De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

La química atmosférica es una rama de la ciencia atmosférica en la que se estudia la química de la atmósfera terrestre y la de otros planetas. Es un enfoque multidisciplinario de investigación y se basa en la química ambiental , la física , la meteorología , el modelado informático , la oceanografía , la geología y la vulcanología y otras disciplinas. La investigación está cada vez más conectada con otras áreas de estudio como la climatología .

La composición y química de la atmósfera de la Tierra es importante por varias razones, pero principalmente debido a las interacciones entre la atmósfera y los organismos vivos . La composición de la atmósfera de la Tierra cambia como resultado de procesos naturales como las emisiones volcánicas , los rayos y el bombardeo de partículas solares de corona . También ha sido modificado por la actividad humana y algunos de estos cambios son perjudiciales para la salud humana, los cultivos y los ecosistemas. Ejemplos de problemas que han sido abordados por la química atmosférica incluyen lluvia ácida , agotamiento del ozono , smog fotoquímico , gases de efecto invernadero ycalentamiento global . Los químicos atmosféricos buscan comprender las causas de estos problemas y, al obtener una comprensión teórica de ellos, permiten probar posibles soluciones y evaluar los efectos de los cambios en la política gubernamental.

Composición atmosférica [ editar ]

Visualización de la composición por volumen de la atmósfera terrestre. El vapor de agua no está incluido ya que es muy variable. Cada cubo diminuto (como el que representa el criptón) tiene una millonésima parte del volumen de todo el bloque. Los datos son de NASA Langley .
La composición de los óxidos de nitrógeno comunes en el aire seco frente a la temperatura .

Notas: la concentración de CO 2 y CH 4 varía según la estación y el lugar. La masa molecular media del aire es 28,97 g / mol. No se incluye el ozono (O 3 ) debido a su alta variabilidad.

Historia [ editar ]

Esquema de procesos químicos y de transporte relacionados con la composición atmosférica.

Los antiguos griegos consideraban el aire como uno de los cuatro elementos . Los primeros estudios científicos de la composición atmosférica comenzaron en el siglo XVIII, cuando químicos como Joseph Priestley , Antoine Lavoisier y Henry Cavendish realizaron las primeras mediciones de la composición de la atmósfera.

A finales del siglo XIX y principios del XX, el interés se centró en los componentes traza con concentraciones muy pequeñas. Un descubrimiento particularmente importante de la química atmosférica fue el descubrimiento del ozono por Christian Friedrich Schönbein en 1840.

En el siglo XX, la ciencia atmosférica pasó de estudiar la composición del aire a considerar cómo las concentraciones de gases traza en la atmósfera han cambiado con el tiempo y los procesos químicos que crean y destruyen compuestos en el aire. Dos ejemplos particularmente importantes de esto fueron la explicación de Sydney Chapman y Gordon Dobson de cómo se crea y mantiene la capa de ozono , y la explicación del smog fotoquímico por Arie Jan Haagen-Smit . Más estudios sobre cuestiones de ozono llevaron al premio Nobel de Química de 1995, compartido entre Paul Crutzen , Mario Molina y Frank Sherwood Rowland .[2]

En el siglo XXI, el enfoque ahora está cambiando nuevamente. La química atmosférica se estudia cada vez más como parte del sistema terrestre . En lugar de concentrarse en la química atmosférica de forma aislada, la atención se centra ahora en verla como una parte de un solo sistema con el resto de la atmósfera , la biosfera y la geosfera . Un factor especialmente importante para esto son los vínculos entre la química y el clima , como los efectos del cambio climático en la recuperación del agujero de ozono y viceversa, pero también la interacción de la composición de la atmósfera con los océanos y los ecosistemas terrestres .

Dióxido de nitrógeno 2014: niveles mundiales de calidad del aire
(publicado el 14 de diciembre de 2015). [5]

Metodología [ editar ]

Las observaciones, las mediciones de laboratorio y el modelado son los tres elementos centrales de la química atmosférica. El progreso en la química atmosférica a menudo se ve impulsado por las interacciones entre estos componentes y forman un todo integrado. Por ejemplo, las observaciones pueden decirnos que existe más compuesto químico de lo que se creía posible. Esto estimulará nuevos modelos y estudios de laboratorio que aumentarán nuestra comprensión científica hasta un punto en el que las observaciones puedan explicarse.

Observación [ editar ]

Las observaciones de la química atmosférica son esenciales para nuestra comprensión. Las observaciones de rutina de la composición química nos informan sobre los cambios en la composición atmosférica a lo largo del tiempo. Un ejemplo importante de esto es la curva de Keeling , una serie de mediciones desde 1958 hasta la actualidad que muestran un aumento constante de la concentración de dióxido de carbono (véanse también las mediciones en curso de CO 2 atmosférico ). Las observaciones de la química atmosférica se realizan en observatorios como el de Mauna Loa y en plataformas móviles como aeronaves (por ejemplo, la Instalación de Medidas Atmosféricas Aerotransportadas del Reino Unido ), barcos y globos. Las observaciones de la composición atmosférica se realizan cada vez más por satélitescon importantes instrumentos como GOME y MOPITT que brindan una imagen global de la contaminación atmosférica y la química. Las observaciones de superficie tienen la ventaja de que proporcionan registros a largo plazo con una resolución de tiempo alta, pero están limitadas en el espacio vertical y horizontal desde el que proporcionan observaciones. Algunos instrumentos de superficie, como LIDAR, pueden proporcionar perfiles de concentración de compuestos químicos y aerosoles, pero aún están restringidos en la región horizontal que pueden cubrir. Muchas observaciones están disponibles en línea en las bases de datos de observación de química atmosférica .

Estudios de laboratorio [ editar ]

Las mediciones realizadas en el laboratorio son esenciales para comprender las fuentes y los sumideros de contaminantes y compuestos naturales. Estos experimentos se realizan en ambientes controlados que permiten la evaluación individual de reacciones químicas específicas o la evaluación de propiedades de un constituyente atmosférico particular. [6] Los tipos de análisis que son de interés incluyen tanto los de reacciones en fase gaseosa como las reacciones heterogéneas que son relevantes para la formación y el crecimiento de aerosoles . También es de gran importancia el estudio de la fotoquímica atmosférica, que cuantifica la velocidad a la que las moléculas se separan por la luz solar y los productos resultantes. Además,También se pueden obtener datos termodinámicos como los coeficientes de la ley de Henry .

Modelado [ editar ]

Para sintetizar y probar la comprensión teórica de la química atmosférica, los modelos informáticos (como los modelos de transporte químico) son usados. Los modelos numéricos resuelven las ecuaciones diferenciales que gobiernan las concentraciones de sustancias químicas en la atmósfera. Pueden ser muy simples o muy complicadas. Una compensación común en los modelos numéricos es entre el número de compuestos químicos y reacciones químicas modelados frente a la representación del transporte y la mezcla en la atmósfera. Por ejemplo, un modelo de caja puede incluir cientos o incluso miles de reacciones químicas, pero solo tendrá una representación muy burda de la mezcla en la atmósfera. Por el contrario, los modelos 3D representan muchos de los procesos físicos de la atmósfera, pero debido a las limitaciones de los recursos informáticos, tendrán muchas menos reacciones químicas y compuestos. Los modelos se pueden utilizar para interpretar observaciones, probar la comprensión de reacciones químicas y predecir concentraciones futuras de compuestos químicos en la atmósfera.Una tendencia actual importante es que los módulos de química atmosférica se conviertan en parte de los modelos del sistema terrestre en los que se puedan estudiar los vínculos entre el clima, la composición atmosférica y la biosfera.

Algunos modelos están construidos por generadores de códigos automáticos (por ejemplo, Autochem o Kinetic PreProcessor ). En este enfoque se elige un conjunto de constituyentes y el generador de código automático seleccionará las reacciones que involucran a esos constituyentes de un conjunto de bases de datos de reacciones. Una vez elegidas las reacciones, se pueden construir automáticamente las ecuaciones diferenciales ordinarias que describen su evolución en el tiempo.

Ver también [ editar ]

  • Ciclo de oxigeno
  • Ciclo ozono-oxígeno
  • Paleoclimatología
  • Evaluación científica del agotamiento de la capa de ozono
  • Eventos de agotamiento del ozono troposférico

Referencias [ editar ]

  1. ^ Zimmer, Carl (3 de octubre de 2013). "Oxígeno de la tierra: un misterio fácil de dar por sentado" . The New York Times . Consultado el 3 de octubre de 2013 .
  2. ^ "Comunicado de prensa - Premio Nobel de Química 1995" . El premio Nobel . Premio Nobel Org. 11 de octubre de 1995.
  3. ^ St. Fleur, Nicholas (10 de noviembre de 2015). "Los niveles de gases de efecto invernadero atmosférico alcanzan récord, dice el informe" . The New York Times . Consultado el 11 de noviembre de 2015 .
  4. ^ Ritter, Karl (9 de noviembre de 2015). "Reino Unido: en primer lugar, el promedio global de temperaturas podría ser 1 grado C más alto" . AP Noticias . Consultado el 11 de noviembre de 2015 .
  5. ^ Cole, Steve; Gray, Ellen (14 de diciembre de 2015). "Nuevos mapas de satélite de la NASA muestran huellas dactilares humanas en la calidad del aire global" . NASA . Consultado el 14 de diciembre de 2015 .
  6. ^ Academias nacionales de ciencias, ingeniería y medicina (2016). El futuro de la investigación atmosférica: recordar el ayer, comprender el hoy, anticipar el mañana . Washington, DC: The National Academies Press. pag. 15. ISBN 978-0-309-44565-8.

Lectura adicional [ editar ]

  • Brasseur, Guy P .; Orlando, John J .; Tyndall, Geoffrey S. (1999). Química atmosférica y cambio global . Prensa de la Universidad de Oxford. ISBN 0-19-510521-4 . 
  • Finlayson-Pitts, Barbara J .; Pitts, James N., Jr. (2000). Química de la atmósfera superior e inferior . Prensa académica. ISBN 0-12-257060-X . 
  • Seinfeld, John H .; Pandis, Spyros N. (2006). Química y Física Atmosféricas: De la Contaminación del Aire al Cambio Climático (2ª Ed.). John Wiley and Sons, Inc. ISBN 0-471-82857-2 . 
  • Warneck, Peter (2000). Química de la Atmósfera Natural (2ª Ed.). Prensa académica. ISBN 0-12-735632-0 . 
  • Wayne, Richard P. (2000). Química de Atmósferas (3ª Ed.). Prensa de la Universidad de Oxford. ISBN 0-19-850375-X . 
  • JV Iribarne, HR Cho, Física atmosférica , D. Reidel Publishing Company, 1980

Enlaces externos [ editar ]

  • Evaluación científica de la OMM del agotamiento de la capa de ozono: 2006
  • IGAC El Proyecto Internacional de Química Atmosférica Global
  • Paul Crutzen Interview Video Freeview de Paul Crutzen Premio Nobel por su trabajo sobre la descomposición del ozono, hablando con el Premio Nobel Harry Kroto , Vega Science Trust .
  • La base de datos de química atmosférica de Cambridge es una gran base de datos de observación de componentes en un formato común.
  • Ciencia ambiental publicada para todos en la Tierra
  • Cinética química y datos fotoquímicos de NASA-JPL para uso en estudios atmosféricos
  • Datos cinéticos y fotoquímicos evaluados por el Subcomité de Evaluación de Datos Cinéticos de Gas de la IUPAC
  • Glosario de química atmosférica en Sam Houston State University
  • Química troposférica
  • Calculadoras para uso en química atmosférica
  • Una evaluación elemental ilustrada de la composición del aire.