La subunidad beta de hemoglobina ( beta globina , beta-globina , hemoglobina beta , hemoglobina beta ) es una proteína de globina , codificada por el gen HBB , que junto con la alfa globina ( HBA ), constituye la forma más común de hemoglobina en humanos adultos , hemoglobina A (HbA). [4] Tiene 147 aminoácidos de longitud y un peso molecular de 15.867 Da . La HbA humana adulta normal es un heterotetrámero que consta de dos cadenas alfa y dos cadenas beta.
HBB | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Identificadores | |||||||||||||||||||||||||
Alias | HBB , CD113t-C, beta-globina, subunidad beta de hemoglobina, ECYT6 | ||||||||||||||||||||||||
Identificaciones externas | OMIM : 141900 MGI : 5474850 HomoloGene : 68066 GeneCards : HBB | ||||||||||||||||||||||||
| |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Ortólogos | |||||||||||||||||||||||||
Especies | Humano | Ratón | |||||||||||||||||||||||
Entrez |
|
| |||||||||||||||||||||||
Ensembl |
|
| |||||||||||||||||||||||
UniProt |
|
| |||||||||||||||||||||||
RefSeq (ARNm) |
|
| |||||||||||||||||||||||
RefSeq (proteína) |
|
| |||||||||||||||||||||||
Ubicación (UCSC) | Crónicas 11: 5,23 - 5,23 Mb | n / A | |||||||||||||||||||||||
Búsqueda en PubMed | [2] | [3] | |||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||
|

HBB está codificado por el gen HBB en el cromosoma 11 humano . Las mutaciones en el gen producen varias variantes de las proteínas que están implicadas con trastornos genéticos como la anemia de células falciformes y la beta talasemia , así como rasgos beneficiosos como la resistencia genética a la malaria . [5] [6]
Locus de genes
La proteína HBB es producida por el gen HBB que se encuentra en el locus multigénico del locus de la β-globina en el cromosoma 11 , específicamente en la posición del brazo corto 15.4. La expresión de la beta globina y las globinas vecinas en el locus de la β-globina está controlada por la región de control de un solo locus (LCR), el elemento regulador más importante en el locus ubicado aguas arriba de los genes de la globina. [7] La variante alélica normal tiene una longitud de 1600 pares de bases (pb) y contiene tres exones . El orden de los genes en el grupo de beta-globina es 5 '- épsilon - gamma-G - gamma-A - delta - beta - 3'. [4]
Interacciones
El HBB interactúa con la hemoglobina alfa 1 (HBA1) para formar la hemoglobina A, la principal hemoglobina en los seres humanos adultos. [8] [9] La interacción es doble. Primero, un HBB y un HBA1 se combinan, de forma no covalente, para formar un dímero. En segundo lugar, dos dímeros se combinan para formar el tetrámero de cuatro cadenas y éste se convierte en la hemolglobina funcional. [10]
Trastornos genéticos asociados
Beta talasemia
La beta talasemia es una mutación genética hereditaria en uno (beta talasemia menor) o en ambos (beta talasemia mayor) de los alelos de beta globina en el cromosoma 11. Los alelos mutantes se subdividen en dos grupos: β0, en el que no se produce β-globina funcional y β +, en los que se produce una pequeña cantidad de proteína β-globina normal. La beta talasemia menor ocurre cuando un individuo hereda un alelo Beta normal y un alelo Beta anormal (ya sea β0 o β +). La beta talasemia menor da como resultado una anemia microcítica leve que a menudo es asintomática o puede causar fatiga o piel pálida. La beta talasemia mayor ocurre cuando una persona hereda dos alelos anormales. Pueden ser dos alelos β +, dos alelos β0 o uno de cada uno. La beta talasemia mayor es una afección médica grave. Se observa una anemia grave a partir de los 6 meses de edad. Sin tratamiento médico, la muerte suele ocurrir antes de los 12 años. [11] La beta talasemia mayor puede tratarse mediante transfusiones de sangre de por vida o trasplante de médula ósea . [12] [13]
Según un estudio reciente, la mutación de ganancia parada Gln40stop en HBB gen es una causa común de autosómica recesiva beta-talasemia en la gente de Cerdeña (casi exclusiva en Cerdeña). Los portadores de esta mutación muestran un recuento mejorado de glóbulos rojos. Como curiosidad, la misma mutación también se asoció a una disminución de los niveles séricos de LDL en los portadores, por lo que los autores sugieren que se debe a la necesidad del colesterol para regenerar las membranas celulares. [14]
Enfermedad de célula falciforme
Se han descubierto más de mil variantes de HBB de origen natural . La más común es la HbS, que causa la anemia de células falciformes . La HbS es producida por una mutación puntual en HBB en la que el codón GAG es reemplazado por GTG. Esto da como resultado la sustitución del aminoácido hidrófilo ácido glutámico por el aminoácido hidrófobo valina en la sexta posición (β6Glu → Val). Esta sustitución crea una mancha hidrofóbica en el exterior de la proteína que se adhiere a la región hidrofóbica de la cadena beta de una molécula de hemoglobina adyacente. Esto provoca además la aglutinación de las moléculas de HbS en fibras rígidas, lo que provoca la "formación de hoz" de todos los glóbulos rojos en la condición homocigótica ( HbS / HbS ). [15] El alelo homocigoto se ha convertido en uno de los factores genéticos más letales, [16] mientras que las personas heterocigotas para el alelo mutante ( HbS / HbA ) son resistentes a la malaria y desarrollan efectos mínimos de la anemia. [17]
Hemoglobina C
La anemia de células falciformes está estrechamente relacionada con otra hemoglobina mutante llamada hemoglobina C (HbC), porque pueden heredarse juntas. [18] La mutación de la HbC se encuentra en la misma posición en la HbS, pero el ácido glutámico es reemplazado por lisina (β6Glu → Lys). La mutación es particularmente frecuente en las poblaciones de África occidental. La HbC proporciona una protección casi completa contra Plasmodium falciparum en individuos homocigotos (CC) y una protección intermedia en individuos heterocigotos (AC). [19] Esto indica que la HbC tiene una influencia más fuerte que la HbS y se prevé que reemplace a la HbS en las regiones donde la malaria es endémica. [20]
Hemoglobina E
Otra mutación puntual en HBB, en la que el ácido glutámico se reemplaza con lisina en la posición 26 (β26Glu → Lys), conduce a la formación de hemoglobina E (HbE). [21] La HbE tiene una asociación de globina α y β muy inestable. Aunque la proteína inestable en sí tiene un efecto leve, heredado con HbS y rasgos de talasemia, se convierte en una forma potencialmente mortal de β-talasemia. La mutación es de origen relativamente reciente, lo que sugiere que fue el resultado de la presión selectiva contra el paludismo grave por P. falciparum, ya que el alelo heterocigoto previene el desarrollo del paludismo. [22]
Evolución humana
La malaria debida a Plasmodium falciparum es un factor selectivo importante en la evolución humana . [6] [23] Ha influido en las mutaciones en HBB en varios grados, lo que ha dado lugar a la existencia de numerosas variantes de HBB. Algunas de estas mutaciones no son directamente letales y, en cambio, confieren resistencia a la malaria, particularmente en África, donde la malaria es una epidemia. [24] Las personas de ascendencia africana han evolucionado para tener tasas más altas de HBB mutante porque los individuos heterocigotos tienen un glóbulo rojo deformado que previene los ataques de los parásitos de la malaria. Por tanto, los mutantes de HBB son las fuentes de selección positiva en estas regiones y son importantes para su supervivencia a largo plazo. [5] [25] Estos marcadores de selección son importantes para rastrear la ascendencia humana y la diversificación de África . [26]
Ver también
- Locus de β-globina humana
Referencias
- ^ a b c GRCh38: Lanzamiento de Ensembl 89: ENSG00000244734 - Ensembl , mayo de 2017
- ^ "Referencia humana de PubMed:" . Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
- ^ "Referencia de PubMed del ratón:" . Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
- ^ a b "Entrez Gene: hemoglobina HBB, beta" .
- ^ a b Sabeti, Pardis C (2008). "Selección natural: descubrimiento de mecanismos de adaptación evolutiva a enfermedades infecciosas" . Educación en la naturaleza . 1 (1): 13.
- ^ a b Kwiatkowski DP (2005). "Cómo ha afectado la malaria al genoma humano y qué nos puede enseñar la genética humana sobre la malaria" . La Revista Estadounidense de Genética Humana . 77 (2): 171-192. doi : 10.1086 / 432519 . PMC 1224522 . PMID 16001361 .
- ^ Levings PP, Bungert J (2002). "La región de control del locus de beta-globina humana" . EUR. J. Biochem . 269 (6): 1589–99. doi : 10.1046 / j.1432-1327.2002.02797.x . PMID 11895428 .
- ^ Stelzl U, Gusano U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E , Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005). "Una red de interacción proteína-proteína humana: un recurso para anotar el proteoma". Celular . 122 (6): 957–968. doi : 10.1016 / j.cell.2005.08.029 . hdl : 11858 / 00-001M-0000-0010-8592-0 . PMID 16169070 . S2CID 8235923 .
- ^ Shaanan B (1983). "Estructura de la oxihemoglobina humana a una resolución de 2,1 A". J. Mol. Biol . INGLATERRA. 171 (1): 31–59. doi : 10.1016 / S0022-2836 (83) 80313-1 . ISSN 0022-2836 . PMID 6644819 .
- ^ "Síntesis de hemoglobina" . harvard.edu . Universidad Harvard. 2002 . Consultado el 18 de noviembre de 2014 .
- ^ H. Franklin Bunn; Vijay G. Sankaran (2017). "8". Patología de los trastornos sanguíneos . págs. 927–933.
- ^ Muncie HL, Campbell J (2009). "Talasemia alfa y beta". Médico de familia estadounidense . 80 (4): 339–44. PMID 19678601 .
- ^ "Beta talasemia" . Referencia casera de la genética . Biblioteca Nacional de Medicina de EE. UU. 11 de noviembre de 2014 . Consultado el 18 de noviembre de 2014 .
- ^ Sidore, C .; et al. (2015). "La secuenciación del genoma aclara la arquitectura genética de Cerdeña y aumenta los análisis de asociación de marcadores inflamatorios de lípidos y sangre" . Genética de la naturaleza . 47 (11): 1272-1281. doi : 10.1038 / ng.3368 . PMC 4627508 . PMID 26366554 .
- ^ Thom CS, Dickson CF, Gell DA, Weiss MJ (2013). "Variantes de hemoglobina: propiedades bioquímicas y correlatos clínicos" . Cold Spring Harb Perspect Med . 3 (3): a011858. doi : 10.1101 / cshperspect.a011858 . PMC 3579210 . PMID 23388674 .
- ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker- Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M , Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V , Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ , Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaram an S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L , Marcas GB, Marcas R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Pérez -Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagne r GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012). "Mortalidad mundial y regional de 235 causas de muerte para 20 grupos de edad en 1990 y 2010: un análisis sistemático para el estudio de carga mundial de enfermedad 2010" . Lancet . 380 (9859): 2095–128. doi : 10.1016 / S0140-6736 (12) 61728-0 . hdl : 10536 / DRO / DU: 30050819 . PMID 23245604 . S2CID 1541253 .
- ^ Luzzatto L (2012). "Anemia de células falciformes y malaria" . Mediterr J Hematol Infect Dis . 4 (1): e2012065. doi : 10.4084 / MJHID.2012.065 . PMC 3499995 . PMID 23170194 .
- ^ Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, Williams TN, Weatherall DJ, Hay SI (2013). "La distribución de la hemoglobina C y su prevalencia en recién nacidos en África" . Informes científicos . 3 (1671): 1671. Código Bibliográfico : 2013NatSR ... 3E1671P . doi : 10.1038 / srep01671 . PMC 3628164 . PMID 23591685 .
- ^ Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Olivieri A, Calissano C, Paganotti GM, D'Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M (2001). "La hemoglobina C protege contra el paludismo clínico por Plasmodium falciparum". Naturaleza . 414 (6861): 305–308. Código Bibliográfico : 2001Natur.414..305M . doi : 10.1038 / 35104556 . PMID 11713529 . S2CID 4360808 .
- ^ Verra F, Bancone G, Avellino P, Blot I, Simporé J, Modiano D (2007). "Hemoglobina C y S en la selección natural contra la malaria por Plasmodium falciparum: una plétora o un único mecanismo adaptativo compartido?". Parassitologia . 49 (4): 209-13. PMID 18689228 .
- ^ Olivieri NF, Pakbaz Z, Vichinsky E (2011). "Hb E / beta-talasemia: un trastorno común y clínicamente diverso" . The Indian Journal of Medical Research . 134 (4): 522–531. PMC 3237252 . PMID 22089616 .
- ^ Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J, Looareesuwan S, White N (2002). "Hemoglobina E: un polimorfismo equilibrado que protege contra las parasitemias altas y, por tanto, la malaria grave por P. falciparum " . Sangre . 100 (4): 1172-1176. doi : 10.1182 / blood.V100.4.1172.h81602001172_1172_1176 . PMID 12149194 .
- ^ Verra F, Mangano VD, Modiano D (2009). "Genética de la susceptibilidad a Plasmodium falciparum: desde genes clásicos de resistencia a la malaria hacia estudios de asociación de todo el genoma". Inmunología parasitaria . 31 (5): 234–53. doi : 10.1111 / j.1365-3024.2009.01106.x . PMID 19388945 . S2CID 23734166 .
- ^ Tishkoff SA, Williams SM (2002). "Análisis genético de poblaciones africanas: evolución humana y enfermedad compleja". Nature Reviews Genética . 3 (8): 611-21. doi : 10.1038 / nrg865 . PMID 12154384 . S2CID 7801737 .
- ^ Excoffier L (2002). "Historia demográfica humana: refinando el modelo reciente de origen africano". Opinión Actual en Genética y Desarrollo . 12 (6): 675–682. doi : 10.1016 / S0959-437X (02) 00350-7 . PMID 12433581 .
- ^ Reed FA, Tishkoff SA (2006). "Diversidad humana africana, orígenes y migraciones". Opinión Actual en Genética y Desarrollo . 16 (6): 597–605. doi : 10.1016 / j.gde.2006.10.008 . PMID 17056248 .
Otras lecturas
- Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989). "Una revisión de la genética molecular del grupo de genes de la alfa-globina humana" . Sangre . 73 (5): 1081-104. doi : 10.1182 / sangre.V73.5.1081.1081 . PMID 2649166 .
- Giardina B, Messana I, Scatena R, Castagnola M (1995). "Las múltiples funciones de la hemoglobina". Crit. Rev. Biochem. Mol. Biol . 30 (3): 165–96. doi : 10.3109 / 10409239509085142 . PMID 7555018 .
- Salzano AM, Carbone V, Pagano L, Buffardi S, De RC, Pucci P (2002). "Hb Vila Real [beta36 (C2) Pro -> His] en Italia: caracterización de la sustitución de aminoácidos y la mutación del ADN". La hemoglobina . 26 (1): 21–31. doi : 10.1081 / HEM-120002937 . PMID 11939509 . S2CID 40757080 .
- Frischknecht H, Dutly F (2007). "Una duplicación / inserción de 65 pb en el exón II del gen de la beta globina que provoca la beta0-talasemia" . Haematologica . 92 (3): 423–4. doi : 10,3324 / haematol.10785 . PMID 17339197 .
enlaces externos
- Descripción general de toda la información estructural disponible en el PDB para UniProt : P68871 (subunidad beta de hemoglobina humana) en PDBe-KB .
- Descripción general de toda la información estructural disponible en la PDB para UniProt : P02088 (subunidad beta-1 de hemoglobina de ratón) en PDBe-KB .