (2): 206–17. doi:10.5966/sctm.2013-0125. PMC 3925056. PMID 24361924.
  50. ^ Lempesis, Ioannis G.; Meijel, Rens L. J. van; Manolopoulos, Konstantinos N.; Goossens, Gijs H. (2019). "Oxygenation of adipose tissue: A human perspective". Acta Physiologica. 0 (1): e13298. doi:10.1111/apha.13298. ISSN 1748-1716. PMC 6916558. PMID 31077538.
  51. ^ Stocco, Carlos (January 2012). "Tissue Physiology and Pathology of Aromatase". Steroids. 77 (1–2): 27–35. doi:10.1016/j.steroids.2011.10.013. ISSN 0039-128X. PMC 3286233. PMID 22108547.
  52. ^ Löhn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM (July 2002). "Periadventitial fat releases a vascular relaxing factor". FASEB Journal. 16 (9): 1057–63. doi:10.1096/fj.02-0024com. PMID 12087067. S2CID 902537.
  53. ^ a b Cannon B, Nedergaard J (January 2004). "Brown adipose tissue: function and physiological significance". Physiological Reviews. 84 (1): 277–359. doi:10.1152/physrev.00015.2003. PMID 14715917. S2CID 14289041.
  54. ^ Busiello RA, Savarese S, Lombardi A (2015). "Mitochondrial uncoupling proteins and energy metabolism". Frontiers in Physiology. 6 (36): 36. doi:10.3389/fphys.2015.00036. PMC 4322621. PMID 25713540.
  55. ^ Fedorenko A, Lishko PV, Kirichok Y (October 2012). "Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria". Cell. 151 (2): 400–13. doi:10.1016/j.cell.2012.09.010. PMC 3782081. PMID 23063128.
  56. ^ Azzu V, Brand MD (May 2010). "The on-off switches of the mitochondrial uncoupling proteins". Trends in Biochemical Sciences. 35 (5): 298–307. doi:10.1016/j.tibs.2009.11.001. PMC 3640847. PMID 20006514.
  57. ^ Samuelson, Isabella; Vidal-Puig, Antonio (2020). "Studying Brown Adipose Tissue in a Human in vitro Context". Frontiers in Endocrinology. 11: 629. doi:10.3389/fendo.2020.00629. ISSN 1664-2392. PMC 7523498. PMID 33042008.
  58. ^ Nedergaard J, Bengtsson T, Cannon B (August 2007). "Unexpected evidence for active brown adipose tissue in adult humans". American Journal of Physiology. Endocrinology and Metabolism. 293 (2): E444–52. doi:10.1152/ajpendo.00691.2006. PMID 17473055. S2CID 230947.
  59. ^ Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. (April 2009). "Functional brown adipose tissue in healthy adults". The New England Journal of Medicine. 360 (15): 1518–25. doi:10.1056/NEJMoa0808949. PMID 19357407.
  60. ^ van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. (April 2009). "Cold-activated brown adipose tissue in healthy men". The New England Journal of Medicine. 360 (15): 1500–08. doi:10.1056/NEJMoa0808718. PMID 19357405. S2CID 477352.
  61. ^ Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. (April 2009). "Identification and importance of brown adipose tissue in adult humans". The New England Journal of Medicine. 360 (15): 1509–17. doi:10.1056/NEJMoa0810780. PMC 2859951. PMID 19357406.
  62. ^ a b c Harms M, Seale P (October 2013). "Brown and beige fat: development, function and therapeutic potential". Nature Medicine. 19 (10): 1252–63. doi:10.1038/nm.3361. PMID 24100998.
  63. ^ Cypess AM, Kahn CR (April 2010). "Brown fat as a therapy for obesity and diabetes". Current Opinion in Endocrinology, Diabetes and Obesity. 17 (2): 143–49. doi:10.1097/MED.0b013e328337a81f. PMC 3593105. PMID 20160646.
  64. ^ Gospodarska E, Nowialis P, Kozak LP (March 2015). "Mitochondrial turnover: a phenotype distinguishing brown adipocytes from interscapular brown adipose tissue and white adipose tissue". The Journal of Biological Chemistry. 290 (13): 8243–55. doi:10.1074/jbc.M115.637785. PMC 4375480. PMID 25645913.
  65. ^ Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (June 2013). "Bi-directional interconversion of brite and white adipocytes". Nature Cell Biology. 15 (6): 659–67. doi:10.1038/ncb2740. PMID 23624403. S2CID 2842953.
  66. ^ Lo KA, Sun L (September 2013). "Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes". Bioscience Reports. 33 (5): 711–19. doi:10.1042/BSR20130046. PMC 3764508. PMID 23895241.
  67. ^ Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ, Seale P (April 2014). "Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice". Cell Metabolism. 19 (4): 593–604. doi:10.1016/j.cmet.2014.03.007. PMC 4012340. PMID 24703692.
  68. ^ Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ, Seale P (October 2014). "Ebf2 is a selective marker of brown and beige adipogenic precursor cells". Proceedings of the National Academy of Sciences. 111 (40): 14466–71. Bibcode:2014PNAS..11114466W. doi:10.1073/pnas.1412685111. PMC 4209986. PMID 25197048.
  69. ^ Kissig M, Shapira SN, Seale P (June 2016). "SnapShot: Brown and Beige Adipose Thermogenesis". Cell. 166 (1): 258–258.e1. doi:10.1016/j.cell.2016.06.038. PMC 5478388. PMID 27368105.
  70. ^ Shapira SN, Lim HW, Rajakumari S, Sakers AP, Ishibashi J, Harms MJ, Won KJ, Seale P (April 2017). "EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex". Genes & Development. 31 (7): 660–73. doi:10.1101/gad.294405.116. PMC 5411707. PMID 28428261.
  71. ^ Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (January 2012). "A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis". Nature. 481 (7382): 463–68. Bibcode:2012Natur.481..463B. doi:10.1038/nature10777. PMC 3522098. PMID 22237023.
  72. ^ Ohta H, Itoh N (2014). "Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism". Frontiers in Endocrinology. 5 (18): 18. doi:10.3389/fendo.2014.00018. PMC 3932445. PMID 24605108.
  73. ^ Fenzl A, Kiefer FW (July 2014). "Brown adipose tissue and thermogenesis". Hormone Molecular Biology and Clinical Investigation. 19 (1): 25–37. doi:10.1515/hmbci-2014-0022. PMID 25390014. S2CID 35008082.
  74. ^ Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD (September 2014). "FGF21 is an endocrine signal of protein restriction". The Journal of Clinical Investigation. 124 (9): 3913–22. doi:10.1172/JCI74915. PMC 4153701. PMID 25133427.
  75. ^ Brestoff, Jonathan R.; Kim, Brian S.; Saenz, Steven A.; Stine, Rachel R.; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Thome, Joseph J.; Farber, Donna L.; Lutfy, Kabirullah (12 March 2015). "Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity". Nature. 519 (7542): 242–246. Bibcode:2015Natur.519..242B. doi:10.1038/nature14115. ISSN 1476-4687. PMC 4447235. PMID 25533952.
  76. ^ a b Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S, Fenech ME, MacIntyre D, Turner JO, Moore JD, Blackburn E, Gullick WJ, Cinti S, Montana G, Parker MG, Christian M (April 2014). "Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice". American Journal of Physiology. Endocrinology and Metabolism. 306 (8): E945–64. doi:10.1152/ajpendo.00473.2013. PMC 3989735. PMID 24549398.
  77. ^ Inagaki T, Sakai J, Kajimura S (August 2016). "Transcriptional and epigenetic control of brown and beige adipose cell fate and function". Nature Reviews Molecular Cell Biology. 17 (8): 480–95. doi:10.1038/nrm.2016.62. PMC 4956538. PMID 27251423.
  78. ^ a b Stine RR, Shapira SN, Lim HW, Ishibashi J, Harms M, Won KJ, Seale P (January 2016). "EBF2 promotes the recruitment of beige adipocytes in white adipose tissue". Molecular Metabolism. 5 (1): 57–65. doi:10.1016/j.molmet.2015.11.001. PMC 4703852. PMID 26844207.
  79. ^ Speakerman JR (2007). "Genetics of Obesity: Five Fundamental Problems with the Famine Hypothesis". In Fantuzzi G, Mazzone T (eds.). Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press. pp. 221–236. doi:10.1007/978-1-59745-370-7_17. ISBN 978-1-58829-721-1.
  80. ^ Neel JV (1989). "The study of natural selection in primitive and civilized human populations. 1958". Human Biology. 61 (5–6): 781–810, discussion 811–23. PMID 2699601.
  81. ^ Shell E (January 1, 2002). "Chapter 4: On the Cutting Edge". The Hungry Gene: The Inside Story of the Obesity Industry. Atlantic Monthly Press. ISBN 978-1-4223-5243-4.
  82. ^ Shell E (January 1, 2002). "Chapter 5: Hunger". The Hungry Gene: The Inside Story of the Obesity Industry. Atlantic Monthly Press. ISBN 978-1-4223-5243-4.
  83. ^ Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. (July 1995). "Effects of the obese gene product on body weight regulation in ob/ob mice". Science. 269 (5223): 540–43. Bibcode:1995Sci...269..540P. doi:10.1126/science.7624776. PMID 7624776.
  84. ^ Ravussin E, Smith SR (2013). "Chapter 11: Role of the Adipocyte in Metabolism and Endocrine Function". In Weir GC, Jameson JL, De Groot LJ (eds.). Endocrinology Adult and Pediatric. Diabetes Mellitus and Obesity (6th ed.). Elsevier Health Sciences. ISBN 978-0-323-22154-2.[page needed]
  85. ^ Morris DL, Rui L (December 2009). "Recent advances in understanding leptin signaling and leptin resistance". American Journal of Physiology. Endocrinology and Metabolism. 297 (6): E1247–59. doi:10.1152/ajpendo.00274.2009. PMC 2793049. PMID 19724019.
  86. ^ Carlsson B, Lindell K, Gabrielsson B, Karlsson C, Bjarnason R, Westphal O, et al. (January 1997). "Obese (ob) gene defects are rare in human obesity". Obesity Research. 5 (1): 30–35. doi:10.1002/j.1550-8528.1997.tb00280.x. PMID 9061713.
  87. ^ Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S (June 1997). "Congenital leptin deficiency is associated with severe early-onset obesity in humans". Nature. 387 (6636): 903–8. Bibcode:1997Natur.387..903M. doi:10.1038/43185. PMID 9202122. S2CID 205032762.
  88. ^ Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD (March 1998). "A leptin missense mutation associated with hypogonadism and morbid obesity". Nature Genetics. 18 (3): 213–15. doi:10.1038/ng0398-213. PMID 9500540. S2CID 36920931.
  89. ^ Gibson WT, Farooqi IS, Moreau M, DePaoli AM, Lawrence E, O'Rahilly S, Trussell RA (October 2004). "Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy". The Journal of Clinical Endocrinology and Metabolism. 89 (10): 4821–26. doi:10.1210/jc.2004-0376. PMID 15472169.
  90. ^ Mazen I, El-Gammal M, Abdel-Hamid M, Amr K (August 2009). "A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient". Molecular Genetics and Metabolism. 97 (4): 305–08. doi:10.1016/j.ymgme.2009.04.002. PMID 19427251.
  91. ^ Fischer-Posovszky P, von Schnurbein J, Moepps B, Lahr G, Strauss G, Barth TF, Kassubek J, Mühleder H, Möller P, Debatin KM, Gierschik P, Wabitsch M (June 2010). "A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness". The Journal of Clinical Endocrinology and Metabolism. 95 (6): 2836–40. doi:10.1210/jc.2009-2466. PMID 20382689.
  92. ^ Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B (1998). "A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction". Nature. 392 (6674): 398–401. Bibcode:1998Natur.392..398C. doi:10.1038/32911. PMID 9537324. S2CID 4400661.
  93. ^ Pankov YA (1999). "Adipose tissue as an endocrine organ regulating growth, puberty, and other physiological functions". Biochemistry. Biokhimiia. 64 (6): 601–09. PMID 10395972.
  94. ^ Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R, Jebb SA, Lip GY, O'Rahilly S (November 2001). "Partial leptin deficiency and human adiposity". Nature. 414 (6859): 34–35. Bibcode:2001Natur.414...34F. doi:10.1038/35102112. PMID 11689931. S2CID 4344492.
  95. ^ Farooqi IS, O'Rahilly S (October 2008). "Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity". Nature Clinical Practice Endocrinology & Metabolism. 4 (10): 569–77. doi:10.1038/ncpendmet0966. PMID 18779842. S2CID 13946212.
  96. ^ Farvid MS, Ng TW, Chan DC, Barrett PH, Watts GF (July 2005). "Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia". Diabetes, Obesity & Metabolism. 7 (4): 406–13. doi:10.1111/j.1463-1326.2004.00410.x. PMID 15955127. S2CID 46736884.(registration required)
  97. ^ Urbanchek MG, Picken EB, Kalliainen LK, Kuzon WM (May 2001). "Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers". The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 56 (5): B191–97. doi:10.1093/gerona/56.5.B191. PMID 11320099.
  98. ^ Bolus WR, Gutierrez DA, Kennedy AJ, Anderson-Baucum EK, Hasty AH (October 2015). "CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue". Journal of Leukocyte Biology. 98 (4): 467–77. doi:10.1189/jlb.3HI0115-018R. PMC 4763864. PMID 25934927. Archived from the original on 2017-05-09. Retrieved 2016-09-08.

Further reading[edit]

  • MeSH A10.165.114
  • Stock MJ, Cinti S (2003). "Adipose Tissue / Structure and Function of Brown Adipose Tissue". Encyclopedia of Food Sciences and Nutrition. pp. 29–34. doi:10.1016/B0-12-227055-X/00008-0. ISBN 978-0-12-227055-0.
  • Vernon RG, Flint DJ (2003). "Adipose Tissue / Structure and Function of White Adipose Tissue". Encyclopedia of Food Sciences and Nutrition. pp. 23–29. doi:10.1016/B0-12-227055-X/00007-9. ISBN 978-0-12-227055-0.

External links[edit]

  • Adipose tissue photomicrographs