De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

La física de la salud, también conocida como la ciencia de la protección radiológica , es la profesión dedicada a proteger a las personas y su medio ambiente de los posibles peligros de la radiación , al tiempo que hace posible disfrutar de los usos beneficiosos de la radiación. Los físicos de la salud normalmente requieren una licenciatura de cuatro años y experiencia calificada que demuestre un conocimiento profesional de la teoría y aplicación de los principios de protección radiológica y ciencias estrechamente relacionadas. Los físicos de la salud trabajan principalmente en instalaciones donde radionúclidos u otras fuentes de radiación ionizante (como generadores de rayos X) se utilizan o producen; Estos incluyen investigación, industria, educación, instalaciones médicas, energía nuclear, militar, protección ambiental, cumplimiento de las regulaciones gubernamentales y descontaminación y desmantelamiento; la combinación de educación y experiencia para los físicos de la salud depende del campo específico en el que participa el físico de la salud. .

Subespecialidades [ editar ]

Hay muchas subespecialidades en el campo de la física de la salud, [1] que incluyen

Física de la salud operativa [ editar ]

El subcampo de la física de la salud operativa, también llamado física de la salud aplicada en fuentes más antiguas, se centra en el trabajo de campo y la aplicación práctica del conocimiento de la física de la salud a situaciones del mundo real, en lugar de la investigación básica. [2]

Física médica [ editar ]

El campo de la física de la salud está relacionado con el campo de la física médica [3] y son similares entre sí en el sentido de que los profesionales se basan en gran parte de la misma ciencia fundamental (es decir, física de la radiación, biología, etc.) en ambos campos. Los físicos de la salud, sin embargo, se centran en la evaluación y protección de la salud humana frente a la radiación, mientras que los físicos de la salud y los físicos médicos apoyan el uso de la radiación y otras tecnologías basadas en la física por parte de los médicos para el diagnóstico y tratamiento de enfermedades. [4]

Instrumentos de protección radiológica [ editar ]

La medición práctica de la radiación ionizante es esencial para la física de la salud. Permite la evaluación de las medidas de protección y la valoración de la dosis de radiación probable o efectivamente recibida por las personas. La provisión de tales instrumentos normalmente está controlada por la ley. En el Reino Unido es el Reglamento de Radiación Ionizante de 1999.

Los instrumentos de medición para la protección radiológica son tanto "instalados" (en una posición fija) como portátiles (de mano o transportables).

Instrumentos instalados [ editar ]

Los instrumentos instalados se fijan en posiciones que se sabe que son importantes para evaluar el peligro de radiación general en un área. Los ejemplos son monitores de radiación de "área" instalados, monitores de interbloqueo Gamma, monitores de salida de personal y monitores de contaminación en el aire.

El monitor de área medirá la radiación ambiental, generalmente Rayos X, Gamma o neutrones; se trata de radiaciones que pueden tener niveles de radiación significativos en un rango superior a decenas de metros desde su fuente y, por lo tanto, cubrir un área amplia.

Los monitores de enclavamiento se utilizan en aplicaciones para evitar la exposición inadvertida de los trabajadores a una dosis excesiva al evitar que el personal acceda a un área cuando hay un alto nivel de radiación.

Los monitores de contaminación del aire miden la concentración de partículas radiactivas en la atmósfera para proteger contra el depósito de partículas radiactivas en los pulmones del personal.

Los monitores de salida de personal se utilizan para monitorear a los trabajadores que están saliendo de un área "controlada por contaminación" o potencialmente contaminada. Estos pueden ser en forma de monitores de mano, sondas de registro de ropa o monitores de cuerpo entero. Estos monitorean la superficie del cuerpo y la ropa de los trabajadores para verificar si se ha depositado alguna contaminación radiactiva . Estos generalmente miden alfa, beta o gamma, o combinaciones de estos.

El Laboratorio Nacional de Física del Reino Unido ha publicado una guía de buenas prácticas a través de su Foro de Metrología de Radiación Ionizante sobre la provisión de dicho equipo y la metodología para calcular los niveles de alarma que se utilizarán. [5]

Instrumentos portátiles [ editar ]

Los instrumentos portátiles son de mano o transportables. El instrumento de mano se usa generalmente como un medidor de medición para verificar un objeto o una persona en detalle, o evaluar un área donde no existe instrumentación instalada. También se pueden utilizar para el control de salidas de personal o controles de contaminación del personal en el campo. Por lo general, miden alfa, beta o gamma, o combinaciones de estos.

Los instrumentos transportables son generalmente instrumentos que se habrían instalado permanentemente, pero que se colocan temporalmente en un área para proporcionar un monitoreo continuo donde es probable que haya un peligro. Estos instrumentos a menudo se instalan en carros para permitir un fácil despliegue y están asociados con situaciones operativas temporales.

Tipos de instrumentos [ editar ]

A continuación se enumeran varios instrumentos de detección de uso común.

  • cámaras de ionización
  • contadores proporcionales
  • Contadores geiger
  • Detectores de semiconductores
  • Detectores de centelleo

Se deben seguir los enlaces para obtener una descripción más completa de cada uno.

Orientación sobre el uso [ editar ]

En el Reino Unido, el HSE ha publicado una nota de orientación para el usuario sobre la selección del instrumento de medición de radiación correcto para la aplicación en cuestión [2] . Esto cubre todas las tecnologías de instrumentos de radiación ionizante y es una guía comparativa útil.

Dosímetros de radiación [ editar ]

Los dosímetros son dispositivos que lleva el usuario y que miden la dosis de radiación que recibe. Los tipos comunes de dosímetros portátiles para radiación ionizante incluyen:

  • Dosímetro de fibra de cuarzo
  • Dosímetro de placa de película
  • Dosímetro termoluminiscente
  • Dosímetro de estado sólido ( MOSFET o diodo de silicio)

Unidades de medida [ editar ]

Cantidades de dosis externas utilizadas en protección radiológica y dosimetría
Gráfico que muestra la relación de las unidades de dosis de radiación del SI

Dosis absorbida [ editar ]

Las unidades fundamentales no tienen en cuenta la cantidad de daño causado a la materia (especialmente a los tejidos vivos) por la radiación ionizante. Esto está más relacionado con la cantidad de energía depositada que con la carga. A esto se le llama dosis absorbida .

  • El gray (Gy), con unidades J / kg, es la unidad SI de dosis absorbida, que representa la cantidad de radiación requerida para depositar 1 joule de energía en 1 kilogramo de cualquier tipo de materia.
  • El rad (dosis de radiación absorbida), es la unidad tradicional correspondiente, que son 0,01 J depositados por kg. 100 rad = 1 Gy.

Dosis equivalente [ editar ]

Dosis iguales de diferentes tipos o energías de radiación causan diferentes cantidades de daño a los tejidos vivos. Por ejemplo, 1 Gy de radiación alfa causa aproximadamente 20 veces tanto daño como 1 Gy de rayos X . Por tanto, se definió la dosis equivalente para dar una medida aproximada del efecto biológico de la radiación. Se calcula multiplicando la dosis absorbida por un factor de ponderación W R , que es diferente para cada tipo de radiación (ver tabla en Efectividad biológica relativa # Estandarización ). Este factor de ponderación también se denomina Q (factor de calidad) o RBE ( eficacia biológica relativa de la radiación).

  • El sievert (Sv) es la unidad SI de dosis equivalente. Aunque tiene las mismas unidades que el gris, J / kg, mide algo diferente. Para un determinado tipo y dosis de radiación aplicada a una determinada parte del cuerpo de un determinado organismo, mide la magnitud de una dosis de rayos X o radiación gamma aplicada a todo el cuerpo del organismo, de modo que la Las probabilidades de que los dos escenarios induzcan cáncer son las mismas según las estadísticas actuales.
  • El rem (hombre equivalente de Roentgen) es la unidad tradicional de dosis equivalente. 1 sievert = 100 rem. Debido a que el rem es una unidad relativamente grande, la dosis equivalente típica se mide en milirem (mrem), 10 −3 rem, o en microsievert (μSv), 10 −6 Sv. 1 mrem = 10 μSv.
  • Una unidad que a veces se utiliza para dosis de radiación de bajo nivel es el BRET ( tiempo equivalente de radiación de fondo ). Este es el número de días de exposición a la radiación de fondo de una persona promedio a la que la dosis es equivalente. Esta unidad no está estandarizada y depende del valor utilizado para la dosis de radiación de fondo promedio. Usando el valor de 2000 UNSCEAR (abajo), una unidad BRET es igual a aproximadamente 6,6 μSv.

A modo de comparación, la dosis 'de fondo' promedio de radiación natural que recibe una persona por día, según la estimación de UNSCEAR de 2000, hace que BRET sea de 6,6 μSv (660 μrem). Sin embargo, las exposiciones locales varían, siendo el promedio anual en los EE. UU. De alrededor de 3,6 mSv (360 mrem), [6] y en una pequeña zona de la India de hasta 30 mSv (3 rem). [7] [8] La dosis letal de radiación para todo el cuerpo para un ser humano es de alrededor de 4 a 5 Sv (400 a 500 rem). [9]

Historia [ editar ]

En 1898, The Röntgen Society (actualmente el Instituto Británico de Radiología ) estableció un comité sobre lesiones por rayos X, iniciando así la disciplina de la protección radiológica. [10]

El término "física de la salud" [ editar ]

Según Paul Frame: [11]

"Se cree que el término Física de la Salud se originó en el Laboratorio Metalúrgico de la Universidad de Chicago en 1942, pero se desconoce el origen exacto. El término posiblemente fue acuñado por Robert Stone o Arthur Compton , ya que Stone era el jefe de la División de Salud y Arthur Compton era el jefe del Laboratorio Metalúrgico. La primera tarea de la Sección de Física de la Salud fue diseñar el blindaje para el reactor CP-1 que estaba construyendo Enrico Fermi , por lo que los HP originales eran en su mayoría físicostratando de resolver problemas relacionados con la salud. La explicación dada por Robert Stone fue que '... el término Física de la Salud se ha utilizado en el Proyecto Plutonio para definir ese campo en el que se utilizan métodos físicos para determinar la existencia de peligros para la salud del personal'.

Raymond Finkle, un empleado de la División de Salud, dio una variación durante este período de tiempo. 'La moneda al principio simplemente denotaba la sección de física de la División de Salud ... el nombre también servía para la seguridad:' protección contra la radiación 'podría despertar un interés no deseado; la 'física de la salud' no transmitía nada '".

Cantidades relacionadas con la radiación [ editar ]

La siguiente tabla muestra las cantidades de radiación en unidades SI y no SI.

Aunque la Comisión Reguladora Nuclear de los Estados Unidos permite el uso de las unidades curie , rad y rem junto con las unidades SI, [12] las directivas de unidades de medida de la Unión Europea requieren que se elimine gradualmente su uso con fines de "salud pública ..." antes del 31 de diciembre de 1985. [13]

Ver también [ editar ]

  • Sociedad de Física de la Salud
  • Físico de la salud certificado
  • Protección radiológica de pacientes
  • Protección de radiación
  • Society for Radiological Protection El principal organismo del Reino Unido que se ocupa de promover la ciencia y la práctica de la protección radiológica. Es el organismo nacional afiliado del Reino Unido a la IRPA.
  • IRPA La Asociación Internacional de Protección Radiológica. Organismo internacional que se ocupa de promover la ciencia y la práctica de la protección radiológica.

Referencias [ editar ]

  1. ^ Carreras en física de la salud
  2. ^ Miller, Kenneth L. (julio de 2005). "Física de la salud operativa" . Física de la salud . 88 (6): 638–652. doi : 10.1097 / 01.hp.0000138021.37701.30 - a través de ResearchGate.
  3. ^ http://www.aapm.org/medical_physicist/fields.asp
  4. ^ AAPM - El físico médico
  5. ^ Guía de buenas prácticas de supervisión operativa "La selección de niveles de alarma para monitores de salida de personal" Diciembre de 2009 - Laboratorio nacional de física, Teddington Reino Unido [1] Archivado el 13 de mayo de 2013 en la Wayback Machine.
  6. ^ Radiactividad en la naturaleza < http://www.physics.isu.edu/radinf/natural.htm >
  7. ^ "Radiación de fondo: natural versus artificial" Departamento de Salud de Washington Stet
  8. ^ "La arena de Monacita no causa un exceso de incidencia de cáncer" , The Hindu
  9. ^ "Dosis letal" , Glosario de NRC (2 de agosto de 2010)
  10. ^ Molde R. Un siglo de rayos X y radiactividad en medicina . Bristol: IOP Publishing, 1993
  11. ^ Origen de la "física de la salud" Archivado el 27 de septiembre de 2007 en la Wayback Machine.
  12. ^ Título 10 del Código de Reglamentaciones Federales, 20.1004 . Comisión Reguladora Nuclear de EE. UU. 2009.
  13. ^ El Consejo de las Comunidades Europeas (1979-12-21). "Directiva 80/181 / CEE del Consejo, de 20 de diciembre de 1979, relativa a la aproximación de las legislaciones de los Estados miembros en materia de unidad de medida y derogación de la Directiva 71/354 / CEE" . Consultado el 19 de mayo de 2012 .

Enlaces externos [ editar ]

  • The Health Physics Society , una organización científica y profesional cuyos miembros se especializan en seguridad radiológica ocupacional y ambiental.
  • [3] - "El confuso mundo de la dosimetría de radiación" - MA Boyd, 2009, Agencia de Protección Ambiental de EE. UU. Una descripción de las diferencias cronológicas entre los sistemas de dosimetría de EE. UU. Y la ICRP.
  • Preguntas y respuestas: Efectos de la exposición a la radiación en la salud , BBC News , 21 de julio de 2011.