De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

En física , un electronvoltio (símbolo eV , también escrito electronvoltio y electronvoltio ) es la cantidad de energía cinética ganada por un solo electrón que acelera desde el reposo a través de una diferencia de potencial eléctrico de un voltio en el vacío. Cuando se utiliza como unidad de energía , el valor numérico de 1 eV en julios (símbolo J) es equivalente al valor numérico de la carga de un electrón en culombios (símbolo C). Según la redefinición de 2019 de las unidades base del SI , esto establece 1 eV igual al valor exacto1,602 176 634 × 10 −19 J. [1]

Históricamente, el electronvoltio se ideó como una unidad estándar de medida por su utilidad en las ciencias de los aceleradores de partículas electrostáticos , porque una partícula con carga eléctrica q tiene una energía E = qV después de pasar por el potencial V ; si q se expresa en unidades enteras de la carga elemental y el potencial en voltios , se obtiene una energía en eV.

Es una unidad de energía común dentro de la física, ampliamente utilizada en física de estado sólido , atómica , nuclear y de partículas . Se usa comúnmente con los prefijos métricos mili-, kilo-, mega-, giga-, tera-, peta- o exa- (meV, keV, MeV, GeV, TeV, PeV y EeV respectivamente). En algunos documentos más antiguos, y en el nombre Bevatron , se usa el símbolo BeV, que significa mil millones (10 9 ) electronvoltios; es equivalente al GeV.

Definición [ editar ]

Un electronvoltio es la cantidad de energía cinética ganada o perdida por un solo electrón que acelera desde el reposo a través de una diferencia de potencial eléctrico de un voltio en el vacío. Por tanto, tiene un valor de un voltio ,1 J / C , multiplicado por la carga elemental del electrón e ,1.602 176 634 × 10 -19  C . [2] Por lo tanto, un electronvoltio es igual a1.602 176 634 × 10 -19  J . [3]

El electronvoltio, a diferencia del voltio, no es una unidad SI . El electronvoltio (eV) es una unidad de energía, mientras que el voltio (V) es la unidad SI derivada de potencial eléctrico. La unidad SI de energía es el joule (J).

Misa [ editar ]

Por equivalencia masa-energía , el electronvoltio también es una unidad de masa . Es común en la física de partículas , donde las unidades de masa y energía se intercambian a menudo, expresar la masa en unidades de eV / c 2 , donde c es la velocidad de la luz en el vacío (de E = mc 2 ). Es común expresar simplemente la masa en términos de "eV" como una unidad de masa , utilizando efectivamente un sistema de unidades naturales con c establecido en 1. [4] El equivalente de masa de1 eV / c 2 es

Por ejemplo, un electrón y un positrón , cada uno con una masa de0.511 MeV / c 2 , puede aniquilarse para ceder1.022 MeV de energía. El protón tiene una masa de0,938 GeV / c 2 . En general, las masas de todos los hadrones son del orden de1 GeV / c 2 , lo que convierte al GeV (gigaelectronvoltio) en una unidad de masa conveniente para la física de partículas:

1 GeV / c 2 =1,782 661 92 × 10 −27  kg .

La unidad de masa atómica unificada (u), casi exactamente 1 gramo dividido por el número de Avogadro , es casi la masa de un átomo de hidrógeno , que es principalmente la masa del protón. Para convertir a electronvoltios, use la fórmula:

1 u = 931,4941 MeV / c 2 =0,931 4941  GeV / c 2 .

Momentum [ editar ]

En física de altas energías , el electronvoltio se utiliza a menudo como unidad de impulso . Una diferencia de potencial de 1 voltio hace que un electrón gane una cantidad de energía (es decir,1 eV ). Esto da lugar al uso de eV (y keV, MeV, GeV o TeV) como unidades de impulso, ya que la energía suministrada da como resultado la aceleración de la partícula.

Las dimensiones de las unidades de impulso son T -1 L M . Las dimensiones de las unidades de energía son T -2 L 2 M . Luego, dividir las unidades de energía (como eV) por una constante fundamental que tiene unidades de velocidad ( T −1 L ), facilita la conversión requerida de usar unidades de energía para describir el momento. En el campo de la física de partículas de alta energía, la unidad de velocidad fundamental es la velocidad de la luz en el vacío c .

Al dividir la energía en eV por la velocidad de la luz, se puede describir la cantidad de movimiento de un electrón en unidades de eV / c . [5] [6]

La constante de velocidad fundamental c a menudo se elimina de las unidades de momento mediante la definición de unidades de longitud de manera que el valor de c sea ​​la unidad. Por ejemplo, si se dice que el momento p de un electrón es1 GeV , entonces la conversión a MKS se puede lograr mediante:

Distancia [ editar ]

En física de partículas , se utiliza ampliamente un sistema de "unidades naturales" en el que la velocidad de la luz en el vacío cy la constante de Planck reducida ħ son adimensionales e iguales a la unidad: c = ħ = 1 . En estas unidades, tanto las distancias como los tiempos se expresan en unidades de energía inversa (mientras que la energía y la masa se expresan en las mismas unidades, ver equivalencia masa-energía ). En particular, las longitudes de dispersión de partículas se presentan a menudo en unidades de masas de partículas inversas.

Fuera de este sistema de unidades, los factores de conversión entre electronvoltio, segundo y nanómetro son los siguientes:

Las relaciones anteriores también permiten expresar la vida media τ de una partícula inestable (en segundos) en términos de su ancho de desintegración Γ (en eV) a través de Γ = ħ / τ . Por ejemplo, el mesón B 0 tiene una vida útil de 1.530 (9)  picosegundos , la longitud media de desintegración es =459,7 μm , o un ancho de desintegración de(4,302 ± 25) × 10 −4  eV .

Por el contrario, las pequeñas diferencias de masa de mesones responsables de las oscilaciones de mesones a menudo se expresan en los picosegundos inversos más convenientes.

La energía en electronvoltios a veces se expresa a través de la longitud de onda de la luz con fotones de la misma energía:

Temperatura [ editar ]

En ciertos campos, como la física del plasma , es conveniente utilizar el electronvoltio para expresar la temperatura. El electronvoltio se divide por la constante de Boltzmann para convertirlo a la escala Kelvin :

Donde k B es la constante de Boltzmann , K es Kelvin, J es Joules, eV es electronvoltios.

Se asume k B cuando se usa el electronvoltio para expresar la temperatura, por ejemplo, un plasma de fusión de confinamiento magnético típico es15 keV (kiloelectronvoltios), lo que equivale a 170 MK (millones de Kelvin).

Como aproximación: k B T es aproximadamente0,025 eV (≈290 K/11604 K / eV) a una temperatura de 20 ° C .

Propiedades [ editar ]

Energía de fotones en el espectro visible en eV
Gráfico de longitud de onda (nm) a energía (eV)

La energía E , la frecuencia v y la longitud de onda λ de un fotón están relacionadas por

donde h es la constante de Planck , c es la velocidad de la luz . Esto se reduce a [1]

Un fotón con una longitud de onda de 532 nm (luz verde) tendría una energía de aproximadamente2,33 eV . Similar,1 eV correspondería a un fotón infrarrojo de longitud de onda1240 nm o frecuencia241,8 THz .

Experimentos de dispersión [ editar ]

En un experimento de dispersión nuclear de baja energía, es convencional referirse a la energía de retroceso nuclear en unidades de eVr, keVr, etc. Esto distingue la energía de retroceso nuclear de la energía de retroceso "equivalente a electrones" (eVee, keVee, etc.) medido con luz de centelleo . Por ejemplo, el rendimiento de un fototubo se mide en phe / keVee ( fotoelectrones por keV de energía equivalente a un electrón). La relación entre eV, eVr y eVee depende del medio en el que se produce la dispersión y debe establecerse empíricamente para cada material.

Comparaciones de energía [ editar ]

Frecuencia de fotones frente a partícula de energía en electronvoltios . La energía de un fotón varía solo con la frecuencia del fotón, relacionada con la velocidad de la luz constante. Esto contrasta con una partícula masiva cuya energía depende de su velocidad y masa en reposo . [7] [8] [9] Leyenda

Por mole [ editar ]

Un mol de partículas con 1 eV de energía tiene aproximadamente 96,5 kJ de energía; esto corresponde a la constante de Faraday ( F96 485  C mol −1 ), donde la energía en julios de n moles de partículas cada una con energía E eV es igual a E · F · n .

Ver también [ editar ]

  • Órdenes de magnitud (energía)

Referencias [ editar ]

  1. ^ a b "Valor CODATA: constante de Planck en eV s" . Archivado desde el original el 22 de enero de 2015 . Consultado el 30 de marzo de 2015 .
  2. ^ "Valor CODATA 2018: carga elemental" . La referencia del NIST sobre constantes, unidades e incertidumbre . NIST . 20 de mayo de 2019 . Consultado el 20 de mayo de 2019 . CS1 maint: discouraged parameter (link)
  3. ^ "Valor CODATA 2018: electronvoltio" . La referencia del NIST sobre constantes, unidades e incertidumbre . NIST . 20 de mayo de 2019 . Consultado el 20 de mayo de 2019 . CS1 maint: discouraged parameter (link)
  4. ^ Barrow, JD "Unidades naturales antes de Planck". Revista trimestral de la Royal Astronomical Society 24 (1983): 24.
  5. ^ "Unidades en física de partículas" . Kit de herramientas del Instituto de Maestros Asociados . Fermilab. 22 de marzo de 2002. Archivado desde el original el 14 de mayo de 2011 . Consultado el 13 de febrero de 2011 .
  6. ^ "Relatividad especial" . Centro de visitantes virtual . SLAC. 15 de junio de 2009 . Consultado el 13 de febrero de 2011 .
  7. ^ ¿Qué es la luz? Archivado el 5 de diciembre de 2013 en la Wayback Machine -Diapositivas de conferencias de UC Davis
  8. ^ Elert, Glenn. "Espectro electromagnético, el hipertexto de física" . hypertextbook.com. Archivado desde el original el 29 de julio de 2016 . Consultado el 30 de julio de 2016 .
  9. ^ "Definición de bandas de frecuencia en" . Vlf.it. Archivado desde el original el 30 de abril de 2010 . Consultado el 16 de octubre de 2010 .
  10. ^ Preguntas abiertas en física. Archivado el 8 de agosto de 2014 en elSincrotrón de electrones alemán Wayback Machine . Un centro de investigación de la Asociación Helmholtz. Actualizado en marzo de 2006 por JCB. Original de John Baez.
  11. ^ "Una creciente señal de neutrinos astrofísicos en IceCube ahora presenta un neutrino 2-PeV" . Archivado desde el original el 19 de marzo de 2015.
  12. ^ Glosario Archivado el 15 de septiembre de 2014 en Wayback Machine - Colaboración CMS, CERN
  13. ^ ATLAS ; CMS (26 de marzo de 2015). "Medición combinada de la masa del bosón de Higgs en colisiones pp en √s = 7 y 8 TeV con los experimentos ATLAS y CMS" . Cartas de revisión física . 114 (19): 191803. arXiv : 1503.07589 . Código Bibliográfico : 2015PhRvL.114s1803A . doi : 10.1103 / PhysRevLett.114.191803 . PMID 26024162 . 
  14. ^ Mertens, Susanne (2016). "Experimentos directos de masa de neutrinos". Journal of Physics: Serie de conferencias . 718 (2): 022013. arXiv : 1605.01579 . Código bibliográfico : 2016JPhCS.718b2013M . doi : 10.1088 / 1742-6596 / 718/2/022013 . S2CID 56355240 .  

Enlaces externos [ editar ]

  • Definición de BIPM del electronvoltio
  • referencia de constantes físicas; Datos CODATA