De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Los métodos de Monte Carlo , o experimentos de Monte Carlo , son una amplia clase de algoritmos computacionales que se basan en un muestreo aleatorio repetido para obtener resultados numéricos. El concepto subyacente es utilizar la aleatoriedad para resolver problemas que podrían ser deterministas en principio. A menudo se utilizan en problemas físicos y matemáticos y son más útiles cuando es difícil o imposible utilizar otros enfoques. Los métodos de Monte Carlo se utilizan principalmente en tres clases de problemas: [1] optimización , integración numérica y generación de extracciones a partir de una distribución de probabilidad. .

En problemas relacionados con la física, los métodos de Monte Carlo son útiles para simular sistemas con muchos grados de libertad acoplados , como fluidos, materiales desordenados, sólidos fuertemente acoplados y estructuras celulares (ver modelo celular de Potts , sistemas de partículas interactuantes , procesos de McKean-Vlasov , modelos cinéticos de gases ).

Otros ejemplos incluyen fenómenos de modelado con una incertidumbre significativa en las entradas, como el cálculo del riesgo en los negocios y, en matemáticas, la evaluación de integrales definidas multidimensionales con condiciones de contorno complicadas . En aplicación a problemas de ingeniería de sistemas (espacio, exploración petrolera , diseño de aeronaves, etc.), las predicciones de fallas, sobrecostos y sobrecostos basados ​​en Monte Carlo son habitualmente mejores que la intuición humana o los métodos alternativos "suaves". [2]

En principio, los métodos de Monte Carlo se pueden utilizar para resolver cualquier problema que tenga una interpretación probabilística. Según la ley de los números grandes , las integrales descritas por el valor esperado de alguna variable aleatoria se pueden aproximar tomando la media empírica (también conocida como la media de la muestra) de muestras independientes de la variable. Cuando se parametriza la distribución de probabilidad de la variable, los matemáticos suelen utilizar un muestreador de Monte Carlo de cadena de Markov (MCMC). [3] [4] [5] La idea central es diseñar un modelo de cadena de Markov sensato con una distribución de probabilidad estacionaria prescrita. Es decir, en el límite, las muestras generadas por el método MCMC serán muestras de la distribución deseada (objetivo). [6] [7] Según el teorema ergódico , la distribución estacionaria se aproxima mediante las medidas empíricas de los estados aleatorios del muestreador MCMC.

En otros problemas, el objetivo es generar extracciones a partir de una secuencia de distribuciones de probabilidad que satisfacen una ecuación de evolución no lineal. Estos flujos de distribuciones de probabilidad siempre se pueden interpretar como las distribuciones de los estados aleatorios de un proceso de Markov cuyas probabilidades de transición dependen de las distribuciones de los estados aleatorios actuales (ver Procesos de McKean-Vlasov , ecuación de filtrado no lineal ). [8] [9]En otros casos, se nos da un flujo de distribuciones de probabilidad con un nivel creciente de complejidad de muestreo (modelos de espacios de ruta con un horizonte de tiempo creciente, medidas de Boltzmann-Gibbs asociadas con parámetros de temperatura decrecientes y muchos otros). Estos modelos también pueden verse como la evolución de la ley de los estados aleatorios de una cadena de Markov no lineal. [9] [10] Una forma natural de simular estos sofisticados procesos de Markov no lineales es muestrear múltiples copias del proceso, reemplazando en la ecuación de evolución las distribuciones desconocidas de los estados aleatorios por las medidas empíricas muestreadas . En contraste con las metodologías tradicionales de Monte Carlo y MCMC, éstos partícula medio campoLas técnicas se basan en muestras interactivas secuenciales. La terminología de campo medio refleja el hecho de que cada una de las muestras (también conocidas como partículas, individuos, caminantes, agentes, criaturas o fenotipos) interactúa con las medidas empíricas del proceso. Cuando el tamaño del sistema tiende a infinito, estas medidas empíricas aleatorias convergen a la distribución determinista de los estados aleatorios de la cadena de Markov no lineal, de modo que la interacción estadística entre partículas desaparece.

Resumen [ editar ]

Los métodos de Monte Carlo varían, pero tienden a seguir un patrón particular:

  1. Definir un dominio de posibles entradas
  2. Genere entradas de forma aleatoria a partir de una distribución de probabilidad sobre el dominio.
  3. Realizar un cálculo determinista en las entradas.
  4. Agregue los resultados
Método de Monte Carlo aplicado para aproximar el valor de π .

Por ejemplo, considere un cuadrante (sector circular) inscrito en un cuadrado unitario . Dado que la proporción de sus áreas esπ/4, el valor de π se puede aproximar utilizando un método de Monte Carlo: [11]

  1. Dibuja un cuadrado, luego inscribe un cuadrante dentro de él.
  2. Dispersión uniforme de un número determinado de puntos sobre el cuadrado
  3. Cuente el número de puntos dentro del cuadrante, es decir, que tengan una distancia desde el origen de menos de 1
  4. La relación entre el recuento interno y el recuento total de muestras es una estimación de la relación de las dos áreas, π/4. Multiplica el resultado por 4 para estimar π .

En este procedimiento, el dominio de las entradas es el cuadrado que circunscribe el cuadrante. Generamos entradas aleatorias mediante la dispersión de granos sobre el cuadrado y luego realizamos un cálculo en cada entrada (pruebe si cae dentro del cuadrante). La agregación de los resultados arroja nuestro resultado final, la aproximación de π .

Hay dos consideraciones importantes:

  1. Si los puntos no están distribuidos uniformemente, la aproximación será pobre.
  2. Hay muchos puntos. La aproximación es generalmente pobre si solo unos pocos puntos se colocan al azar en todo el cuadrado. En promedio, la aproximación mejora a medida que se colocan más puntos.

Los usos de los métodos de Monte Carlo requieren grandes cantidades de números aleatorios, y fue su uso lo que estimuló el desarrollo de generadores de números pseudoaleatorios [ cita requerida ] , que eran mucho más rápidos de usar que las tablas de números aleatorios que se habían utilizado anteriormente para el muestreo estadístico .

Historia [ editar ]

Antes de que se desarrollara el método de Monte Carlo, las simulaciones probaban un problema determinista previamente comprendido y se utilizaba un muestreo estadístico para estimar las incertidumbres en las simulaciones. Las simulaciones de Monte Carlo invierten este enfoque, resolviendo problemas deterministas utilizando metaheurísticas probabilísticas (ver recocido simulado ).

Se ideó una variante temprana del método de Monte Carlo para resolver el problema de la aguja de Buffon , en el que π se puede estimar dejando caer agujas en un piso hecho de tiras equidistantes paralelas. En la década de 1930, Enrico Fermi experimentó por primera vez con el método de Monte Carlo mientras estudiaba la difusión de neutrones, pero no publicó este trabajo. [12]

A finales de la década de 1940, Stanislaw Ulam inventó la versión moderna del método de cadena de Markov Monte Carlo mientras trabajaba en proyectos de armas nucleares en el Laboratorio Nacional de Los Alamos . Inmediatamente después del gran avance de Ulam, John von Neumann comprendió su importancia. Von Neumann programó la computadora ENIAC para realizar cálculos de Monte Carlo. En 1946, los físicos de armas nucleares de Los Alamos estaban investigando la difusión de neutrones en material fisionable. [12]A pesar de tener la mayoría de los datos necesarios, como la distancia promedio que viajaría un neutrón en una sustancia antes de colisionar con un núcleo atómico y cuánta energía probablemente emitiría el neutrón después de una colisión, los físicos de Los Alamos no pudieron resolver el problema utilizando métodos matemáticos deterministas convencionales. Ulam propuso utilizar experimentos aleatorios. Cuenta su inspiración de la siguiente manera:

Los primeros pensamientos e intentos que hice para practicar [el Método Monte Carlo] fueron sugeridos por una pregunta que se me ocurrió en 1946 cuando estaba convaleciente de una enfermedad y jugaba solitarios. La pregunta era ¿cuáles son las posibilidades de que un solitario Canfieldpresentado con 52 cartas saldrá con éxito? Después de pasar mucho tiempo tratando de estimarlos mediante cálculos combinatorios puros, me pregunté si un método más práctico que el "pensamiento abstracto" no sería exponerlo, digamos cien veces, y simplemente observar y contar el número de jugadas exitosas. Esto ya era posible de prever con el comienzo de la nueva era de las computadoras rápidas, e inmediatamente pensé en problemas de difusión de neutrones y otras cuestiones de física matemática, y más en general cómo cambiar los procesos descritos por ciertas ecuaciones diferenciales en una forma equivalente interpretable. como una sucesión de operaciones aleatorias. Más tarde [en 1946], le describí la idea a John von Neumann y comenzamos a planificar los cálculos reales. [13]

Siendo secreto, el trabajo de von Neumann y Ulam requería un nombre en clave. [14] Un colega de von Neumann y Ulam, Nicholas Metropolis , sugirió usar el nombre Monte Carlo , que se refiere al Casino de Montecarlo en Mónaco, donde el tío de Ulam pedía dinero prestado a familiares para jugar. [12] El uso de listas de números aleatorios "verdaderamente aleatorios" fue extremadamente lento, pero von Neumann desarrolló una forma de calcular números pseudoaleatorios , utilizando el método del cuadrado medio.. Aunque este método ha sido criticado como crudo, von Neumann era consciente de esto: lo justificó como más rápido que cualquier otro método a su disposición, y también señaló que cuando fallaba, obviamente lo hacía, a diferencia de los métodos que podrían ser sutilmente incorrectos. . [15]

Los métodos de Monte Carlo fueron fundamentales para las simulaciones requeridas para el Proyecto Manhattan , aunque estaban severamente limitados por las herramientas computacionales en ese momento. En la década de 1950 se utilizaron en Los Alamos para los primeros trabajos relacionados con el desarrollo de la bomba de hidrógeno y se popularizaron en los campos de la física , la química física y la investigación de operaciones . La Rand Corporation y la Fuerza Aérea de los Estados Unidos fueron dos de las principales organizaciones responsables de financiar y difundir información sobre los métodos de Monte Carlo durante este tiempo, y comenzaron a encontrar una amplia aplicación en muchos campos diferentes.

La teoría de los métodos Monte Carlo de partículas de campo medio más sofisticados sin duda había comenzado a mediados de la década de 1960, con el trabajo de Henry P. McKean Jr. sobre las interpretaciones de Markov de una clase de ecuaciones diferenciales parciales parabólicas no lineales que surgen en la mecánica de fluidos. [16] [17] También citamos un artículo pionero anterior de Theodore E. Harris y Herman Kahn, publicado en 1951, utilizando métodos de Monte Carlo de tipo genético de campo medio para estimar las energías de transmisión de partículas. [18] campo medio de tipo genético metodologías de Monte Carlo también se utilizan como algoritmos de búsqueda heurística naturales (también conocido como metaheurístico) en computación evolutiva. Los orígenes de estas técnicas computacionales de campo medio se remontan a 1950 y 1954 con el trabajo de Alan Turing sobre las máquinas de aprendizaje de selección de mutaciones de tipo genético [19] y los artículos de Nils Aall Barricelli en el Instituto de Estudios Avanzados de Princeton, Nueva Jersey. . [20] [21]

Quantum Monte Carlo y, más específicamente, los métodos de difusión de Monte Carlo también pueden interpretarse como una aproximación de Monte Carlo de partículas de campo medio de las integrales de ruta de Feynman - Kac . [22] [23] [24] [25] [26] [27] [28] Los orígenes de los métodos Quantum Monte Carlo a menudo se atribuyen a Enrico Fermi y Robert Richtmyer, quienes desarrollaron en 1948 una interpretación de partículas de campo medio de la cadena de neutrones reacciones, [29]pero el primer algoritmo de partículas de tipo heurístico y genético (también conocido como métodos de Monte Carlo de reconfiguración o remuestreo) para estimar las energías del estado fundamental de los sistemas cuánticos (en modelos de matriz reducida) se debe a Jack H. Hetherington en 1984 [28] En química molecular, el uso de metodologías de partículas genéticas de tipo heurístico (también conocidas como estrategias de poda y enriquecimiento) se remonta a 1955 con el trabajo fundamental de Marshall N. Rosenbluth y Arianna W. Rosenbluth . [30]

El uso de Sequential Monte Carlo en el procesamiento avanzado de señales y la inferencia bayesiana es más reciente. Fue en 1993 cuando Gordon et al., Publicaron en su trabajo seminal [31] la primera aplicación de un algoritmo de remuestreo de Montecarlo en inferencia estadística bayesiana. Los autores llamaron a su algoritmo 'el filtro bootstrap' y demostraron que, en comparación con otros métodos de filtrado, su algoritmo bootstrap no requiere ninguna suposición sobre ese espacio de estados o el ruido del sistema. También citamos otro artículo pionero en este campo de Genshiro Kitagawa sobre un "filtro Monte Carlo" relacionado, [32] y los de Pierre Del Moral [33].e Himilcon Carvalho, Pierre Del Moral, André Monin y Gérard Salut [34] sobre filtros de partículas publicados a mediados de los noventa. Los filtros de partículas también fueron desarrollados en el procesamiento de señales en 1989-1992 por P. Del Moral, JC Noyer, G. Rigal y G. Salut en LAAS-CNRS en una serie de informes de investigación restringidos y clasificados con STCAN (Service Technique des Constructions et Armes Navales), la empresa de tecnologías de la información DIGILOG y el LAAS-CNRS (Laboratorio de Análisis y Arquitectura de Sistemas) sobre problemas de procesamiento de señales de radar / sonar y GPS. [35] [36] [37] [38] [39] [40] Estas metodologías secuenciales de Monte Carlo se pueden interpretar como un muestreador de aceptación-rechazo equipado con un mecanismo de reciclaje que interactúa.

Desde 1950 hasta 1996, todas las publicaciones sobre metodologías Sequential Monte Carlo, incluidos los métodos de poda y remuestreo de Monte Carlo introducidos en la física computacional y la química molecular, presentan algoritmos naturales y heurísticos aplicados a diferentes situaciones sin una sola prueba de su consistencia, ni una discusión sobre el sesgo de las estimaciones y sobre algoritmos basados ​​en árboles genealógicos y ancestrales. Los fundamentos matemáticos y el primer análisis riguroso de estos algoritmos de partículas fueron escritos por Pierre Del Moral en 1996. [33] [41]

Las metodologías de partículas de tipo ramificado con diferentes tamaños de población también fueron desarrolladas a finales de la década de 1990 por Dan Crisan, Jessica Gaines y Terry Lyons, [42] [43] [44] y por Dan Crisan, Pierre Del Moral y Terry Lyons. [45] En 2000 P. Del Moral, A. Guionnet y L. Miclo desarrollaron más desarrollos en este campo. [23] [46] [47]

Definiciones [ editar ]

No hay consenso sobre cómo debería definirse Montecarlo . Por ejemplo, Ripley [48] define la mayoría de los modelos probabilísticos como simulación estocástica , con Monte Carlo reservado para la integración de Monte Carlo y las pruebas estadísticas de Monte Carlo. Sawilowsky [49] distingue entre una simulación , un método Monte Carlo y una simulación Monte Carlo: una simulación es una representación ficticia de la realidad, un método Monte Carlo es una técnica que puede usarse para resolver un problema matemático o estadístico, y un La simulación de Monte Carlo utiliza un muestreo repetido para obtener las propiedades estadísticas de algún fenómeno (o comportamiento). Ejemplos:

  • Simulación: Dibujar una variable uniforme pseudoaleatoria del intervalo [0,1] se puede utilizar para simular el lanzamiento de una moneda: si el valor es menor o igual a 0,50 designar el resultado como cara, pero si el valor es mayor que 0.50 designa el resultado como cruz. Esta es una simulación, pero no una simulación de Monte Carlo.
  • Método de Monte Carlo: verter una caja de monedas en una mesa y luego calcular la proporción de monedas que caen cara y cruz es un método de Monte Carlo para determinar el comportamiento de los lanzamientos repetidos de monedas, pero no es una simulación.
  • Simulación de Monte Carlo: Extraer un gran número de variables uniformes pseudoaleatorias del intervalo [0,1] al mismo tiempo, o una vez en muchos momentos diferentes, y asignar valores menores o iguales a 0,50 como caras y mayores a 0,50 como cruces. , es una simulación de Monte Carlo del comportamiento de lanzar repetidamente una moneda.

Kalos y Whitlock [50] señalan que tales distinciones no siempre son fáciles de mantener. Por ejemplo, la emisión de radiación de los átomos es un proceso estocástico natural. Puede simularse directamente o su comportamiento promedio puede describirse mediante ecuaciones estocásticas que pueden resolverse mediante métodos de Monte Carlo. "De hecho, el mismo código de computadora puede verse simultáneamente como una 'simulación natural' o como una solución de las ecuaciones por muestreo natural".

Montecarlo y números aleatorios [ editar ]

La idea principal detrás de este método es que los resultados se calculan sobre la base de un muestreo aleatorio repetido y un análisis estadístico. La simulación de Monte Carlo son, de hecho, experimentos aleatorios, en el caso de que los resultados de estos experimentos no sean bien conocidos. Las simulaciones de Monte Carlo se caracterizan típicamente por muchos parámetros desconocidos, muchos de los cuales son difíciles de obtener experimentalmente. [51] Los métodos de simulación de Monte Carlo no siempre requieren números verdaderamente aleatorios para ser útiles (aunque, para algunas aplicaciones, como las pruebas de primalidad , la imprevisibilidad es vital). [52] Muchas de las técnicas más útiles utilizan deterministas, pseudoaleatoriosecuencias, lo que facilita probar y volver a ejecutar simulaciones. La única cualidad normalmente necesaria para hacer buenas simulaciones es que la secuencia pseudoaleatoria parezca "suficientemente aleatoria" en cierto sentido.

Lo que esto significa depende de la aplicación, pero normalmente deben pasar una serie de pruebas estadísticas. Probar que los números están distribuidos uniformemente o siguen otra distribución deseada cuando se considera un número suficientemente grande de elementos de la secuencia es una de las más simples y comunes. Las correlaciones débiles entre muestras sucesivas también suelen ser deseables / necesarias.

Sawilowsky enumera las características de una simulación Monte Carlo de alta calidad: [49]

  • el generador de números (pseudoaleatorios) tiene ciertas características (por ejemplo, un largo "período" antes de que se repita la secuencia)
  • el generador de números (pseudoaleatorios) produce valores que pasan las pruebas de aleatoriedad
  • hay suficientes muestras para garantizar resultados precisos
  • se utiliza la técnica de muestreo adecuada
  • el algoritmo utilizado es válido para lo que se está modelando
  • simula el fenómeno en cuestión.

Los algoritmos de muestreo de números pseudoaleatorios se utilizan para transformar números pseudoaleatorios distribuidos uniformemente en números que se distribuyen de acuerdo con una distribución de probabilidad dada .

Las secuencias de baja discrepancia se utilizan a menudo en lugar del muestreo aleatorio de un espacio, ya que garantizan una cobertura uniforme y normalmente tienen un orden de convergencia más rápido que las simulaciones de Monte Carlo que utilizan secuencias aleatorias o pseudoaleatorias. Los métodos basados ​​en su uso se denominan métodos cuasi-Monte Carlo .

En un esfuerzo por evaluar el impacto de la calidad de los números aleatorios en los resultados de la simulación de Monte Carlo, los investigadores astrofísicos probaron números pseudoaleatorios criptográficamente seguros generados a través del conjunto de instrucciones RDRAND de Intel , en comparación con los derivados de algoritmos, como el Mersenne Twister , en simulaciones de Monte Carlo de bengalas de radio de enanas marrones . RDRAND es el generador de números pseudoaleatorios más cercano a un verdadero generador de números aleatorios. No se encontraron diferencias estadísticamente significativas entre los modelos generados con generadores de números pseudoaleatorios típicos y RDRAND para los ensayos que consisten en la generación de 10 7 números aleatorios. [53]

Mersenne_twister (MT19937) en Python (una simulación del método Monte Carlo) [ editar ]

Una simulación del método de Monte Carlo se define como cualquier método que utiliza secuencias de números aleatorios para realizar la simulación. Las simulaciones de Monte Carlo se aplican a muchos temas, incluida la cromodinámica cuántica , la radioterapia contra el cáncer, el flujo de tráfico, la evolución estelar y el diseño de VLSI. Todas estas simulaciones requieren el uso de números aleatorios y, por lo tanto, generadores de números pseudoaleatorios , lo que hace que la creación de números similares al azar sea muy importante.

Un ejemplo simple de cómo una computadora realizaría una simulación de Monte Carlo es el cálculo de π . Si un cuadrado encerraba un círculo y un punto fuera elegido al azar dentro del cuadrado, el punto estaría dentro o fuera del círculo. Si el proceso se repitiera muchas veces, la razón entre los puntos aleatorios que se encuentran dentro del círculo y el número total de puntos aleatorios en el cuadrado se aproximaría a la razón entre el área del círculo y el área del cuadrado. A partir de esto, podemos estimar pi, como se muestra en el código de Python a continuación, utilizando un paquete SciPy para generar números pseudoaleatorios con el algoritmo MT19937 . Tenga en cuenta que este método es una forma computacionalmente ineficiente de aproximar numéricamente π .

importar  scipyN  =  100000 x_array  =  scipy . al azar . rand ( N ) y_array  =  scipy . al azar . rand ( N ) # genera N valores xey independientes pseudoaleatorios en el intervalo [0,1) N_qtr_circle  =  sum ( x_array  **  2  +  y_array  **  2  <  1 ) # Número de pts dentro del cuarto de círculo x ^ 2 + y ^ 2 <1 centrado en el origen con radio r = 1.# El área verdadera del cuarto de círculo es pi / 4 y tiene N_qtr_circle puntos dentro. # El área verdadera del cuadrado es 1 y tiene N puntos dentro de él, por lo tanto, aproximamos pi con pi_approx  =  4  *  float ( N_qtr_circle )  /  N  # Valores típicos: 3.13756, 3.15156

Simulación de Monte Carlo frente a escenarios hipotéticos [ editar ]

Hay formas de usar probabilidades que definitivamente no son simulaciones de Monte Carlo, por ejemplo, modelado determinista que usa estimaciones de un solo punto. A cada variable incierta dentro de un modelo se le asigna una estimación de "mejor estimación". Se eligen escenarios (como el mejor, el peor o el caso más probable) para cada variable de entrada y se registran los resultados. [54]

Por el contrario, las simulaciones de Monte Carlo toman muestras de una distribución de probabilidad para cada variable para producir cientos o miles de resultados posibles. Los resultados se analizan para obtener probabilidades de que ocurran diferentes resultados. [55] Por ejemplo, una comparación de un modelo de construcción de costos de hoja de cálculo que se ejecuta utilizando escenarios tradicionales de "qué pasaría si" y luego ejecutar la comparación nuevamente con la simulación de Monte Carlo y las distribuciones de probabilidad triangular muestra que el análisis de Monte Carlo tiene un rango más estrecho que el " Y si el análisis. [se necesita un ejemplo ] Esto se debe a que el análisis "qué pasaría si" otorga el mismo peso a todos los escenarios (consulte cuantificación de la incertidumbre en), mientras que el método de Monte Carlo apenas toma muestras en las regiones de muy baja probabilidad. Las muestras en tales regiones se denominan "eventos raros".

Aplicaciones [ editar ]

Los métodos de Monte Carlo son especialmente útiles para simular fenómenos con una incertidumbre significativa en entradas y sistemas con muchos grados de libertad acoplados . Las áreas de aplicación incluyen:

Ciencias físicas [ editar ]

Los métodos de Monte Carlo son muy importantes en física computacional , química física y campos aplicados relacionados, y tienen diversas aplicaciones, desde cálculos complicados de cromodinámica cuántica hasta el diseño de escudos térmicos y formas aerodinámicas , así como en el modelado del transporte de radiación para cálculos de dosimetría de radiación. [56] [57] [58] En física estadística, el modelado molecular de Monte Carlo es una alternativa a la dinámica molecular computacional , y los métodos de Monte Carlo se utilizan para calcular teorías de campo estadístico de sistemas simples de partículas y polímeros. [30][59] Los métodos cuánticos de Monte Carlo resuelven el problema de muchos cuerpos para los sistemas cuánticos. [8] [9] [22] En la ciencia de los materiales de radiación , la aproximación de colisión binaria para simular la implantación de iones se basa generalmente en un enfoque de Monte Carlo para seleccionar el siguiente átomo en colisión. [60] En física de partículas experimental, los métodos de Monte Carlo se utilizan para diseñar detectores , comprender su comportamiento y comparar datos experimentales con la teoría. En astrofísica , se utilizan de maneras tan diversas como para modelar laevolución de las galaxias.[61] y transmisión de radiación de microondas a través de una superficie planetaria rugosa. [62] Los métodos de Monte Carlo también se utilizan en los modelos de conjunto que forman la base de la predicción meteorológica moderna.

Ingeniería [ editar ]

Los métodos de Monte Carlo se utilizan ampliamente en ingeniería para el análisis de sensibilidad y el análisis probabilístico cuantitativo en el diseño de procesos . La necesidad surge del comportamiento interactivo, colineal y no lineal de las simulaciones de procesos típicas. Por ejemplo,

  • En ingeniería microelectrónica , los métodos de Monte Carlo se aplican para analizar variaciones correlacionadas y no correlacionadas en circuitos integrados analógicos y digitales .
  • En geoestadística y geometalurgia , los métodos de Monte Carlo sustentan el diseño de diagramas de flujo de procesamiento de minerales y contribuyen al análisis cuantitativo de riesgos . [63]
  • En el análisis de rendimiento de energía eólica , la producción de energía prevista de un parque eólico durante su vida útil se calcula dando diferentes niveles de incertidumbre ( P90 , P50, etc.)
  • Se simulan los impactos de la contaminación [64] y se compara el diésel con la gasolina. [sesenta y cinco]
  • En dinámica de fluidos , en particular dinámica de gases enrarecidos , donde la ecuación de Boltzmann se resuelve para flujos de fluidos con números de Knudsen finitos utilizando el método de simulación directa Monte Carlo [66] en combinación con algoritmos computacionales altamente eficientes. [67]
  • En robótica autónoma , la localización de Monte Carlo puede determinar la posición de un robot. A menudo se aplica a filtros estocásticos como el filtro de Kalman o el filtro de partículas que forma el corazón del algoritmo SLAM (localización y mapeo simultáneos).
  • En telecomunicaciones , al planificar una red inalámbrica, se debe demostrar que el diseño funciona para una amplia variedad de escenarios que dependen principalmente de la cantidad de usuarios, sus ubicaciones y los servicios que desean utilizar. Los métodos de Monte Carlo se utilizan normalmente para generar estos usuarios y sus estados. A continuación, se evalúa el rendimiento de la red y, si los resultados no son satisfactorios, el diseño de la red pasa por un proceso de optimización.
  • En ingeniería de confiabilidad , la simulación de Monte Carlo se utiliza para calcular la respuesta a nivel de sistema dada la respuesta a nivel de componente. Por ejemplo, para una red de transporte sujeta a un terremoto, la simulación de Monte Carlo se puede utilizar para evaluar la confiabilidad del terminal k de la red dada la probabilidad de falla de sus componentes, por ejemplo, puentes, carreteras, etc. [68] [69] [70]
  • En el procesamiento de señales y la inferencia bayesiana , los filtros de partículas y las técnicas secuenciales de Monte Carlo son una clase de métodos de partículas de campo medio para muestrear y calcular la distribución posterior de un proceso de señal dadas algunas observaciones parciales y ruidosas utilizando medidas empíricas interactivas .

Cambio climático y forzamiento radiativo [ editar ]

El Panel Intergubernamental sobre Cambio Climático se basa en los métodos de Monte Carlo en el análisis de la función de densidad de probabilidad del forzamiento radiativo .

Función de densidad de probabilidad (PDF) de ERF debido a GEI total, forzamiento de aerosoles y forzamiento antropogénico total. Los GEI consisten en WMGHG, ozono y vapor de agua estratosférico. Los PDF se generan en función de las incertidumbres proporcionadas en la Tabla 8.6. La combinación de los agentes de RF individuales para derivar el forzamiento total en la Era Industrial se realiza mediante simulaciones de Monte Carlo y se basa en el método de Boucher y Haywood (2001). La PDF del ERF de los cambios de albedo de la superficie y las estelas de condensación combinadas y los cirros inducidos por las estelas de condensación se incluyen en el forzamiento antropogénico total, pero no se muestran como una PDF separada. Actualmente no disponemos de estimaciones del ERF para algunos mecanismos de forzamiento: ozono, uso de la tierra, energía solar, etc. [71]

Biología computacional [ editar ]

Los métodos de Monte Carlo se utilizan en varios campos de la biología computacional , por ejemplo, para la inferencia bayesiana en filogenia , o para estudiar sistemas biológicos como genomas, proteínas [72] o membranas. [73] Los sistemas se pueden estudiar en los marcos de grano grueso o ab initio dependiendo de la precisión deseada. Las simulaciones por computadora nos permiten monitorear el entorno local de una molécula en particular para ver si ocurre alguna reacción química, por ejemplo. En los casos en que no sea factible realizar un experimento físico, los experimentos mentales puede realizarse (por ejemplo: romper enlaces, introducir impurezas en sitios específicos, cambiar la estructura local / global o introducir campos externos).

Gráficos por computadora [ editar ]

El trazado de ruta , en ocasiones denominado trazado de rayos de Monte Carlo, genera una escena en 3D mediante el seguimiento aleatorio de muestras de posibles trayectorias de luz. El muestreo repetido de cualquier píxel dado eventualmente hará que el promedio de las muestras converja en la solución correcta de la ecuación de renderizado , convirtiéndolo en uno de los métodos de renderizado de gráficos 3D más precisos físicamente que existen.

Estadísticas aplicadas [ editar ]

Sawilowsky estableció los estándares para los experimentos de Monte Carlo en estadística. [74] En las estadísticas aplicadas, los métodos de Monte Carlo pueden utilizarse para al menos cuatro propósitos:

  1. Comparar estadísticas de la competencia para muestras pequeñas en condiciones de datos realistas. Aunque las propiedades de potencia y error de tipo I de las estadísticas se pueden calcular para datos extraídos de distribuciones teóricas clásicas ( por ejemplo , curva normal , distribución de Cauchy ) para condiciones asintóticas ( es decir , tamaño de muestra infinito y efecto de tratamiento infinitesimalmente pequeño), los datos reales a menudo lo hacen. no tener tales distribuciones. [75]
  2. Proporcionar implementaciones de pruebas de hipótesis que sean más eficientes que las pruebas exactas, como las pruebas de permutación (que a menudo son imposibles de calcular) al mismo tiempo que son más precisas que los valores críticos para distribuciones asintóticas .
  3. Proporcionar una muestra aleatoria de la distribución posterior en inferencia bayesiana . Esta muestra luego se aproxima y resume todas las características esenciales de la parte posterior.
  4. Proporcionar estimaciones aleatorias eficientes de la matriz de Hesse de la función de probabilidad logarítmica negativa que se puede promediar para formar una estimación de la matriz de información de Fisher . [76] [77]

Los métodos de Monte Carlo también son un compromiso entre la aleatorización aproximada y las pruebas de permutación. Una prueba de aleatorización aproximada se basa en un subconjunto específico de todas las permutaciones (lo que implica una limpieza potencialmente enorme de las cuales se han considerado las permutaciones). El enfoque de Monte Carlo se basa en un número específico de permutaciones extraídas al azar (intercambiando una pequeña pérdida de precisión si una permutación se dibuja dos veces, o con más frecuencia, por la eficiencia de no tener que rastrear qué permutaciones ya han sido seleccionadas).

Inteligencia artificial para juegos [ editar ]

Los métodos de Monte Carlo se han desarrollado en una técnica llamada búsqueda de árbol de Monte-Carlo que es útil para buscar el mejor movimiento en un juego. Los posibles movimientos se organizan en un árbol de búsqueda y se utilizan muchas simulaciones aleatorias para estimar el potencial a largo plazo de cada movimiento. Un simulador de caja negra representa los movimientos del oponente. [78]

El método de búsqueda de árbol de Monte Carlo (MCTS) tiene cuatro pasos: [79]

  1. Comenzando en el nodo raíz del árbol, seleccione los nodos secundarios óptimos hasta alcanzar un nodo hoja.
  2. Expanda el nodo hoja y elija uno de sus hijos.
  3. Juega un juego simulado comenzando con ese nodo.
  4. Utilice los resultados de ese juego simulado para actualizar el nodo y sus antepasados.

El efecto neto, en el transcurso de muchos juegos simulados, es que el valor de un nodo que representa un movimiento aumentará o disminuirá, con suerte correspondiente a si ese nodo representa o no un buen movimiento.

Monte Carlo Tree Search se ha utilizado con éxito para jugar juegos como Go , [80] Tantrix , [81] Battleship , [82] Havannah , [83] y Arimaa . [84]

Diseño y visuales [ editar ]

Los métodos Monte Carlo también son eficientes en la resolución de ecuaciones diferenciales integrales acopladas de campos de radiación y transporte de energía, por lo que estos métodos se han utilizado en cálculos de iluminación global que producen imágenes fotorrealistas de modelos virtuales en 3D, con aplicaciones en videojuegos , arquitectura , diseño. , películas generadas por computadora y efectos especiales cinematográficos. [85]

Búsqueda y rescate [ editar ]

La Guardia Costera de los Estados Unidos utiliza métodos de Monte Carlo dentro de su software de modelado informático SAROPS para calcular las ubicaciones probables de las embarcaciones durante las operaciones de búsqueda y rescate . Cada simulación puede generar hasta diez mil puntos de datos que se distribuyen aleatoriamente en función de las variables proporcionadas. [86] A continuación, se generan patrones de búsqueda basados ​​en extrapolaciones de estos datos para optimizar la probabilidad de contención (POC) y la probabilidad de detección (POD), que juntas equivaldrán a una probabilidad general de éxito (POS). En última instancia, esto sirve como una aplicación práctica de la distribución de probabilidad.con el fin de proporcionar el método de rescate más rápido y conveniente, salvando vidas y recursos. [87]

Finanzas y negocios [ editar ]

La simulación de Monte Carlo se usa comúnmente para evaluar el riesgo y la incertidumbre que afectarían el resultado de diferentes opciones de decisión. La simulación de Monte Carlo permite al analista de riesgos comerciales incorporar los efectos totales de la incertidumbre en variables como el volumen de ventas, los precios de las materias primas y la mano de obra, los tipos de interés y de cambio, así como el efecto de distintos eventos de riesgo como la cancelación de un contrato o el cambio de una ley tributaria.

Los métodos de Monte Carlo en finanzas se utilizan a menudo para evaluar inversiones en proyectos a nivel de unidad de negocio o empresa, u otras valoraciones financieras. Se pueden usar para modelar cronogramas de proyectos , donde las simulaciones agregan estimaciones para el peor de los casos, el mejor de los casos y las duraciones más probables de cada tarea para determinar los resultados del proyecto en general. [1] Los métodos de Monte Carlo también se utilizan en la valoración de opciones, análisis de riesgo de incumplimiento. [88] [89] [90] Además, se pueden utilizar para estimar el impacto financiero de las intervenciones médicas. [91]

Ley [ editar ]

Se utilizó un enfoque de Monte Carlo para evaluar el valor potencial de un programa propuesto para ayudar a las mujeres solicitantes en Wisconsin a tener éxito en sus solicitudes de órdenes de restricción por acoso y abuso doméstico . Se propuso ayudar a las mujeres a tener éxito en sus peticiones brindándoles una mayor promoción y, por lo tanto, reduciendo potencialmente el riesgo de violación y agresión física . Sin embargo, había muchas variables en juego que no podían estimarse perfectamente, incluida la eficacia de las órdenes de alejamiento, la tasa de éxito de los peticionarios con y sin defensa, y muchas otras. El estudio realizó pruebas que variaron estas variables para llegar a una estimación general del nivel de éxito del programa propuesto en su conjunto.[92]

Uso en matemáticas [ editar ]

En general, los métodos de Monte Carlo se utilizan en matemáticas para resolver varios problemas generando números aleatorios adecuados (ver también Generación de números aleatorios ) y observando esa fracción de los números que obedece a alguna propiedad o propiedades. El método es útil para obtener soluciones numéricas a problemas demasiado complicados para resolverlos analíticamente. La aplicación más común del método Monte Carlo es la integración Monte Carlo.

Integración [ editar ]

La integración de Monte-Carlo funciona comparando puntos aleatorios con el valor de la función
Los errores se reducen en un factor de

Los algoritmos de integración numérica deterministas funcionan bien en una pequeña cantidad de dimensiones, pero encuentran dos problemas cuando las funciones tienen muchas variables. Primero, el número de evaluaciones de funciones necesarias aumenta rápidamente con el número de dimensiones. Por ejemplo, si 10 evaluaciones proporcionan una precisión adecuada en una dimensión, entonces se necesitan 10 100 puntos para 100 dimensiones, demasiadas para ser calculadas. A esto se le llama la maldición de la dimensionalidad . En segundo lugar, el límite de una región multidimensional puede ser muy complicado, por lo que puede que no sea factible reducir el problema a una integral iterada . [93] 100 dimensionesno es de ninguna manera inusual, ya que en muchos problemas físicos, una "dimensión" equivale a un grado de libertad .

Los métodos de Monte Carlo proporcionan una salida a este aumento exponencial en el tiempo de cálculo. Siempre que la función en cuestión se comporte razonablemente bien , se puede estimar seleccionando puntos al azar en un espacio de 100 dimensiones y tomando algún tipo de promedio de los valores de la función en estos puntos. Según el teorema del límite central , este método muestra convergencia, es decir, cuadriplicar el número de puntos muestreados reduce a la mitad el error, independientemente del número de dimensiones. [93]

Un refinamiento de este método, conocido como muestreo de importancia en estadística, implica muestrear los puntos al azar, pero con mayor frecuencia cuando el integrando es grande. Para ello, precisamente, uno tendría que saber ya la integral, pero se puede aproximar la integral por una integral de una función similar o utilizar rutinas de adaptación, tales como el muestreo estratificado , muestreo estratificado recursiva , el muestreo paraguas adaptativa [94] [95] o la Algoritmo VEGAS .

Un enfoque similar, el método cuasi-Monte Carlo , utiliza secuencias de baja discrepancia . Estas secuencias "llenan" mejor el área y muestrean los puntos más importantes con más frecuencia, por lo que los métodos cuasi-Monte Carlo a menudo pueden converger en la integral más rápidamente.

Otra clase de métodos para muestrear puntos en un volumen es simular paseos aleatorios sobre él ( cadena de Markov Monte Carlo ). Tales métodos incluyen el algoritmo Metropolis-Hastings , el muestreo de Gibbs , Wang y Landau algoritmo , y el tipo de interacción MCMC metodologías como las secuenciales Monte Carlo muestreadores. [96]

Simulación y optimización [ editar ]

Otra aplicación poderosa y muy popular para números aleatorios en simulación numérica es la optimización numérica . El problema es minimizar (o maximizar) las funciones de algún vector que a menudo tiene muchas dimensiones. Muchos problemas pueden expresarse de esta manera: por ejemplo, se podría considerar que un programa de ajedrez de computadora intenta encontrar el conjunto de, digamos, 10 movimientos que producen la mejor función de evaluación al final. En el problema del viajante de comercio, el objetivo es minimizar la distancia recorrida. También hay aplicaciones para el diseño de ingeniería, como la optimización del diseño multidisciplinario . Se ha aplicado con modelos cuasi unidimensionales para resolver problemas de dinámica de partículas mediante la exploración eficiente de grandes espacios de configuración. Referencia[97] es una revisión completa de muchas cuestiones relacionadas con la simulación y la optimización.

El problema del viajantees lo que se denomina un problema de optimización convencional. Es decir, todos los hechos (distancias entre cada punto de destino) necesarios para determinar la ruta óptima a seguir se conocen con certeza y el objetivo es recorrer las posibles opciones de viaje para llegar a la que tenga la distancia total más baja. Sin embargo, supongamos que en lugar de querer minimizar la distancia total recorrida para visitar cada destino deseado, queríamos minimizar el tiempo total necesario para llegar a cada destino. Esto va más allá de la optimización convencional, ya que el tiempo de viaje es intrínsecamente incierto (atascos, hora del día, etc.). Como resultado,Para determinar nuestra ruta óptima, querríamos usar simulación - optimización para comprender primero el rango de tiempos potenciales que podría tomar para ir de un punto a otro (representado por una distribución de probabilidad en este caso en lugar de una distancia específica) y luego optimizar nuestro decisiones de viaje para identificar el mejor camino a seguir teniendo en cuenta esa incertidumbre.

Problemas inversos [ editar ]

La formulación probabilística de problemas inversos conduce a la definición de una distribución de probabilidad en el espacio modelo. Esta distribución de probabilidad combina información previa con información nueva obtenida midiendo algunos parámetros observables (datos). Como, en el caso general, la teoría que vincula los datos con los parámetros del modelo no es lineal, la probabilidad posterior en el espacio del modelo puede no ser fácil de describir (puede ser multimodal, algunos momentos pueden no estar definidos, etc.).

A la hora de analizar un problema inverso, la obtención de un modelo de máxima verosimilitud no suele ser suficiente, ya que normalmente también deseamos tener información sobre el poder de resolución de los datos. En el caso general, podemos tener muchos parámetros del modelo, y una inspección de las densidades de probabilidad marginal de interés puede ser impráctica o incluso inútil. Pero es posible generar pseudoaleatoriamente una gran colección de modelos de acuerdo con la distribución de probabilidad posterior y analizar y mostrar los modelos de tal manera que la información sobre las probabilidades relativas de las propiedades del modelo se transmita al espectador. Esto se puede lograr mediante un método Monte Carlo eficiente, incluso en los casos en que no se dispone de una fórmula explícita para la distribución a priori .

El método de muestreo de importancia más conocido, el algoritmo Metropolis, se puede generalizar, y esto proporciona un método que permite el análisis de problemas inversos (posiblemente altamente no lineales) con información compleja a priori y datos con una distribución de ruido arbitraria. [98] [99]

Filosofía [ editar ]

McCracken dirigió la exposición popular del Método Montecarlo. [100] La filosofía general de Method fue discutida por Elishakoff [101] y Grüne-Yanoff y Weirich. [102]

Ver también [ editar ]

  • Campo auxiliar Monte Carlo
  • Método de biología Monte Carlo
  • Comparación de los complementos de análisis de riesgos de Microsoft Excel
  • Simulación directa Monte Carlo
  • Método dinámico de Monte Carlo
  • Algoritmos genéticos
  • Montecarlo cinético
  • Lista de software para el modelado molecular de Monte Carlo
  • Métodos de partículas de campo medio
  • Método de Monte Carlo para el transporte de fotones
  • Métodos de Monte Carlo para el transporte de electrones
  • Método de Morris
  • Método Monte Carlo multinivel
  • Filtro de partículas
  • Método cuasi-Monte Carlo
  • Secuencia de Sobol
  • Aprendizaje de la diferencia temporal

Referencias [ editar ]

Citas [ editar ]

  1. ^ Kroese, DP; Brereton, T .; Taimre, T .; Botev, ZI (2014). "Por qué el método de Montecarlo es tan importante hoy" . WIREs Comput Stat . 6 (6): 386–392. doi : 10.1002 / wics.1314 . S2CID  18521840 .
  2. ^ Hubbard, Douglas; Samuelson, Douglas A. (octubre de 2009). "Modelado sin medidas" . OR / MS Today : 28–33.
  3. ^ Metrópolis, Nicolás; Rosenbluth, Arianna W .; Rosenbluth, Marshall N .; Teller, Augusta H .; Teller, Edward (1 de junio de 1953). "Ecuación de cálculos de estado por máquinas de cómputo rápido" . La Revista de Física Química . 21 (6): 1087–1092. Código Bibliográfico : 1953JChPh..21.1087M . doi : 10.1063 / 1.1699114 . ISSN 0021-9606 . S2CID 1046577 .  
  4. Hastings, WK (1 de abril de 1970). "Métodos de muestreo de Monte Carlo utilizando cadenas de Markov y sus aplicaciones" . Biometrika . 57 (1): 97–109. Código Bibliográfico : 1970Bimka..57 ... 97H . doi : 10.1093 / biomet / 57.1.97 . ISSN 0006-3444 . S2CID 21204149 .  
  5. Liu, Jun S .; Liang, Faming; Wong, Wing Hung (1 de marzo de 2000). "El método de múltiples intentos y la optimización local en el muestreo de Metropolis" . Revista de la Asociación Estadounidense de Estadística . 95 (449): 121-134. doi : 10.1080 / 01621459.2000.10473908 . ISSN 0162-1459 . S2CID 123468109 .  
  6. ^ Spall, JC (2003). "Estimación vía Markov Chain Monte Carlo". Revista IEEE Control Systems . 23 (2): 34–45. doi : 10.1109 / MCS.2003.1188770 .
  7. ^ Hill, Stacy D .; Spall, James C. (2019). "Estacionariedad y convergencia del algoritmo Metropolis-Hastings: conocimientos sobre aspectos teóricos". Revista IEEE Control Systems . 39 : 56–67. doi : 10.1109 / MCS.2018.2876959 . S2CID 58672766 . 
  8. ↑ a b Kolokoltsov, Vassili (2010). Procesos de Markov no lineales . Universidad de Cambridge. Prensa. pag. 375.
  9. ↑ a b c Del Moral, Pierre (2013). Simulación de campo medio para la integración de Monte Carlo . Chapman & Hall / CRC Press. pag. 626. Monografías sobre estadística y probabilidad aplicada
  10. ^ Del Moral, P; Doucet, A; Jasra, A (2006). "Samplers secuenciales de Monte Carlo". Revista de la Sociedad Real de Estadística, Serie B . 68 (3): 411–436. arXiv : cond-mat / 0212648 . doi : 10.1111 / j.1467-9868.2006.00553.x . S2CID 12074789 . 
  11. ^ Kalos y Whitlock 2008 .
  12. ^ a b c Metrópolis, 1987 .
  13. ^ Eckhardt 1987 .
  14. ^ Mazhdrakov, Benov y Valkanov 2018 , p. 250.
  15. ^ Peragine, Michael (2013). La mente universal: la evolución de la inteligencia artificial y la psicología humana . Prensa Xiphias . Consultado el 17 de diciembre de 2018 .
  16. ^ McKean, Henry, P. (1967). "Propagación del caos para una clase de ecuaciones parabólicas no lineales". Ciclos de Conferencias en Ecuaciones Diferenciales, Univ . Católica . 7 : 41–57.
  17. ^ McKean, Henry, P. (1966). "Una clase de procesos de Markov asociados con ecuaciones parabólicas no lineales" . Proc. Natl. Acad. Sci. USA . 56 (6): 1907-1911. Código Bibliográfico : 1966PNAS ... 56.1907M . doi : 10.1073 / pnas.56.6.1907 . PMC 220210 . PMID 16591437 .  
  18. ^ Herman, Kahn; Theodore, Harris E. (1951). "Estimación de la transmisión de partículas por muestreo aleatorio" (PDF) . Natl. Rebaba. Pararse. Apl. Matemáticas. Ser . 12 : 27-30.
  19. ^ Turing, Alan M. (1950). "Maquinaria informática e inteligencia". Mente . LIX (238): 433–460. doi : 10.1093 / mind / LIX.236.433 .
  20. ^ Barricelli, Nils Aall (1954). "Esempi numerici di processi di evoluzione". Methodos : 45–68.
  21. ^ Barricelli, Nils Aall (1957). "Procesos de evolución simbiogenética realizados por métodos artificiales". Methodos : 143–182.
  22. ↑ a b Del Moral, Pierre (2004). Fórmulas de Feynman-Kac. Aproximaciones de partículas genealógicas e interactivas . Probabilidad y sus aplicaciones. Saltador. pag. 575. ISBN 9780387202686. Serie: Probabilidad y aplicaciones
  23. ↑ a b Del Moral, P .; Miclo, L. (2000). "Aproximaciones de sistemas de partículas de ramificación e interacción de fórmulas de Feynman-Kac con aplicaciones al filtrado no lineal" . Séminaire de Probabilités, XXXIV . Apuntes de clase en matemáticas. 1729 . Berlín: Springer. págs. 1-145. doi : 10.1007 / BFb0103798 . ISBN 978-3-540-67314-9. Señor  1768060 .
  24. ^ Del Moral, Pierre; Miclo, Laurent (2000). "Una aproximación del sistema de partículas de Moran de las fórmulas de Feynman-Kac" . Procesos estocásticos y sus aplicaciones . 86 (2): 193–216. doi : 10.1016 / S0304-4149 (99) 00094-0 .
  25. ^ Del Moral, Pierre (2003). "Aproximaciones de partículas de exponentes de Lyapunov conectados a operadores de Schrödinger y semigrupos de Feynman-Kac" . ESAIM Probabilidad y Estadística . 7 : 171–208. doi : 10.1051 / ps: 2003001 .
  26. ^ Assaraf, Roland; Caffarel, Michel; Khelif, Anatole (2000). "Métodos de difusión de Monte Carlo con un número fijo de caminantes" (PDF) . Phys. Rev. E . 61 (4): 4566–4575. Código Bibliográfico : 2000PhRvE..61.4566A . doi : 10.1103 / physreve.61.4566 . PMID 11088257 . Archivado desde el original (PDF) el 7 de noviembre de 2014.  
  27. ^ Caffarel, Michel; Ceperley, David; Kalos, Malvín (1993). "Comentario sobre el cálculo integral de ruta de Feynman-Kac de las energías del estado fundamental de los átomos". Phys. Rev. Lett . 71 (13): 2159. Código Bibliográfico : 1993PhRvL..71.2159C . doi : 10.1103 / physrevlett.71.2159 . PMID 10054598 . 
  28. ↑ a b Hetherington, Jack, H. (1984). "Observaciones sobre la iteración estadística de matrices". Phys. Rev. A . 30 (2713): 2713–2719. Código Bibliográfico : 1984PhRvA..30.2713H . doi : 10.1103 / PhysRevA.30.2713 .
  29. ^ Fermi, Enrique; Richtmyer, Robert, D. (1948). "Nota sobre la realización de censos en los cálculos de Monte Carlo" (PDF) . LAM . 805 (A). Informe desclasificado Archivo de Los Alamos
  30. ↑ a b Rosenbluth, Marshall, N .; Rosenbluth, Arianna, W. (1955). "Cálculos de Monte-Carlo de la extensión media de cadenas macromoleculares" . J. Chem. Phys . 23 (2): 356–359. Código bibliográfico : 1955JChPh..23..356R . doi : 10.1063 / 1.1741967 . S2CID 89611599 . 
  31. ^ Gordon, Nueva Jersey; Salmond, DJ; Smith, AFM (abril de 1993). "Enfoque novedoso para la estimación del estado bayesiano no lineal / no gaussiano" . Actas de la IEE F - Procesamiento de señales y radar . 140 (2): 107-113. doi : 10.1049 / ip-f-2.1993.0015 . ISSN 0956-375X . S2CID 12644877 .  
  32. ^ Kitagawa, G. (1996). "Filtro de monte carlo y más suave para modelos de espacio de estado no lineal no gaussiano". Revista de Estadística Computacional y Gráfica . 5 (1): 1–25. doi : 10.2307 / 1390750 . JSTOR 1390750 . 
  33. ↑ a b Del Moral, Pierre (1996). "Filtrado no lineal: solución de partículas interactivas" (PDF) . Procesos de Markov y campos relacionados . 2 (4): 555–580.
  34. ^ Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (julio de 1997). "Filtrado óptimo no lineal en la integración GPS / INS" (PDF) . Transacciones IEEE en sistemas electrónicos y aeroespaciales . 33 (3): 835. Código bibliográfico : 1997ITAES..33..835C . doi : 10.1109 / 7.599254 . S2CID 27966240 .  
  35. ^ P. Del Moral, G. Rigal y G. Salut. "Estimación y control óptimo no lineal: un marco unificado para soluciones de partículas". LAAS-CNRS, Toulouse, Informe de investigación no. 91137, contrato DRET-DIGILOG- LAAS / CNRS, abril (1991).
  36. ^ P. Del Moral, G. Rigal y G. Salut. "Filtros de partículas no lineales y no gaussianos aplicados al reposicionamiento de la plataforma inercial". LAAS-CNRS, Toulouse, Informe de investigación no. 92207, Convenio STCAN / DIGILOG-LAAS / CNRS STCAN no. A.91.77.013, (94p.) Septiembre (1991).
  37. ^ P. Del Moral, G. Rigal y G. Salut. "Estimación y control óptimo no lineal: Resolución de partículas en filtrado y estimación: Resultados experimentales". Convenio DRET no. 89.34.553.00.470.75.01, Informe de investigación no 2 (54p.), Enero (1992).
  38. ^ P. Del Moral, G. Rigal y G. Salut. "Estimación y control óptimo no lineal: Resolución de partículas en filtrado y estimación: Resultados teóricos". Convenio DRET no. 89.34.553.00.470.75.01, Informe de investigación no 3 (123p.), Octubre (1992).
  39. ^ P. Del Moral, J.-Ch. Noyer, G. Rigal y G. Salut. "Filtros de partículas en el procesamiento de señales de radar: detección, estimación y reconocimiento de objetivos aéreos". LAAS-CNRS, Toulouse, Informe de investigación no. 92495, diciembre (1992).
  40. ^ P. Del Moral, G. Rigal y G. Salut. "Estimación y control óptimo no lineal: Resolución de partículas en filtrado y estimación". Estudios sobre: ​​filtrado, control óptimo y estimación de máxima verosimilitud. Convenio DRET no. 89.34.553.00.470.75.01. Informe de investigación no 4 (210p.), Enero (1993).
  41. ^ Del Moral, Pierre (1998). "Medir Procesos Valorados y Sistemas de Partículas Interactivas. Aplicación a Problemas de Filtrado No Lineal" . Annals of Applied Probability (Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996) ed.). 8 (2): 438–495. CiteSeerX 10.1.1.55.5257 . doi : 10.1214 / aoap / 1028903535 . 
  42. ^ Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "Convergencia de un método de partícula ramificada a la solución del Zakai" . Revista SIAM de Matemática Aplicada . 58 (5): 1568-1590. doi : 10.1137 / s0036139996307371 . S2CID 39982562 . 
  43. ^ Crisan, Dan; Lyons, Terry (1997). "Filtrado no lineal y procesos valorados en medida". Teoría de la probabilidad y campos relacionados . 109 (2): 217–244. doi : 10.1007 / s004400050131 . S2CID 119809371 . 
  44. ^ Crisan, Dan; Lyons, Terry (1999). "Una aproximación de partículas de la solución de la ecuación de Kushner-Stratonovitch". Teoría de la probabilidad y campos relacionados . 115 (4): 549–578. doi : 10.1007 / s004400050249 . S2CID 117725141 . 
  45. ^ Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1999). "Filtrado discreto mediante ramificación e interacción de sistemas de partículas" (PDF) . Procesos de Markov y campos relacionados . 5 (3): 293–318.
  46. ^ Del Moral, Pierre; Guionnet, Alice (1999). "Sobre la estabilidad de Procesos Valorados a Medida con Aplicaciones al filtrado". CR Acad. Sci. París . 39 (1): 429–434.
  47. ^ Del Moral, Pierre; Guionnet, Alice (2001). "Sobre la estabilidad de los procesos interactuantes con aplicaciones de filtrado y algoritmos genéticos" . Annales de l'Institut Henri Poincaré . 37 (2): 155-194. Código bibliográfico : 2001AnIHP..37..155D . doi : 10.1016 / s0246-0203 (00) 01064-5 .
  48. ^ Ripley 1987
  49. ↑ a b Sawilowsky, 2003
  50. ^ Kalos y Whitlock 2008
  51. ^ Shojaeefard, MH; Khalkhali, A; Yarmohammadisatri, Sadegh (2017). "Un método de análisis de sensibilidad eficiente para la geometría modificada de la suspensión de Macpherson basado en el coeficiente de correlación de Pearson". Dinámica del sistema del vehículo . 55 (6): 827–852. Código bibliográfico : 2017VSD .... 55..827S . doi : 10.1080 / 00423114.2017.1283046 . S2CID 114260173 . 
  52. ^ Davenport 1992
  53. Route, Matthew (10 de agosto de 2017). "Síntesis de población enana ultrafría radiante". El diario astrofísico . 845 (1): 66. arXiv : 1707.02212 . Código Bib : 2017ApJ ... 845 ... 66R . doi : 10.3847 / 1538-4357 / aa7ede . S2CID 118895524 . 
  54. ^ Vose 2000 , p. 13
  55. ^ Vose 2000 , p. dieciséis
  56. ^ Jia, Xun; Ziegenhein, Peter; Jiang, Steve B (2014). "Computación de alto rendimiento basada en GPU para radioterapia" . Física en Medicina y Biología . 59 (4): R151 – R182. Código bibliográfico : 2014PMB .... 59R.151J . doi : 10.1088 / 0031-9155 / 59/4 / R151 . PMC 4003902 . PMID 24486639 .  
  57. ^ Hill, R; Healy, B; Holloway, L; Kuncic, Z; Thwaites, D; Baldock, C (marzo de 2014). "Avances en dosimetría de haz de rayos X de kilovoltaje" . Física en Medicina y Biología . 59 (6): R183 – R231. Código bibliográfico : 2014PMB .... 59R.183H . doi : 10.1088 / 0031-9155 / 59/6 / R183 . PMID 24584183 . S2CID 18082594 .  
  58. ^ Rogers, DWO (2006). "Cincuenta años de simulaciones de Monte Carlo para la física médica" . Física en Medicina y Biología . 51 (13): R287 – R301. Código Bibliográfico : 2006PMB .... 51R.287R . doi : 10.1088 / 0031-9155 / 51/13 / R17 . PMID 16790908 . S2CID 12066026 .  
  59. ^ Baeurle 2009
  60. ^ Möller, W .; Eckstein, W. (1 de marzo de 1984). "Tridyn - Un código de simulación TRIM que incluye cambios dinámicos de composición". Instrumentos y métodos nucleares en la investigación de la física Sección B: Interacciones del haz con materiales y átomos . 2 (1): 814–818. Código Bibliográfico : 1984NIMPB ... 2..814M . doi : 10.1016 / 0168-583X (84) 90321-5 .
  61. ^ MacGillivray y Dodd 1982
  62. Golden 1979
  63. ^ Mazhdrakov, Metodi; Benov, Dobriyan; Valkanov, Nikolai (2018). El método de Montecarlo. Aplicaciones de ingeniería . Prensa Académica ACMO. pag. 250. ISBN 978-619-90684-3-4.
  64. ^ Int Panis y col. 2001
  65. ^ Int Panis y col. 2002
  66. ^ GA Bird, Dinámica molecular de gases, Clarendon, Oxford (1976)
  67. ^ Dietrich, S .; Boyd, I. (1996). "Una implementación paralela optimizada escalar de la técnica DSMC". Revista de Física Computacional . 126 (2): 328–42. Código Bibliográfico : 1996JCoPh.126..328D . doi : 10.1006 / jcph.1996.0141 .
  68. ^ Nabian, Mohammad Amin; Meidani, Hadi (28 de agosto de 2017). "Aprendizaje profundo para análisis de confiabilidad acelerado de redes de infraestructura". Ingeniería Civil y de Infraestructuras Asistida por Computadora . 33 (6): 443–458. arXiv : 1708.08551 . Código Bib : 2017arXiv170808551N . doi : 10.1111 / mice.12359 . S2CID 36661983 . 
  69. ^ Nabian, Mohammad Amin; Meidani, Hadi (2018). "Aceleración de la evaluación estocástica de la conectividad de la red de transporte posterior al terremoto a través de sustitutos basados ​​en el aprendizaje automático" . 97ª Reunión Anual de la Junta de Investigación del Transporte .
  70. ^ Nabian, Mohammad Amin; Meidani, Hadi (2017). "Cuantificación de la incertidumbre y reducción del modelo basado en PCA para el análisis paralelo de Monte Carlo de la confiabilidad del sistema de infraestructura" . 96ª Reunión Anual de la Junta de Investigación del Transporte .
  71. ^ Cambio climático 2013 La base de la ciencia física (PDF) . Prensa de la Universidad de Cambridge. 2013. p. 697. ISBN  978-1-107-66182-0. Consultado el 2 de marzo de 2016 .
  72. ^ Ojeda y et al. 2009 ,
  73. ^ Milik y Skolnick 1993
  74. ^ Cassey; Smith (2014). "Simulación de confianza para el índice de Ellison-Glaeser". Revista de Economía Urbana . 81 : 93. doi : 10.1016 / j.jue.2014.02.005 .
  75. ^ Sawilowsky y Fahoome 2003
  76. ^ Spall, James C. (2005). "Cálculo de Monte Carlo de la matriz de información de Fisher en entornos no estándar". Revista de Estadística Computacional y Gráfica . 14 (4): 889–909. CiteSeerX 10.1.1.142.738 . doi : 10.1198 / 106186005X78800 . S2CID 16090098 .  
  77. ^ Das, Sonjoy; Spall, James C .; Ghanem, Roger (2010). "Cálculo eficiente de Monte Carlo de la matriz de información de Fisher utilizando información previa". Estadísticas computacionales y análisis de datos . 54 (2): 272–289. doi : 10.1016 / j.csda.2009.09.018 .
  78. ^ Guillaume Chaslot; Sander Bakkes; Istvan Szita; Pieter Spronck. "Búsqueda de árboles de Montecarlo: un nuevo marco para la IA de juegos" (PDF) . Sander.landofsand.com . Consultado el 28 de octubre de 2017 .
  79. ^ "Búsqueda de árboles de Monte Carlo - Acerca de" . Archivado desde el original el 29 de noviembre de 2015 . Consultado el 15 de mayo de 2013 .
  80. ^ Chaslot, Guillaume MJ -B; Winands, Mark H. M; Van Den Herik, H. Jaap (2008). Búsqueda paralela de árboles de Montecarlo . Apuntes de conferencias en informática. 5131 . págs. 60–71. CiteSeerX 10.1.1.159.4373 . doi : 10.1007 / 978-3-540-87608-3_6 . ISBN  978-3-540-87607-6.
  81. ^ Bruns, Pete. Búsqueda de árboles de Monte-Carlo en el juego de Tantrix: Informe final de Cosc490 (PDF) (Informe).
  82. ^ David Silver; Joel Veness. "Planificación de Monte-Carlo en grandes POMDP" (PDF) . 0.cs.ucl.ac.uk . Consultado el 28 de octubre de 2017 .
  83. ^ Lorentz, Richard J (2011). "Mejora de la búsqueda de árboles de Monte-Carlo en La Habana". Computadoras y juegos . Apuntes de conferencias en informática. 6515 . págs. 105-115. Código bibliográfico : 2011LNCS.6515..105L . doi : 10.1007 / 978-3-642-17928-0_10 . ISBN 978-3-642-17927-3.
  84. ^ Tomas Jakl. "Reto de Arimaa - estudio de comparación de MCTS versus métodos alfa-beta" (PDF) . Arimaa.com . Consultado el 28 de octubre de 2017 .
  85. ^ Szirmay – Kalos 2008
  86. ^ "Cómo la Guardia Costera utiliza análisis para buscar a los perdidos en el mar" . Dice Insights . 2014-01-03.
  87. ^ Lawrence D. Stone; Thomas M. Kratzke; John R. Frost. "Modelado y optimización de búsqueda en el sistema de planificación óptima de búsqueda y rescate (SAROPS) de la USCG" (PDF) . Ifremer.fr . Consultado el 28 de octubre de 2017 .
  88. ^ Carmona, René; Del Moral, Pierre; Hu, Peng; Oudjane, Nadia (2012). Carmona, René A .; Moral, Pierre Del; Hu, Peng; et al. (eds.). Introducción a los métodos de partículas con aplicaciones financieras . Métodos numéricos en finanzas . Springer Proceedings in Mathematics. 12 . Springer Berlín Heidelberg. págs. 3-49. CiteSeerX 10.1.1.359.7957 . doi : 10.1007 / 978-3-642-25746-9_1 . ISBN  978-3-642-25745-2.
  89. ^ Carmona, René; Del Moral, Pierre; Hu, Peng; Oudjane, Nadia (2012). Métodos numéricos en finanzas . Springer Proceedings in Mathematics. 12 . doi : 10.1007 / 978-3-642-25746-9 . ISBN 978-3-642-25745-2.
  90. ^ Kroese, DP; Taimre, T .; Botev, ZI (2011). Manual de métodos de Monte Carlo . John Wiley e hijos.
  91. ^ Arenas, Daniel J .; Lett, Lanair A .; Klusaritz, Heather; Teitelman, Anne M. (2017). "Un enfoque de simulación de Monte Carlo para estimar el impacto económico y en la salud de las intervenciones proporcionadas en una clínica dirigida por estudiantes" . PLOS ONE . 12 (12): e0189718. Código bibliográfico : 2017PLoSO..1289718A . doi : 10.1371 / journal.pone.0189718 . PMC 5746244 . PMID 29284026 .  
  92. ^ Elwart, Liz; Emerson, Nina; Enders, Christina; Fumia, Dani; Murphy, Kevin (diciembre de 2006). "Aumento del acceso a las órdenes de restricción para víctimas de violencia doméstica de bajos ingresos: un análisis de costo-beneficio del programa de subvenciones propuesto por abuso doméstico" (PDF) . Barra de Abogados del Estado de Wisconsin . Archivado desde el original (PDF) el 6 de noviembre de 2018 . Consultado el 12 de diciembre de 2016 .
  93. ^ a b Press et al. 1996
  94. ^ MEZEI, M (31 de diciembre de 1986). "Muestreo de paraguas adaptativo: determinación autoconsistente del sesgo de no Boltzmann". Revista de Física Computacional . 68 (1): 237–248. Código bibliográfico : 1987JCoPh..68..237M . doi : 10.1016 / 0021-9991 (87) 90054-4 .
  95. ^ Bartels, Christian; Karplus, Martin (31 de diciembre de 1997). "Distribuciones de probabilidad para sistemas complejos: muestreo de paraguas adaptativo de la energía potencial". El Journal of Physical Chemistry B . 102 (5): 865–880. doi : 10.1021 / jp972280j .
  96. ^ Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2006). "Samplers secuenciales de Monte Carlo". Revista de la Sociedad Real de Estadística, Serie B . 68 (3): 411–436. arXiv : cond-mat / 0212648 . doi : 10.1111 / j.1467-9868.2006.00553.x . S2CID 12074789 . 
  97. ^ Spall, JC (2003), Introducción a la búsqueda y optimización estocásticas: estimación, simulación y control , Wiley, Hoboken, Nueva Jersey. http://www.jhuapl.edu/ISSO
  98. ^ Mosegaard y Tarantola 1995
  99. ^ Tarantola 2005
  100. ^ McCracken, DD, (1955) El método de Monte Carlo, Scientific American, 192 (5), págs. 90-97
  101. ^ Elishakoff, I., (2003) Notas sobre la filosofía del método de Monte Carlo, Mecánica aplicada internacional, 39 (7), pp.753-762
  102. ^ Grüne-Yanoff, T. y Weirich, P. (2010). La filosofía y epistemología de la simulación: una revisión, Simulation & Gaming, 41 (1), pp.20-50

Fuentes [ editar ]

  • Anderson, Herbert L. (1986). "Metrópolis, Monte Carlo y el MANIAC" (PDF) . Ciencia de Los Alamos . 14 : 96-108.
  • Benov, Dobriyan M. (2016). "El Proyecto Manhattan, la primera computadora electrónica y el método Monte Carlo". Métodos y aplicaciones de Monte Carlo . 22 (1): 73–79. doi : 10.1515 / mcma-2016-0102 . S2CID  30198383 .
  • Baeurle, Stephan A. (2009). "Modelado multiescala de materiales poliméricos utilizando metodologías de teoría de campo: una encuesta sobre desarrollos recientes". Revista de Química Matemática . 46 (2): 363–426. doi : 10.1007 / s10910-008-9467-3 . S2CID  117867762 .
  • Berg, Bernd A. (2004). Simulaciones de Monte Carlo en cadena de Markov y su análisis estadístico (con código Fortran basado en la web) . Hackensack, Nueva Jersey: World Scientific. ISBN 978-981-238-935-0.
  • Carpeta, Kurt (1995). El método de Monte Carlo en la física de la materia condensada . Nueva York: Springer. ISBN 978-0-387-54369-7.
  • Caflisch, RE (1998). Métodos de Monte Carlo y cuasi-Monte Carlo . Acta Numerica. 7 . Prensa de la Universidad de Cambridge. págs. 1-49.
  • Davenport, JH (1992). "Revisión de las pruebas de primordialidad". Artículos del simposio internacional sobre computación simbólica y algebraica - ISSAC '92 . Procedimientos de los artículos de ISSAC '92 del Simposio Internacional sobre Computación Simbólica y Algebraica . págs. 123-129. CiteSeerX  10.1.1.43.9296 . doi : 10.1145 / 143242.143290 . ISBN 978-0-89791-489-5. S2CID  17322272 .
  • Doucet, Arnaud; Freitas, Nando de; Gordon, Neil (2001). Métodos secuenciales de Monte Carlo en la práctica . Nueva York: Springer. ISBN 978-0-387-95146-1.
  • Eckhardt, Roger (1987). "Stan Ulam, John von Neumann y el método de Monte Carlo" (PDF) . Ciencia de Los Alamos (15): 131-137.
  • Fishman, GS (1995). Monte Carlo: conceptos, algoritmos y aplicaciones . Nueva York: Springer. ISBN 978-0-387-94527-9.
  • C. Forastero y L. Zamora y D. Guirado y A. Lallena (2010). "Una herramienta de Monte Carlo para simular programas de detección de cáncer de mama". Phys. Medicina. Biol . 55 (17): 5213–5229. Código bibliográfico : 2010PMB .... 55.5213F . doi : 10.1088 / 0031-9155 / 55/17/021 . PMID  20714045 .
  • Dorado, Leslie M. (1979). "El efecto de la rugosidad de la superficie en la transmisión de radiación de microondas a través de una superficie planetaria". Ícaro . 38 (3): 451–455. Código Bibliográfico : 1979Icar ... 38..451G . doi : 10.1016 / 0019-1035 (79) 90199-4 .
  • Gould, Harvey; Tobochnik, Jan (1988). Introducción a los métodos de simulación por computadora, Parte 2, Aplicaciones a sistemas físicos . Lectura: Addison-Wesley. ISBN 978-0-201-16504-3.
  • Grinstead, Charles; Snell, J. Laurie (1997). Introducción a la probabilidad . Sociedad Matemática Estadounidense . pp.  10 -11.
  • Hammersley, JM; Handscomb, DC (1975). Métodos de Monte Carlo . Londres: Methuen. ISBN 978-0-416-52340-9.
  • Hartmann, AK (2009). Guía práctica de simulaciones por ordenador . World Scientific. ISBN 978-981-283-415-7. Archivado desde el original el 11 de febrero de 2009.
  • Hubbard, Douglas (2007). Cómo medir cualquier cosa: encontrar el valor de los intangibles en los negocios . John Wiley e hijos . pag. 46 .
  • Hubbard, Douglas (2009). El fracaso de la gestión de riesgos: por qué no funciona y cómo solucionarlo . John Wiley e hijos .
  • Kahneman, D .; Tversky, A. (1982). Juicio bajo incertidumbre: heurística y sesgos . Prensa de la Universidad de Cambridge.
  • Kalos, Malvin H .; Whitlock, Paula A. (2008). Métodos de Monte Carlo . Wiley-VCH . ISBN 978-3-527-40760-6.
  • Kroese, DP; Taimre, T .; Botev, ZI (2011). Manual de métodos de Monte Carlo . Nueva York: John Wiley & Sons . pag. 772. ISBN 978-0-470-17793-8.
  • MacGillivray, HT; Dodd, RJ (1982). "Simulaciones de Monte-Carlo de sistemas de galaxias". Astrofísica y Ciencias Espaciales . 86 (2): 419–435. doi : 10.1007 / BF00683346 . S2CID  189849365 .
  • MacKeown, P. Kevin (1997). Simulación estocástica en física . Nueva York: Springer. ISBN 978-981-3083-26-4.
  • Metropolis, N. (1987). "El comienzo del método de Monte Carlo" (PDF) . Los Alamos Science (número especial de 1987 dedicado a Stanislaw Ulam): 125–130.
  • Metropolis, N .; Rosenbluth, Arianna W .; Rosenbluth, Marshall N .; Teller, Augusta H .; Teller, Edward (1953). "Ecuación de cálculos de estado por máquinas de cómputo rápido" . Revista de Física Química . 21 (6): 1087. Código Bibliográfico : 1953JChPh..21.1087M . doi : 10.1063 / 1.1699114 .
  • Metropolis, N .; Ulam, S. (1949). "El método de Monte Carlo". Revista de la Asociación Estadounidense de Estadística . 44 (247): 335–341. doi : 10.1080 / 01621459.1949.10483310 . JSTOR  2280232 . PMID  18139350 .
  • Milik, M .; Skolnick, J. (enero de 1993). "Inserción de cadenas de péptidos en membranas lipídicas: un modelo de dinámica de Monte Carlo fuera de la red" . Las proteínas . 15 (1): 10–25. doi : 10.1002 / prot.340150104 . PMID  8451235 . S2CID  7450512 .
  • Mosegaard, Klaus; Tarantola, Albert (1995). "Muestreo de Monte Carlo de soluciones a problemas inversos" (PDF) . J. Geophys. Res . 100 (B7): 12431-12447. Código bibliográfico : 1995JGR ... 10012431M . doi : 10.1029 / 94JB03097 .
  • P. Ojeda; M. García; A. Londono; NY Chen (febrero de 2009). "Simulaciones de Monte Carlo de proteínas en jaulas: influencia del confinamiento en la estabilidad de los estados intermedios" . Biophys. J . 96 (3): 1076–1082. Código Bibliográfico : 2009BpJ .... 96.1076O . doi : 10.1529 / biophysj.107.125369 . PMC  2716574 . PMID  18849410 .
  • Int Panis, L .; de Nocker, L .; De Vlieger, I .; Torfs, R. (2001). "Tendencias e incertidumbre en los impactos de la contaminación del aire y los costos externos del tráfico de automóviles de pasajeros belga". Revista Internacional de Diseño de Vehículos . 27 (1–4): 183–194. doi : 10.1504 / IJVD.2001.001963 .
  • Int Panis, L .; Rabl, A .; de Nocker, L .; Torfs, R. (2002). Sturm, P. (ed.). "¿Diesel o gasolina? Una comparación medioambiental obstaculizada por la incertidumbre". Mitteilungen Institut für Verbrennungskraftmaschinen und Thermodynamik . Technische Universität Graz Austria. Heft 81 Vol. 1: 48–54.
  • Prensa, William H .; Teukolsky, Saul A .; Vetterling, William T .; Flannery, Brian P. (1996) [1986]. Recetas numéricas en Fortran 77: El arte de la informática científica . Recetas numéricas de Fortran. 1 (2ª ed.). Prensa de la Universidad de Cambridge . ISBN 978-0-521-43064-7.
  • Ripley, BD (1987). Simulación estocástica . Wiley & Sons .
  • Robert, C .; Casella, G. (2004). Métodos estadísticos de Monte Carlo (2ª ed.). Nueva York: Springer. ISBN 978-0-387-21239-5.
  • Rubinstein, RY; Kroese, DP (2007). Simulación y el método de Monte Carlo (2ª ed.). Nueva York: John Wiley & Sons. ISBN 978-0-470-17793-8.
  • Savvides, Savvakis C. (1994). "Análisis de riesgos en la valoración de inversiones" (PDF) . Diario de evaluación de proyectos . 9 (1). doi : 10.2139 / ssrn.265905 .
  • Sawilowsky, Shlomo S .; Fahoome, Gail C. (2003). Estadísticas a través de simulación Monte Carlo con Fortran . Rochester Hills, MI: JMASM. ISBN 978-0-9740236-0-1.
  • Sawilowsky, Shlomo S. (2003). "¿Crees que tienes triviales?" . Revista de métodos estadísticos aplicados modernos . 2 (1): 218–225. doi : 10.22237 / jmasm / 1051748460 .
  • Silver, David; Veness, Joel (2010). "Planificación de Monte-Carlo en grandes POMDP" (PDF) . En Lafferty, J .; Williams, CKI; Shawe-Taylor, J .; Zemel, RS; Culotta, A. (eds.). Avances en los sistemas de procesamiento de información neuronal 23 . Sistemas de procesamiento de información neuronal 2010. Fundación de sistemas de procesamiento de información neuronal.
  • Szirmay-Kalos, László (2008). Métodos de Monte Carlo en iluminación global: representación fotorrealista con aleatorización . VDM Verlag Dr. Mueller eK ISBN 978-3-8364-7919-6.
  • Tarantola, Albert (2005). Teoría del problema inverso . Filadelfia: Sociedad de Matemáticas Industriales y Aplicadas. ISBN 978-0-89871-572-9.
  • Vose, David (2008). Análisis de riesgos, una guía cuantitativa (3ª ed.). John Wiley e hijos .
  • Mazhdrakov, Metodi; Benov, Dobriyan; Valkanov, Nikolai (2018). El método de Montecarlo. Aplicaciones de ingeniería . Prensa Académica ACMO. pag. 250. ISBN 978-619-90684-3-4.

Enlaces externos [ editar ]

  • Medios relacionados con el método Monte Carlo en Wikimedia Commons