De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

En el procesamiento de señales , la compresión de datos , fuente de codificación , [1] o reducción de velocidad binaria es el proceso de codificar la información usando un menor número de bits de que la representación inicial. [2] Cualquier compresión en particular tiene pérdida o no tiene pérdida . La compresión sin pérdida reduce los bits al identificar y eliminar la redundancia estadística . No se pierde información en la compresión sin pérdidas. La compresión con pérdida reduce los bits al eliminar información innecesaria o menos importante. [3] Normalmente, un dispositivo que realiza la compresión de datos se denomina codificador y uno que realiza la inversión del proceso (descompresión) como decodificador.

El proceso de reducir el tamaño de un archivo de datos a menudo se denomina compresión de datos. En el contexto de la transmisión de datos , se denomina codificación de origen; codificación realizada en el origen de los datos antes de que se almacenen o transmitan. [4] La codificación de origen no debe confundirse con la codificación de canal , para la detección y corrección de errores o la codificación de línea , los medios para mapear datos en una señal.

La compresión es útil porque reduce los recursos necesarios para almacenar y transmitir datos. Los recursos computacionales se consumen en los procesos de compresión y descompresión. La compresión de datos está sujeta a una compensación entre la complejidad del espacio y el tiempo . Por ejemplo, un esquema de compresión de video puede requerir un hardware costoso para que el video se descomprima lo suficientemente rápido como para ser visto mientras se descomprime, y la opción de descomprimir el video por completo antes de verlo puede ser inconveniente o requerir almacenamiento adicional. El diseño de esquemas de compresión de datos implica compensaciones entre varios factores, incluido el grado de compresión, la cantidad de distorsión introducida (cuando se usa la compresión de datos con pérdida).) y los recursos computacionales necesarios para comprimir y descomprimir los datos. [5] [6]

Sin pérdidas [ editar ]

Los algoritmos de compresión de datos sin pérdida suelen aprovechar la redundancia estadística para representar datos sin perder información , de modo que el proceso sea reversible. La compresión sin pérdida es posible porque la mayoría de los datos del mundo real presentan redundancia estadística. Por ejemplo, una imagen puede tener áreas de color que no cambian en varios píxeles; en lugar de codificar "píxel rojo, píxel rojo, ...", los datos pueden codificarse como "279 píxeles rojos". Este es un ejemplo básico de codificación de longitud de ejecución ; Existen muchos esquemas para reducir el tamaño de los archivos eliminando la redundancia.

Los métodos de compresión Lempel – Ziv (LZ) se encuentran entre los algoritmos más populares para el almacenamiento sin pérdidas. [7] DEFLATE es una variación de LZ optimizada para la velocidad de descompresión y la relación de compresión, pero la compresión puede ser lenta. A mediados de la década de 1980, siguiendo el trabajo de Terry Welch , el algoritmo Lempel-Ziv-Welch (LZW) se convirtió rápidamente en el método de elección para la mayoría de los sistemas de compresión de uso general. LZW se utiliza en imágenes GIF , programas como PKZIP y dispositivos de hardware como módems. [8]Los métodos LZ utilizan un modelo de compresión basado en tablas en el que las entradas de la tabla se sustituyen por cadenas de datos repetidas. Para la mayoría de los métodos LZ, esta tabla se genera dinámicamente a partir de datos anteriores en la entrada. La tabla en sí suele estar codificada con Huffman . Los códigos basados ​​en la gramática como este pueden comprimir la entrada altamente repetitiva de manera extremadamente efectiva, por ejemplo, una colección de datos biológicos de la misma especie o de una especie cercanamente relacionada, una gran colección de documentos versionados, archivos de Internet, etc. La tarea básica de los códigos basados ​​en la gramática es construir una gramática libre de contexto que deriva de una sola cadena. Otros algoritmos prácticos de compresión gramatical incluyen Sequitur y Re-Pair.

Los compresores sin pérdidas modernos más potentes utilizan modelos probabilísticos , como la predicción por coincidencia parcial . La transformada de Burrows-Wheeler también se puede ver como una forma indirecta de modelado estadístico. [9] En un perfeccionamiento adicional del uso directo de modelos probabilísticos , las estimaciones estadísticas se pueden acoplar a un algoritmo llamado codificación aritmética . La codificación aritmética es una técnica de codificación más moderna que utiliza los cálculos matemáticos de una máquina de estados finitos.para producir una cadena de bits codificados a partir de una serie de símbolos de datos de entrada. Puede lograr una compresión superior en comparación con otras técnicas, como el algoritmo de Huffman más conocido. Utiliza un estado de memoria interna para evitar la necesidad de realizar un mapeo uno a uno de símbolos de entrada individuales a distintas representaciones que usan un número entero de bits, y borra la memoria interna solo después de codificar toda la cadena de símbolos de datos. . La codificación aritmética se aplica especialmente bien a las tareas de compresión de datos adaptables donde las estadísticas varían y dependen del contexto, ya que se puede acoplar fácilmente con un modelo adaptativo de la distribución de probabilidad de los datos de entrada. Un ejemplo temprano del uso de la codificación aritmética fue una característica opcional (pero no muy utilizada) de JPEG.estándar de codificación de imágenes. [10] Desde entonces, se ha aplicado en varios otros diseños, incluidos H.263 , H.264 / MPEG-4 AVC y HEVC para codificación de video. [11]

Pérdida [ editar ]

A fines de la década de 1980, las imágenes digitales se hicieron más comunes y surgieron los estándares para la compresión de imágenes sin pérdida . A principios de la década de 1990, los métodos de compresión con pérdida comenzaron a utilizarse ampliamente. [12] En estos esquemas, se acepta cierta pérdida de información, ya que eliminar detalles no esenciales puede ahorrar espacio de almacenamiento. Existe una compensación correspondiente entre preservar la información y reducir el tamaño. Los esquemas de compresión de datos con pérdida se diseñan mediante la investigación sobre cómo las personas perciben los datos en cuestión. Por ejemplo, el ojo humano es más sensible a las variaciones sutiles de luminancia que a las variaciones de color. La compresión de imágenes JPEG funciona en parte redondeando bits de información no esenciales. [13] Varios formatos de compresión populares explotan estas diferencias de percepción, incluida la psicoacústica para el sonido y los psicovisuales para las imágenes y el video.

La mayoría de las formas de compresión con pérdida se basan en la codificación de transformada , especialmente la transformada de coseno discreta (DCT). Fue propuesto por primera vez en 1972 por Nasir Ahmed , quien luego desarrolló un algoritmo de trabajo con T. Natarajan y KR Rao en 1973, antes de presentarlo en enero de 1974. [14] [15] DCT es el método de compresión con pérdida más utilizado, y se utiliza en formatos multimedia para imágenes (como JPEG y HEIF ), [16] vídeo (como MPEG , AVC y HEVC ) y audio (como MP3 ,AAC y Vorbis ).

La compresión de imágenes con pérdida se utiliza en cámaras digitales para aumentar la capacidad de almacenamiento. De manera similar, los DVD , Blu-ray y transmisión de video utilizan formatos de codificación de video con pérdida . La compresión con pérdida se usa ampliamente en video.

En la compresión de audio con pérdida, se utilizan métodos de psicoacústica para eliminar componentes no audibles (o menos audibles) de la señal de audio . La compresión del habla humana se realiza a menudo con técnicas aún más especializadas; La codificación de voz se distingue como una disciplina separada de la compresión de audio de propósito general. La codificación de voz se usa en telefonía por Internet , por ejemplo, la compresión de audio se usa para extraer CD y es decodificada por los reproductores de audio. [9]

La compresión con pérdida puede causar pérdida de generación .

Teoría [ editar ]

La base teórica para la compresión la proporciona la teoría de la información y, más específicamente, la teoría algorítmica de la información para la compresión sin pérdidas y la teoría de la tasa de distorsión para la compresión con pérdidas. Estas áreas de estudio fueron esencialmente creadas por Claude Shannon , quien publicó artículos fundamentales sobre el tema a fines de la década de 1940 y principios de la de 1950. Otros temas asociados con la compresión incluyen la teoría de la codificación y la inferencia estadística . [17]

Aprendizaje automático [ editar ]

Existe una estrecha conexión entre el aprendizaje automático y la compresión. Un sistema que predice las probabilidades posteriores de una secuencia dada su historia completa puede usarse para una compresión de datos óptima (usando codificación aritmética en la distribución de salida). Se puede usar un compresor óptimo para la predicción (encontrando el símbolo que se comprime mejor, dado el historial anterior). Esta equivalencia se ha utilizado como justificación para utilizar la compresión de datos como punto de referencia para la "inteligencia general". [18] [19] [20]

Una vista alternativa puede mostrar algoritmos de compresión que mapean implícitamente cadenas en vectores de espacio de características implícitas , y las medidas de similitud basadas en la compresión calculan la similitud dentro de estos espacios de características. Para cada compresor C (.) Definimos un espacio vectorial asociado ℵ, tal que C (.) Mapea una cadena de entrada x, corresponde a la norma vectorial || ~ x ||. El espacio excluye un examen exhaustivo de los espacios de características subyacentes a todos los algoritmos de compresión; en su lugar, los vectores de características optan por examinar tres métodos de compresión sin pérdidas representativos, LZW, LZ77 y PPM. [21]

Según la teoría AIXI , una conexión que se explica más directamente en Hutter Prize , la mejor compresión posible de x es el software más pequeño posible que genera x. Por ejemplo, en ese modelo, el tamaño comprimido de un archivo zip incluye tanto el archivo zip como el software de descompresión, ya que no se puede descomprimir sin ambos, pero puede haber una forma combinada aún más pequeña.

Diferenciación de datos [ editar ]

La compresión de datos puede verse como un caso especial de diferenciación de datos . [22] [23] La diferenciación de datos consiste en producir una diferencia dada una fuente y un objetivo, con parches que reproducen el objetivo dado una fuente y una diferencia. Dado que no hay un origen y un destino separados en la compresión de datos, se puede considerar la compresión de datos como una diferenciación de datos con datos de origen vacíos, el archivo comprimido corresponde a una diferencia de la nada. Esto es lo mismo que considerar la entropía absoluta (correspondiente a la compresión de datos) como un caso especial de entropía relativa. (correspondiente a la diferenciación de datos) sin datos iniciales.

El término compresión diferencial se utiliza para enfatizar la conexión de diferenciación de datos.

Usos [ editar ]

Imagen [ editar ]

La codificación de entropía se originó en la década de 1940 con la introducción de la codificación Shannon-Fano , [24] la base de la codificación de Huffman que se desarrolló en 1950. [25] La codificación por transformación se remonta a finales de la década de 1960, con la introducción de la transformada rápida de Fourier (FFT ) codificación en 1968 y la transformada de Hadamard en 1969. [26]

Una técnica importante de compresión de imágenes es la transformada de coseno discreta (DCT), una técnica desarrollada a principios de la década de 1970. [14] DCT es la base de JPEG , un formato de compresión con pérdidas que fue introducido por el Joint Photographic Experts Group (JPEG) en 1992. [27] JPEG reduce en gran medida la cantidad de datos necesarios para representar una imagen a costa de una relativa pequeña reducción en la calidad de la imagen y se ha convertido en el formato de archivo de imagen más utilizado . [28] [29] Su algoritmo de compresión basado en DCT altamente eficiente fue en gran parte responsable de la amplia proliferación de imágenes digitalesy fotografías digitales . [30]

Lempel – Ziv – Welch (LZW) es un algoritmo de compresión sin pérdidas desarrollado en 1984. Se utiliza en el formato GIF , introducido en 1987. [31] DEFLATE , un algoritmo de compresión sin pérdidas especificado en 1996, se utiliza en Portable Network Graphics ( PNG) formato. [32]

La compresión wavelet , el uso de wavelets en la compresión de imágenes, comenzó después del desarrollo de la codificación DCT. [33] El estándar JPEG 2000 se introdujo en 2000. [34] A diferencia del algoritmo DCT utilizado por el formato JPEG original, JPEG 2000 utiliza en cambio algoritmos de transformada de ondas discretas (DWT). [35] [36] [37] La tecnología JPEG 2000, que incluye la extensión Motion JPEG 2000 , fue seleccionada como estándar de codificación de video para cine digital en 2004. [38]

Audio [ editar ]

La compresión de datos de audio, que no debe confundirse con la compresión de rango dinámico , tiene el potencial de reducir el ancho de banda de transmisión y los requisitos de almacenamiento de los datos de audio. Los algoritmos de compresión de audio se implementan en software como códecs de audio . Tanto en la compresión con pérdida como en la sin pérdida, se reduce la redundancia de información , utilizando métodos como la codificación , la transformación de coseno discreta de cuantificación y la predicción lineal para reducir la cantidad de información utilizada para representar los datos sin comprimir.

Los algoritmos de compresión de audio con pérdida proporcionan una mayor compresión y se utilizan en numerosas aplicaciones de audio, incluidos Vorbis y MP3 . Casi todos estos algoritmos se basan en la psicoacústica para eliminar o reducir la fidelidad de los sonidos menos audibles, reduciendo así el espacio necesario para almacenarlos o transmitirlos. [2] [39]

La compensación aceptable entre la pérdida de calidad de audio y el tamaño de transmisión o almacenamiento depende de la aplicación. Por ejemplo, un disco compacto (CD) de 640 MB contiene aproximadamente una hora de música de alta fidelidad sin comprimir , menos de 2 horas de música comprimida sin pérdidas o 7 horas de música comprimida en formato MP3 a una tasa de bits media . Una grabadora de sonido digital normalmente puede almacenar alrededor de 200 horas de habla claramente inteligible en 640 MB. [40]

La compresión de audio sin pérdida produce una representación de datos digitales que se pueden decodificar en un duplicado digital exacto del original. Las relaciones de compresión se sitúan entre el 50 y el 60% del tamaño original, [41] que es similar a las de la compresión de datos genérica sin pérdidas. Los códecs sin pérdida utilizan el ajuste de curvas o la predicción lineal como base para estimar la señal. Los parámetros que describen la estimación y la diferencia entre la estimación y la señal real se codifican por separado. [42]

Existen varios formatos de compresión de audio sin pérdida. Consulte la lista de códecs sin pérdida para obtener una lista. Algunos formatos están asociados con un sistema distinto, como Direct Stream Transfer , utilizado en Super Audio CD y Meridian Lossless Packing , utilizado en DVD-Audio , Dolby TrueHD , Blu-ray y HD DVD .

Algunos formatos de archivo de audio presentan una combinación de un formato con pérdida y una corrección sin pérdida; esto permite eliminar la corrección para obtener fácilmente un archivo con pérdida. Dichos formatos incluyen MPEG-4 SLS (escalable a sin pérdida), WavPack y OptimFROG DualStream .

Cuando se van a procesar archivos de audio, ya sea mediante una compresión adicional o para su edición , es conveniente trabajar desde un original sin cambios (sin comprimir o comprimido sin pérdidas). El procesamiento de un archivo comprimido con pérdida para algún propósito generalmente produce un resultado final inferior a la creación del mismo archivo comprimido a partir de un original sin comprimir. Además de la edición o mezcla de sonido, la compresión de audio sin pérdida se utiliza a menudo para el almacenamiento de archivos o como copias maestras.

Compresión de audio con pérdida [ editar ]

Comparación de espectrogramas de audio en formato sin comprimir y varios formatos con pérdida. Los espectrogramas con pérdida muestran la limitación de banda de frecuencias más altas, una técnica común asociada con la compresión de audio con pérdida.

La compresión de audio con pérdida se utiliza en una amplia gama de aplicaciones. Además de las aplicaciones autónomas de reproducción de archivos de sólo audio en reproductores MP3 o computadoras, las transmisiones de audio comprimidas digitalmente se utilizan en la mayoría de los DVD de video, televisión digital, transmisión de medios en Internet , radio satelital y por cable, y cada vez más en transmisiones de radio terrestre. La compresión con pérdida generalmente logra una compresión mucho mayor que la compresión sin pérdida, al descartar datos menos críticos basados ​​en optimizaciones psicoacústicas . [43]

La psicoacústica reconoce que no todos los datos de un flujo de audio pueden ser percibidos por el sistema auditivo humano . La mayor parte de la compresión con pérdida reduce la redundancia al identificar primero los sonidos perceptualmente irrelevantes, es decir, los sonidos que son muy difíciles de escuchar. Los ejemplos típicos incluyen frecuencias altas o sonidos que ocurren al mismo tiempo que sonidos más fuertes. Esos sonidos irrelevantes se codifican con menor precisión o no se codifican en absoluto.

Debido a la naturaleza de los algoritmos con pérdida, la calidad del audio sufre una pérdida de generación digital cuando un archivo se descomprime y recomprime. Esto hace que la compresión con pérdida no sea adecuada para almacenar los resultados intermedios en aplicaciones profesionales de ingeniería de audio, como la edición de sonido y la grabación multipista. Sin embargo, los formatos con pérdida como MP3 son muy populares entre los usuarios finales, ya que el tamaño del archivo se reduce al 5-20% del tamaño original y un megabyte puede almacenar aproximadamente un minuto de música con la calidad adecuada.

Métodos de codificación [ editar ]

Para determinar qué información en una señal de audio es perceptualmente irrelevante, la mayoría de los algoritmos de compresión con pérdida usan transformadas como la transformada de coseno discreta modificada (MDCT) para convertir formas de onda muestreadas en el dominio del tiempo en un dominio de transformada, típicamente el dominio de la frecuencia . Una vez transformadas, las frecuencias de los componentes se pueden priorizar de acuerdo con su nivel de audición. La audibilidad de los componentes espectrales se evalúa utilizando el umbral absoluto de audición y los principios del enmascaramiento simultáneo , el fenómeno en el que una señal está enmascarada por otra señal separada por frecuencia y, en algunos casos, el enmascaramiento temporal , donde una señal está enmascarada por otra señal. separados por el tiempo.Los contornos de igual volumen también se pueden utilizar para ponderar la importancia perceptiva de los componentes. Los modelos de la combinación de oído-cerebro humano que incorporan tales efectos a menudo se denominan modelos psicoacústicos . [44]

Otros tipos de compresores con pérdida, como la codificación predictiva lineal (LPC) que se utiliza con la voz, son codificadores basados ​​en fuentes. LPC utiliza un modelo del tracto vocal humano para analizar los sonidos del habla e inferir los parámetros utilizados por el modelo para producirlos momento a momento. Estos parámetros cambiantes se transmiten o almacenan y se utilizan para impulsar otro modelo en el decodificador que reproduce el sonido.

Los formatos con pérdida se utilizan a menudo para la distribución de transmisión de audio o comunicación interactiva (como en redes de telefonía móvil). En tales aplicaciones, los datos deben descomprimirse a medida que fluyen los datos, en lugar de después de que se haya transmitido todo el flujo de datos. No todos los códecs de audio se pueden utilizar para aplicaciones de transmisión. [43]

La latencia se introduce mediante los métodos utilizados para codificar y decodificar los datos. Algunos códecs analizarán un segmento más largo, llamado marco , de los datos para optimizar la eficiencia y luego lo codificarán de una manera que requiera un segmento más grande de datos a la vez para decodificar. La latencia inherente del algoritmo de codificación puede ser crítica; por ejemplo, cuando hay una transmisión de datos bidireccional, como en una conversación telefónica, retrasos importantes pueden degradar gravemente la calidad percibida.

A diferencia de la velocidad de compresión, que es proporcional al número de operaciones requeridas por el algoritmo, aquí la latencia se refiere al número de muestras que deben analizarse antes de procesar un bloque de audio. En el caso mínimo, la latencia es cero muestras (por ejemplo, si el codificador / decodificador simplemente reduce el número de bits usados ​​para cuantificar la señal). Los algoritmos de dominio del tiempo como LPC también suelen tener latencias bajas, de ahí su popularidad en la codificación de voz para telefonía. En algoritmos como MP3, sin embargo, es necesario analizar un gran número de muestras para implementar un modelo psicoacústico en el dominio de la frecuencia, y la latencia es del orden de 23 ms.

Codificación de voz [ editar ]

La codificación de voz es una categoría importante de compresión de datos de audio. Los modelos de percepción utilizados para estimar lo que puede oír un oído humano son, en general, algo diferentes de los que se utilizan para la música. El rango de frecuencias necesarias para transmitir los sonidos de una voz humana suele ser mucho más estrecho que el necesario para la música, y el sonido suele ser menos complejo. Como resultado, la voz se puede codificar con alta calidad utilizando una tasa de bits relativamente baja.

Si los datos que se van a comprimir son analógicos (como un voltaje que varía con el tiempo), se emplea la cuantificación para digitalizarlos en números (normalmente enteros). Esto se conoce como conversión de analógico a digital (A / D). Si los números enteros generados por la cuantificación son de 8 bits cada uno, entonces el rango completo de la señal analógica se divide en 256 intervalos y todos los valores de la señal dentro de un intervalo se cuantifican al mismo número. Si se generan enteros de 16 bits, entonces el rango de la señal analógica se divide en 65.536 intervalos.

Esta relación ilustra el compromiso entre alta resolución (un gran número de intervalos analógicos) y alta compresión (pequeños números enteros generados). Esta aplicación de cuantificación es utilizada por varios métodos de compresión de voz. Esto se logra, en general, mediante una combinación de dos enfoques:

  • Solo codificación de sonidos que podría hacer una sola voz humana.
  • Desechando más datos en la señal, conservando lo suficiente para reconstruir una voz "inteligible" en lugar de todo el rango de frecuencias del oído humano .

Tal vez los primeros algoritmos utilizados en la codificación de voz (y la compresión de datos de audio en general) fueron el algoritmo de ley A y el algoritmo de μ-ley .

Historia [ editar ]

Solidyne 922: la primera tarjeta de sonido de compresión de bits de audio comercial del mundo para PC, 1990

En 1950, Bell Labs presentó la patente sobre modulación diferencial de código de impulsos (DPCM). [45] El DPCM adaptativo (ADPCM) fue introducido por P. Cummiskey, Nikil S. Jayant y James L. Flanagan en Bell Labs en 1973. [46] [47]

La codificación perceptiva se utilizó por primera vez para la compresión de codificación de voz , con codificación predictiva lineal (LPC). [48] Los conceptos iniciales de LPC se remontan al trabajo de Fumitada Itakura ( Universidad de Nagoya ) y Shuzo Saito ( Nippon Telegraph and Telephone ) en 1966. [49] Durante la década de 1970, Bishnu S. Atal y Manfred R. Schroeder en Bell Labs desarrolló una forma de LPC llamada codificación predictiva adaptativa (APC), un algoritmo de codificación perceptual que explotaba las propiedades de enmascaramiento del oído humano, seguido a principios de la década de 1980 con elalgoritmo de predicción lineal excitada por código (CELP) que logró una relación de compresión significativa para su época. [48] La codificación perceptual es utilizada por formatos modernos de compresión de audio como MP3 [48] y AAC .

La transformada de coseno discreta (DCT), desarrollada por Nasir Ahmed , T. Natarajan y KR Rao en 1974, [15] proporcionó la base para la transformada de coseno discreta modificada (MDCT) utilizada por los formatos de compresión de audio modernos como MP3 [50] y AAC . La TCMD fue propuesta por JP Princen, AW Johnson y AB Bradley en 1987, [51] siguiendo un trabajo anterior de Princen y Bradley en 1986. [52] La TCMD es utilizada por formatos modernos de compresión de audio como Dolby Digital , [53] [54 ] MP3 , [50] y codificación de audio avanzada (AAC). [55]

Oscar Bonello, profesor de ingeniería de la Universidad de Buenos Aires, desarrolló el primer sistema de compresión de audio de automatización de transmisión comercial del mundo . [56] En 1983, utilizando el principio psicoacústico de enmascaramiento de bandas críticas publicado por primera vez en 1967, [57] comenzó a desarrollar una aplicación práctica basada en la computadora IBM PC recientemente desarrollada , y el sistema de automatización de transmisión se lanzó en 1987 bajo el nombre Audicom . Veinte años después, casi todas las estaciones de radio del mundo utilizaban tecnología similar fabricada por varias empresas.

Un compendio de literatura para una gran variedad de sistemas de codificación de audio se publicó en el Journal on Selected Areas in Communications ( JSAC ) del IEEE , en febrero de 1988. Si bien hubo algunos artículos anteriores a esa época, esta colección documentó una variedad completa de trabajos terminados. codificadores de audio, casi todos ellos utilizando técnicas de percepción (es decir, enmascaramiento) y algún tipo de análisis de frecuencia y codificación sin ruido de fondo. [58] Varios de estos artículos destacaron la dificultad de obtener un audio digital bueno y limpio para fines de investigación. La mayoría, si no todos, de los autores de la edición JSAC también participaron activamente en el comité de audio MPEG-1 , que creó el formato MP3.

Video [ editar ]

La compresión de video es una implementación práctica de la codificación de fuentes en la teoría de la información. En la práctica, la mayoría de los códecs de vídeo se utilizan junto con técnicas de compresión de audio para almacenar los flujos de datos separados pero complementarios como un paquete combinado utilizando los denominados formatos contenedor . [59]

El video sin comprimir requiere una velocidad de datos muy alta . Aunque los códecs de compresión de video sin pérdida funcionan con un factor de compresión de 5 a 12, un video de compresión con pérdida H.264 típico tiene un factor de compresión entre 20 y 200. [60]

Las dos técnicas clave de compresión de video utilizadas en los estándares de codificación de video son la transformada de coseno discreta (DCT) y la compensación de movimiento (MC). La mayoría de los estándares de codificación de video, como los formatos H.26x y MPEG , generalmente usan codificación de video DCT con compensación de movimiento (compensación de movimiento de bloque). [61] [62]

Teoría de la codificación [ editar ]

Los datos de video se pueden representar como una serie de cuadros de imágenes fijas. Estos datos suelen contener abundantes cantidades de redundancia espacial y temporal . Los algoritmos de compresión de video intentan reducir la redundancia y almacenar información de manera más compacta.

La mayoría de los códecs y formatos de compresión de vídeo aprovechan la redundancia espacial y temporal (por ejemplo, mediante codificación de diferencias con compensación de movimiento ). Las similitudes pueden codificarse almacenando únicamente las diferencias entre, por ejemplo, cuadros temporalmente adyacentes (codificación entre cuadros) o píxeles espacialmente adyacentes (codificación intra-cuadros). La compresión entre cuadros (una codificación delta temporal ) es una de las técnicas de compresión más poderosas. (Re) utiliza datos de uno o más fotogramas anteriores o posteriores en una secuencia para describir el fotograma actual. La codificación intracuadro , por otro lado, utiliza solo datos del interior del cuadro actual, siendo efectivamente una compresión de imágenes fijas . [44]

Una clase de formatos especializados utilizados en videocámaras y edición de video utilizan esquemas de compresión menos complejos que restringen sus técnicas de predicción a la predicción intracuadro.

Por lo general, la compresión de video emplea además técnicas de compresión con pérdida , como la cuantificación, que reducen aspectos de los datos de origen que son (más o menos) irrelevantes para la percepción visual humana mediante la explotación de las características perceptivas de la visión humana. Por ejemplo, las pequeñas diferencias de color son más difíciles de percibir que los cambios de brillo. Los algoritmos de compresión pueden promediar un color en estas áreas similares para reducir el espacio, de una manera similar a las que se usan en la compresión de imágenes JPEG . [10] Como en toda compresión con pérdida, existe una compensación entre la calidad del video y la tasa de bits., costo de procesamiento de la compresión y descompresión, y requisitos del sistema. El video muy comprimido puede presentar artefactos visibles o que distraigan .

Otros métodos además de los formatos de transformada basados ​​en DCT predominantes, como la compresión fractal , la búsqueda de coincidencias y el uso de una transformada de ondícula discreta (DWT), han sido objeto de algunas investigaciones, pero normalmente no se utilizan en productos prácticos (a excepción de la uso de codificación wavelet como codificadores de imágenes fijas sin compensación de movimiento). El interés en la compresión fractal parece estar disminuyendo, debido a un análisis teórico reciente que muestra una falta comparativa de efectividad de tales métodos. [44]

Codificación entre cuadros [ editar ]

La codificación entre cuadros funciona comparando cada cuadro del video con el anterior. Los fotogramas individuales de una secuencia de video se comparan de un fotograma al siguiente, y el códec de compresión de video envía solo las diferenciasal marco de referencia. Si el marco contiene áreas donde nada se ha movido, el sistema puede simplemente emitir un comando corto que copia esa parte del marco anterior en el siguiente. Si las secciones del marco se mueven de manera simple, el compresor puede emitir un comando (un poco más largo) que le dice al descompresor que cambie, gire, aclare u oscurezca la copia. Este comando más largo sigue siendo mucho más corto que la compresión intracuadro. Por lo general, el codificador también transmitirá una señal de residuo que describe las diferencias más sutiles restantes con las imágenes de referencia. Usando la codificación de entropía, estas señales de residuos tienen una representación más compacta que la señal completa. En áreas de video con más movimiento, la compresión debe codificar más datos para mantenerse al día con la mayor cantidad de píxeles que están cambiando. Comúnmente durante explosiones, llamas,bandadas de animales, y en algunas tomas panorámicas, el detalle de alta frecuencia conduce a disminuciones de calidad o aumentos en latasa de bits variable .

Formatos de transformación híbridos basados ​​en bloques [ editar ]

Etapas de procesamiento de un codificador de video típico

Hoy en día, casi todos los métodos de compresión de video comúnmente utilizados (por ejemplo, aquellos en estándares aprobados por ITU-T o ISO ) comparten la misma arquitectura básica que se remonta a H.261 que fue estandarizada en 1988 por ITU-T. Se basan principalmente en el DCT, aplicado a bloques rectangulares de píxeles vecinos, y la predicción temporal mediante vectores de movimiento , así como también en la actualidad un paso de filtrado en bucle.

En la etapa de predicción, se aplican varias técnicas de deduplicación y codificación de diferencias que ayudan a descorrelacionar los datos y describen nuevos datos basados ​​en datos ya transmitidos.

Luego, los bloques rectangulares de datos de píxeles (residuales) se transforman en el dominio de la frecuencia para facilitar la orientación de la información irrelevante en la cuantificación y para cierta reducción de la redundancia espacial. La transformada de coseno discreta (DCT) que se usa ampliamente a este respecto fue introducida por N. Ahmed , T. Natarajan y KR Rao en 1974. [15]

En la etapa principal de procesamiento con pérdida, los datos se cuantifican para reducir la información que es irrelevante para la percepción visual humana.

En la última etapa, la redundancia estadística se elimina en gran medida mediante un codificador de entropía que a menudo aplica alguna forma de codificación aritmética.

En una etapa adicional de filtrado en bucle, se pueden aplicar varios filtros a la señal de imagen reconstruida. Al calcular estos filtros también dentro del bucle de codificación, pueden ayudar a la compresión porque se pueden aplicar al material de referencia antes de que se use en el proceso de predicción y se pueden guiar utilizando la señal original. El ejemplo más popular son los filtros de desbloqueo que difuminan los artefactos de bloqueo de las discontinuidades de cuantificación en los límites de los bloques de transformación.

Historia [ editar ]

En 1967, AH Robinson y C. Cherry propusieron un esquema de compresión de ancho de banda de codificación de longitud de ejecución para la transmisión de señales de televisión analógica. [63] La transformada de coseno discreta (DCT), que es fundamental para la compresión de vídeo moderna, [64] fue introducida por Nasir Ahmed , T. Natarajan y KR Rao en 1974. [15] [65]

H.261 , que debutó en 1988, introdujo comercialmente la arquitectura básica predominante de la tecnología de compresión de video. [66] Fue el primer formato de codificación de video basado en la compresión DCT, que posteriormente se convertiría en el estándar para todos los formatos de codificación de video más importantes que le siguieron. [64] H.261 fue desarrollado por varias empresas, incluidas Hitachi , PictureTel , NTT , BT y Toshiba . [67]

Los estándares de codificación de video más populares utilizados para los códecs han sido los estándares MPEG . MPEG-1 fue desarrollado por Motion Picture Experts Group (MPEG) en 1991, y fue diseñado para comprimir video de calidad VHS . Fue sucedido en 1994 por MPEG-2 / H.262 , [66] que fue desarrollado por una serie de empresas, principalmente Sony , Thomson y Mitsubishi Electric . [68] MPEG-2 se convirtió en el formato de video estándar para DVD y televisión digital SD . [66]En 1999, le siguió MPEG-4 / H.263 , que supuso un gran avance en la tecnología de compresión de vídeo. [66] Fue desarrollado por varias empresas, principalmente Mitsubishi Electric, Hitachi y Panasonic . [69]

El formato de codificación de video más utilizado es H.264 / MPEG-4 AVC . Fue desarrollado en 2003 por varias organizaciones, principalmente Panasonic, Godo Kaisha IP Bridge y LG Electronics . [70] AVC introdujo comercialmente los algoritmos modernos de codificación aritmética binaria adaptativa al contexto (CABAC) y codificación de longitud variable adaptativa al contexto (CAVLC). AVC es el principal estándar de codificación de video para discos Blu-ray , y es ampliamente utilizado por sitios web para compartir videos y servicios de transmisión de Internet como YouTube , Netflix , Vimeo y iTunes Store , software web comoAdobe Flash Player y Microsoft Silverlight , y varias transmisiones de HDTV por televisión terrestre y satelital.

Genética [ editar ]

Los algoritmos de compresión genética son la última generación de algoritmos sin pérdidas que comprimen datos (normalmente secuencias de nucleótidos) utilizando tanto algoritmos de compresión convencionales como algoritmos genéticos adaptados al tipo de datos específico. En 2012, un equipo de científicos de la Universidad Johns Hopkins publicó un algoritmo de compresión genética que no utiliza un genoma de referencia para la compresión. HAPZIPPER fue diseñado para HapMapdatos y logra una compresión de más de 20 veces (95% de reducción en el tamaño del archivo), lo que proporciona una compresión de 2 a 4 veces mejor y en un tiempo mucho más rápido que las principales utilidades de compresión de uso general. Para esto, Chanda, Elhaik y Bader introdujeron la codificación basada en MAF (MAFE), que reduce la heterogeneidad del conjunto de datos al clasificar los SNP por su frecuencia de alelos menores, homogeneizando así el conjunto de datos. [71] Otros algoritmos de 2009 y 2013 (DNAZip y GenomeZip) tienen relaciones de compresión de hasta 1200 veces, lo que permite almacenar 6.000 millones de genomas humanos diploides de pares de bases en 2,5 megabytes (en relación con un genoma de referencia o promediado en muchos genomas). [72] [73] Para obtener una referencia en los compresores de datos de genética / genómica, consulte [74]

Outlook y potencial actualmente no utilizado [ editar ]

Se estima que la cantidad total de datos que se almacenan en los dispositivos de almacenamiento del mundo podría comprimirse aún más con los algoritmos de compresión existentes en un factor promedio restante de 4.5: 1. [75] Se estima que la capacidad tecnológica combinada del mundo para almacenar información proporciona 1.300 exabytes de dígitos de hardware en 2007, pero cuando el contenido correspondiente se comprime de manera óptima, esto solo representa 295 exabytes de información de Shannon . [76]

Ver también [ editar ]

  • Enmascaramiento auditivo
  • Compresión HTTP
  • Complejidad de Kolmogorov
  • Algoritmo de compresión mágica
  • Longitud mínima de la descripción
  • Código Modulo-N
  • Codificación de movimiento
  • Codificador de audio perceptual
  • Codificación de rango
  • Codificación de subbanda
  • Código universal (compresión de datos)
  • Cuantización vectorial

Referencias [ editar ]

  1. ^ Wade, Graham (1994). Codificación y procesamiento de señales (2 ed.). Prensa de la Universidad de Cambridge. pag. 34. ISBN 978-0-521-42336-6. Consultado el 22 de diciembre de 2011 . El objetivo general de la codificación de fuente es aprovechar o eliminar la redundancia 'ineficiente' en la fuente PCM y, por lo tanto, lograr una reducción en la tasa de fuente general R.
  2. ^ a b Mahdi, OA; Mohammed, MA; Mohamed, AJ (noviembre de 2012). "Implementación de un enfoque novedoso para convertir la compresión de audio en codificación de texto mediante una técnica híbrida" (PDF) . Revista Internacional de Problemas de Ciencias de la Computación . 9 (6, núm. 3): 53–59 . Consultado el 6 de marzo de 2013 .
  3. ^ Pujar, JH; Kadlaskar, LM (mayo de 2010). "Un nuevo método sin pérdidas de compresión y descompresión de imágenes utilizando técnicas de codificación de Huffman" (PDF) . Revista de Tecnología de la Información Teórica y Aplicada . 15 (1): 18-23.
  4. ^ Salomon, David (2008). Una introducción concisa a la compresión de datos . Berlín: Springer. ISBN 9781848000728.
  5. ^ S. Mittal; J. Vetter (2015), "A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems", IEEE Transactions on Parallel and Distributed Systems , IEEE, 27 (5): 1524-1536, doi : 10.1109 / TPDS.2015.2435788 , S2CID 11706516 
  6. ^ Tanque, MK (2011). "Implementación del algoritmo Lempel-ZIV para compresión sin pérdidas usando VHDL". Implementación del algoritmo Limpel-Ziv para compresión sin pérdidas usando VHDL . Thinkquest 2010: Actas de la Primera Conferencia Internacional sobre Contornos de Tecnología Informática . Berlín: Springer. págs. 275-283. doi : 10.1007 / 978-81-8489-989-4_51 . ISBN 978-81-8489-988-7.
  7. ^ Navqi, Saud; Naqvi, R .; Riaz, RA; Siddiqui, F. (abril de 2011). "Diseño optimizado de RTL e implementación del algoritmo LZW para aplicaciones de gran ancho de banda" (PDF) . Revisión eléctrica . 2011 (4): 279–285.
  8. ^ Stephen, Wolfram (2002). Nuevo tipo de ciencia . Champaign, IL. pag. 1069. ISBN 1-57955-008-8.
  9. ↑ a b Mahmud, Salauddin (marzo de 2012). "Un método de compresión de datos mejorado para datos generales" (PDF) . Revista Internacional de Investigación Científica e Ingeniería . 3 (3): 2 . Consultado el 6 de marzo de 2013 .
  10. ^ a b Lane, Tom. "Preguntas frecuentes sobre la compresión de imágenes JPEG, parte 1" . Archivos de preguntas frecuentes de Internet . Grupo JPEG independiente . Consultado el 6 de marzo de 2013 .
  11. ^ GJ Sullivan ; J.-R. Ohm; W.-J. Han; T. Wiegand (diciembre de 2012). "Descripción general del estándar de codificación de video de alta eficiencia (HEVC)" . Transacciones IEEE sobre circuitos y sistemas para tecnología de video . IEEE . 22 (12): 1649-1668. doi : 10.1109 / TCSVT.2012.2221191 .
  12. ^ Wolfram, Stephen (2002). Un nuevo tipo de ciencia . Wolfram Media, Inc. pág. 1069 . ISBN 978-1-57955-008-0.
  13. ^ Arcángel, Cory. "Sobre la compresión" (PDF) . Consultado el 6 de marzo de 2013 .
  14. ↑ a b Ahmed, Nasir (enero de 1991). "Cómo se me ocurrió la transformada discreta del coseno" . Procesamiento de señales digitales . 1 (1): 4–5. doi : 10.1016 / 1051-2004 (91) 90086-Z .
  15. ^ a b c d Nasir Ahmed ; T. Natarajan; Kamisetty Ramamohan Rao (enero de 1974). "Transformada discreta del coseno" (PDF) . Transacciones IEEE en computadoras . C-23 (1): 90–93. doi : 10.1109 / TC.1974.223784 .
  16. ^ CCITT Study Group VIII und die Joint Photographic Experts Group (JPEG) von ISO / IEC Joint Technical Committee 1 / Subcomité 29 / Working Group 10 (1993), "Anexo D - Codificación aritmética", Recomendación T.81: Codificación y compresión digital of Continuous-tone Still images - Requirements and Guidelines (PDF) , págs. 54 y siguientes , consultado el 7 de noviembre de 2009
  17. ^ Marak, Laszlo. "Sobre la compresión de imágenes" (PDF) . Universidad de Marne la Vallee. Archivado desde el original (PDF) el 28 de mayo de 2015 . Consultado el 6 de marzo de 2013 .
  18. ^ Mahoney, Matt. "Justificación de un punto de referencia de compresión de texto grande" . Instituto de Tecnología de Florida . Consultado el 5 de marzo de 2013 .
  19. ^ Shmilovici A .; Kahiri Y .; Ben-Gal I .; Hauser S. (2009). "Medición de la eficiencia del mercado de divisas intradía con un algoritmo de compresión de datos universal" (PDF) . Economía Computacional . 33 (2): 131-154. CiteSeerX 10.1.1.627.3751 . doi : 10.1007 / s10614-008-9153-3 . S2CID 17234503 .   
  20. ^ I. Ben-Gal (2008). "Sobre el uso de medidas de compresión de datos para analizar diseños robustos" (PDF) . Transacciones IEEE sobre confiabilidad . 54 (3): 381–388. doi : 10.1109 / TR.2005.853280 . S2CID 9376086 .  
  21. ^ D. Scully; Carla E. Brodley (2006). "Compresión y aprendizaje automático: una nueva perspectiva sobre los vectores de espacio de características". Conferencia de compresión de datos, 2006 : 332. doi : 10.1109 / DCC.2006.13 . ISBN 0-7695-2545-8. S2CID  12311412 .
  22. ^ Korn, D .; et al. "RFC 3284: El formato de datos de compresión y diferenciación genérico VCDIFF" . Grupo de trabajo de ingeniería de Internet . Consultado el 5 de marzo de 2013 .
  23. ^ Korn, DG; Vo, KP (1995). B. Krishnamurthy (ed.). Vdelta: diferenciación y compresión . Práctico software Unix reutilizable. Nueva York: John Wiley & Sons, Inc.
  24. ^ Claude Elwood Shannon (1948). Alcatel-Lucent (ed.). "Una teoría matemática de la comunicación" (PDF) . Revista técnica de Bell System . 27 (3–4): 379–423, 623–656. doi : 10.1002 / j.1538-7305.1948.tb01338.x . hdl : 11858 / 00-001M-0000-002C-4314-2 . Consultado el 21 de abril de 2019 .
  25. ^ David Albert Huffman (septiembre de 1952), "Un método para la construcción de códigos de redundancia mínima" (PDF) , Proceedings of the IRE , 40 (9), pp. 1098-1101, doi : 10.1109 / JRPROC.1952.273898
  26. ^ William K. Pratt, Julius Kane, Harry C. Andrews: " Codificación de imagen de transformación de Hadamard ", en Proceedings of the IEEE 57.1 (1969): Seiten 58–68
  27. ^ "T.81 - COMPRESIÓN DIGITAL Y CODIFICACIÓN DE FOTOGRAFÍAS EN TONO CONTINUO - REQUISITOS Y DIRECTRICES" (PDF) . CCITT . Septiembre de 1992 . Consultado el 12 de julio de 2019 .
  28. ^ "Explicación del formato de imagen JPEG" . BT.com . BT Group . 31 de mayo de 2018 . Consultado el 5 de agosto de 2019 .
  29. ^ Baraniuk, Chris (15 de octubre de 2015). "Las protecciones de copia podrían llegar a los archivos JPEG" . BBC News . BBC . Consultado el 13 de septiembre de 2019 .
  30. ^ "¿Qué es un JPEG? El objeto invisible que ves todos los días" . El Atlántico . 24 de septiembre de 2013 . Consultado el 13 de septiembre de 2019 .
  31. ^ "La controversia GIF: perspectiva de un desarrollador de software" . Consultado el 26 de mayo de 2015 .
  32. ^ L. Peter Deutsch (mayo de 1996). DESINFLAR Especificación de formato de datos comprimidos versión 1.3 . IETF . pag. 1 segundo. Resumen. doi : 10.17487 / RFC1951 . RFC 1951 . Consultado el 23 de abril de 2014 .
  33. ^ Hoffman, Roy (2012). Compresión de datos en sistemas digitales . Springer Science & Business Media . pag. 124. ISBN 9781461560319. Básicamente, la codificación de ondículas es una variante de la codificación de transformada basada en DCT que reduce o elimina algunas de sus limitaciones. (...) Otra ventaja es que en lugar de trabajar con bloques de píxeles de 8 × 8, como hacen JPEG y otras técnicas DCT basadas en bloques, la codificación de ondas puede comprimir simultáneamente toda la imagen.
  34. ^ Taubman, David; Marcelino, Michael (2012). Principios, estándares y práctica de la compresión de imágenes JPEG2000: Principios, estándares y práctica de la compresión de imágenes . Springer Science & Business Media . ISBN 9781461507994.
  35. ^ Unser, M .; Blu, T. (2003). "Propiedades matemáticas de los filtros wavelet JPEG2000" . Transacciones IEEE sobre procesamiento de imágenes . 12 (9): 1080–1090. Código Bibliográfico : 2003ITIP ... 12.1080U . doi : 10.1109 / TIP.2003.812329 . PMID 18237979 . S2CID 2765169 .  
  36. ^ Sullivan, Gary (8 a 12 de diciembre de 2003). "Características generales y consideraciones de diseño para la codificación de video de subbanda temporal" . ITU-T . Grupo de expertos en codificación de videos . Consultado el 13 de septiembre de 2019 .
  37. ^ Bovik, Alan C. (2009). La guía esencial para el procesamiento de video . Prensa académica . pag. 355. ISBN 9780080922508.
  38. ^ Swartz, Charles S. (2005). Comprensión del cine digital: un manual profesional . Taylor y Francis . pag. 147. ISBN 9780240806174.
  39. ^ Cunningham, Stuart; McGregor, Iain (2019). "Evaluación subjetiva de música comprimida con el códec ACER en comparación con AAC, MP3 y PCM sin comprimir" . Revista Internacional de Radiodifusión Multimedia Digital . 2019 : 1–16. doi : 10.1155 / 2019/8265301 .
  40. ^ La grabadora de voz digital Olympus WS-120, según su manual, puede almacenar aproximadamente 178 horas de audio con calidad de voz en formato .WMA en 500 MB de memoria flash.
  41. ^ Coalson, Josh. "Comparación FLAC" . Consultado el 23 de agosto de 2020 .
  42. ^ "Descripción general del formato" . Consultado el 23 de agosto de 2020 .
  43. ↑ a b Jaiswal, RC (2009). Ingeniería de Audio-Video . Pune, Maharashtra: Nirali Prakashan. pag. 3.41. ISBN 9788190639675.
  44. ^ a b c Faxin Yu; Hao Luo; Zheming Lu (2010). Análisis y procesamiento de modelos tridimensionales . Berlín: Springer. pag. 47 . ISBN 9783642126512.
  45. ^ Patente estadounidense 2605361 , C. Chapin Cutler, "Cuantificación diferencial de señales de comunicación", emitida el 29 de julio de 1952 
  46. ^ P. Cummiskey, Nikil S. Jayant y JL Flanagan, "Cuantización adaptativa en la codificación diferencial PCM del habla", Bell Syst. Tech. J. , vol. 52, págs. 1105-1118, septiembre de 1973
  47. ^ Cummiskey, P .; Jayant, Nikil S .; Flanagan, JL (1973). "Cuantificación adaptativa en codificación diferencial PCM de voz". El diario técnico de Bell System . 52 (7): 1105-1118. doi : 10.1002 / j.1538-7305.1973.tb02007.x . ISSN 0005-8580 . 
  48. ↑ a b c Schroeder, Manfred R. (2014). "Laboratorios Bell" . Acústica, información y comunicación: volumen conmemorativo en honor a Manfred R. Schroeder . Saltador. pag. 388. ISBN 9783319056609.
  49. ^ Gray, Robert M. (2010). "Una historia del habla digital en tiempo real en redes de paquetes: parte II de codificación predictiva lineal y el protocolo de Internet" (PDF) . Encontró. Proceso de la señal de tendencias . 3 (4): 203–303. doi : 10.1561 / 2000000036 . ISSN 1932-8346 .  
  50. ↑ a b Guckert, John (primavera de 2012). "El uso de FFT y MDCT en la compresión de audio MP3" (PDF) . Universidad de Utah . Consultado el 14 de julio de 2019 .
  51. ^ JP Princen, AW Johnson y AB Bradley: codificación de subbanda / transformación utilizando diseños de bancos de filtros basados ​​en la cancelación de alias en el dominio del tiempo , IEEE Proc. Intl. Conferencia sobre acústica, habla y procesamiento de señales (ICASSP), 2161-2164, 1987.
  52. ^ John P. Princen, Alan B. Bradley: Diseño de banco de filtros de análisis / síntesis basado en la cancelación de alias en el dominio del tiempo , IEEE Trans. Acoust. Procesamiento de señales de voz, ASSP-34 (5), 1153-1161, 1986.
  53. ^ Luo, Fa-Long (2008). Estándares de radiodifusión multimedia móvil: tecnología y práctica . Springer Science & Business Media . pag. 590. ISBN 9780387782638.
  54. ^ Britanak, V. (2011). "Sobre propiedades, relaciones e implementación simplificada de bancos de filtros en los estándares de codificación de audio Dolby Digital (Plus) AC-3". Transacciones IEEE sobre procesamiento de audio, habla y lenguaje . 19 (5): 1231-1241. doi : 10.1109 / TASL.2010.2087755 . S2CID 897622 . 
  55. ^ Brandeburgo, Karlheinz (1999). "MP3 y AAC explicados" (PDF) . Archivado (PDF) desde el original el 13 de febrero de 2017.
  56. ^ "Resumen de algunas de las contribuciones de Solidyne a la ingeniería de transmisión" . Breve historia de Solidyne . Buenos Aires: Solidyne. Archivado desde el original el 8 de marzo de 2013 . Consultado el 6 de marzo de 2013 .
  57. ^ Zwicker, Eberhard; et al. (1967). El oído como receptor de comunicaciones . Melville, Nueva York: Sociedad Acústica de América. Archivado desde el original el 14 de septiembre de 2000 . Consultado el 11 de noviembre de 2011 .
  58. ^ "Posibilidades de compresión de archivos" . Una breve guía para comprimir un archivo de 4 formas diferentes .
  59. ^ "Codificación de video" . Sitio web de CSIP . Centro de procesamiento de señales e información, Instituto de Tecnología de Georgia. Archivado desde el original el 23 de mayo de 2013 . Consultado el 6 de marzo de 2013 .
  60. ^ Dmitriy Vatolin; et al. (Graphics & Media Lab Video Group) (marzo de 2007). Comparación de códecs de video sin pérdida '2007 (PDF) (Informe). Universidad estatal de Moscú.
  61. ^ Chen, Jie; Koc, Ut-Va; Liu, KJ Ray (2001). Diseño de sistemas de codificación de video digital: un enfoque de dominio comprimido completo . Prensa CRC . pag. 71. ISBN 9780203904183.
  62. ^ Li, Jian Ping (2006). Actas de la Conferencia Internacional de Computación de 2006 sobre tecnología de medios activos Wavelet y procesamiento de la información: Chongqing, China, 29-31 de agosto de 2006 . World Scientific . pag. 847. ISBN 9789812709998.
  63. ^ Robinson, AH; Cherry, C. (1967). "Resultados de un esquema de compresión de ancho de banda de televisión prototipo". Actas del IEEE . IEEE . 55 (3): 356–364. doi : 10.1109 / PROC.1967.5493 .
  64. ↑ a b Ghanbari, Mohammed (2003). Códecs estándar: compresión de imágenes a codificación de video avanzada . Institución de Ingeniería y Tecnología . págs. 1-2. ISBN 9780852967102.
  65. Reader, Cliff (31 de agosto de 2016). "Panorama de patentes para la codificación de videos libres de derechos" . En Tescher, Andrew G (ed.). Aplicaciones del procesamiento de imágenes digitales XXXIX . 9971 . San Diego, California: Sociedad de ingenieros de instrumentación fotoóptica. págs. 99711B. Código Bibliográfico : 2016SPIE.9971E..1BR . doi : 10.1117 / 12.2239493 . Grabación de la conferencia, desde las 3:05:10.
  66. ^ a b c d http://www.real.com/resources/digital-video-file-formats/
  67. ^ "Declaración de declaración de patente registrada como H261-07" . ITU . Consultado el 11 de julio de 2019 .
  68. ^ "Lista de patentes MPEG-2" (PDF) . MPEG LA . Consultado el 7 de julio de 2019 .
  69. ^ "MPEG-4 Visual - Lista de patentes" (PDF) . MPEG LA . Consultado el 6 de julio de 2019 .
  70. ^ "AVC / H.264 - Lista de patentes" (PDF) . MPEG LA . Consultado el 6 de julio de 2019 .
  71. ^ Chanda P, Bader JS, Elhaik E (27 de julio de 2012). "HapZipper: compartir poblaciones de HapMap ahora es más fácil" . Investigación de ácidos nucleicos . 40 (20): e159. doi : 10.1093 / nar / gks709 . PMC 3488212 . PMID 22844100 .  
  72. ^ Christley S, Lu Y, Li C, Xie X (15 de enero de 2009). "Genomas humanos como archivos adjuntos de correo electrónico" . Bioinformática . 25 (2): 274–5. doi : 10.1093 / bioinformatics / btn582 . PMID 18996942 . 
  73. ^ Pavlichin DS, Weissman T, Yona G (septiembre de 2013). "El genoma humano se contrae de nuevo" . Bioinformática . 29 (17): 2199–202. doi : 10.1093 / bioinformatics / btt362 . PMID 23793748 . 
  74. ^ M. Hosseini, D. Pratas y A. Pinho. 2016. Una encuesta sobre métodos de compresión de datos para secuencias biológicas. Información 7 (4) :( 2016): 56
  75. ^ "Compresión de datos mediante síntesis lógica" (PDF) .
  76. ^ Hilbert, Martin; López, Priscila (1 de abril de 2011). "La capacidad tecnológica del mundo para almacenar, comunicar y computar información". Ciencia . 332 (6025): 60–65. Código bibliográfico : 2011Sci ... 332 ... 60H . doi : 10.1126 / science.1200970 . PMID 21310967 . S2CID 206531385 .  

Enlaces externos [ editar ]

  • Conceptos básicos de compresión de datos (video)
  • Compresión de video 4: 2: 2 de 10 bits y sus beneficios
  • ¿Por qué los 10 bits ahorran ancho de banda (incluso cuando el contenido es de 8 bits)?
  • Qué tecnología de compresión se debe utilizar
  • Wiley - Introducción a la teoría de la compresión
  • Pruebas de escucha subjetiva EBU en códecs de audio de baja tasa de bits
  • Guía de archivo de audio: formatos de música (guía para ayudar al usuario a elegir el códec correcto)
  • Introducción a la compresión de video MPEG 1 y 2 (formato pdf) en Wayback Machine (archivado el 28 de septiembre de 2007)
  • comparación wiki de hydrogenaudio
  • Introducción a la compresión de datos por Guy E Blelloch de CMU
  • Saludos HD: material fuente sin comprimir 1080p para pruebas de compresión e investigación
  • Explicación del método de compresión de señal sin pérdidas utilizado por la mayoría de los códecs
  • Pruebas interactivas de escucha ciega de códecs de audio a través de Internet
  • TestVid: más de 2000 clips de vídeo de origen HD y otros sin comprimir para pruebas de compresión
  • Videsignline - Introducción a la compresión de video
  • Tecnología de reducción de la huella de datos
  • ¿Qué es la codificación de duración de ejecución en la compresión de video?