De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Los gases reales son gases no ideales cuyas moléculas ocupan espacio y tienen interacciones; en consecuencia, no se adhieren a la ley de los gases ideales . Para comprender el comportamiento de los gases reales, se debe tener en cuenta lo siguiente:

Para la mayoría de las aplicaciones, un análisis tan detallado es innecesario y la aproximación del gas ideal se puede utilizar con una precisión razonable. Por otro lado, los modelos de gas real deben utilizarse cerca del punto de condensación de los gases, cerca de los puntos críticos , a presiones muy altas, para explicar el efecto Joule-Thomson y en otros casos menos habituales. La desviación de la idealidad se puede describir mediante el factor de compresibilidad Z.

Modelos [ editar ]

Isotermas de gas real

Curvas azul oscuro: isotermas por debajo de la temperatura crítica. Secciones verdes: estados metaestables .

La sección a la izquierda del punto F - líquido normal.
Punto F - punto de ebullición .
Línea FG - equilibrio de fases líquidas y gaseosas.
Sección FA - líquido sobrecalentado .
Sección F′A - líquido estirado (p <0).
Sección AC - continuación analítica de isoterma, físicamente imposible.
Sección CG - vapor sobreenfriado .
Punto G - punto de rocío .
El gráfico a la derecha del punto G: gas normal.
Las áreas FAB y GCB son iguales.

Curva roja: isoterma crítica.
Punto K - punto crítico .

Curvas azul claro - isotermas supercríticas

Modelo de Van der Waals [ editar ]

Los gases reales a menudo se modelan teniendo en cuenta su peso molar y su volumen molar.

o alternativamente:

Donde p es la presión, T es la temperatura, R la constante del gas ideal y V m el volumen molar . un y b son parámetros que se determinan empíricamente para cada gas, pero a veces se estiman a partir de su temperatura crítica ( T c ) y presión crítica ( p c ) el uso de estas relaciones:

Las constantes en el punto crítico se pueden expresar como funciones de los parámetros a, b:

Con las propiedades reducidas, la ecuación se puede escribir en forma reducida :

Modelo Redlich-Kwong [ editar ]

Isoterma crítica para el modelo de Redlich-Kwong en comparación con el modelo de van-der-Waals y el gas ideal (con V 0 = RT c / p c )

La ecuación de Redlich-Kwong es otra ecuación de dos parámetros que se utiliza para modelar gases reales. Casi siempre es más precisa que la ecuación de van der Waals y, a menudo, más precisa que algunas ecuaciones con más de dos parámetros. La ecuación es

o alternativamente:

donde un y b son dos parámetros empíricos que son no los mismos parámetros que en la ecuación de van der Waals. Estos parámetros se pueden determinar:

Las constantes en el punto crítico se pueden expresar como funciones de los parámetros a, b:

El uso de la ecuación de estado se puede escribir en forma reducida :

con

Berthelot y modelo de Berthelot modificado [ editar ]

La ecuación de Berthelot (llamada así por D. Berthelot) [1] se usa muy raramente,

pero la versión modificada es algo más precisa

Modelo Dieterici [ editar ]

Este modelo (que lleva el nombre de C. Dieterici [2] ) dejó de utilizarse en los últimos años

con los parámetros a, b y

Modelo Clausius [ editar ]

La ecuación de Clausius (llamada así por Rudolf Clausius ) es una ecuación de tres parámetros muy simple que se utiliza para modelar gases.

o alternativamente:

dónde

donde V c es el volumen crítico.

Modelo virial [ editar ]

La ecuación de Virial deriva de un tratamiento perturbativo de la mecánica estadística.

o alternativamente

donde A , B , C , A ′, B ′ y C ′ son constantes dependientes de la temperatura.

Modelo Peng-Robinson [ editar ]

La ecuación de estado de Peng-Robinson (llamada así por D.-Y. Peng y DB Robinson [3] ) tiene la interesante propiedad de ser útil para modelar algunos líquidos y gases reales.

Modelo Wohl [ editar ]

Isoterma (V / V 0 -> p_r) a temperatura crítica para el modelo de Wohl, el modelo de van der Waals y el modelo de gas ideal (con V 0 = RT c / p c )
Untersuchungen über die Zustandsgleichung, págs. 9,10, Zeitschr. F. Physikal. Chemie 87

La ecuación de Wohl (llamada así por A. Wohl [4] ) está formulada en términos de valores críticos, lo que la hace útil cuando no se dispone de constantes de gas reales, pero no se puede utilizar para densidades altas, ya que, por ejemplo, la isoterma crítica muestra una drástica disminución de la presión cuando el volumen se contrae más allá del volumen crítico.

o:

o alternativamente:

dónde

con
, donde están (respectivamente) el volumen molar, la presión y la temperatura en el punto crítico .

Y con las propiedades reducidas se puede escribir la primera ecuación en forma reducida :

Modelo de Beattie-Bridgeman [ editar ]

[5] Esta ecuación se basa en cinco constantes determinadas experimentalmente. Se expresa como

dónde

Se sabe que esta ecuación es razonablemente precisa para densidades de hasta aproximadamente 0,8  ρ cr , donde ρ cr es la densidad de la sustancia en su punto crítico. Las constantes que aparecen en la ecuación anterior están disponibles en la siguiente tabla cuando p está en kPa, v está en , T está en K y R = 8,314 [6]

Modelo Benedict-Webb-Rubin [ editar ]

La ecuación BWR, a veces denominada ecuación BWRS,

donde d es la densidad molar y donde a , b , c , A , B , C , α y γ son constantes empíricas. Tenga en cuenta que la constante γ es una derivada de la constante α y, por lo tanto, es casi idéntica a 1.

Trabajo de expansión termodinámica [ editar ]

El trabajo de expansión del gas real es diferente al del gas ideal en la cantidad .

Ver también [ editar ]

  • Factor de compresibilidad
  • Ecuación de estado
  • Leyes de los gases
  • Ley de los gases ideales : ley de Boyle y ley de Gay-Lussac

Referencias [ editar ]

  1. D. Berthelot en Travaux et Mémoires du Bureau international des Poids et Mesures - Tome XIII (París: Gauthier-Villars, 1907)
  2. ^ C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685 (1899)
  3. ^ Peng, DY y Robinson, DB (1976). "Una nueva ecuación de estado de dos constantes". Química Industrial y de Ingeniería: Fundamentos . 15 : 59–64. doi : 10.1021 / i160057a011 .
  4. ^ A. Wohl (1914). "Investigación de la ecuación de condición". Zeitschrift für Physikalische Chemie . 87 : 1–39. doi : 10.1515 / zpch-1914-8702 . S2CID 92940790 . 
  5. ^ Yunus A. Cengel y Michael A. Boles, Termodinámica: un enfoque de ingeniería 7ma edición, McGraw-Hill, 2010, ISBN 007-352932-X 
  6. ^ Gordan J. Van Wylen y Richard E. Sonntage, Fundamental of Classical Thermodynamics , 3rd ed, Nueva York, John Wiley & Sons, 1986 P46 tabla 3.3

Lectura adicional [ editar ]

  • Kondepudi, DK; Prigogine, I. (1998). Termodinámica moderna: desde motores térmicos hasta estructuras disipativas . John Wiley e hijos . ISBN 978-0-471-97393-5.
  • Hsieh, JS (1993). Termodinámica de ingeniería . Prentice-Hall . ISBN 978-0-13-275702-7.
  • Walas, SM (1985). Fazovyje ravnovesija v chimiceskoj technologii v 2 castach . Editores de Butterworth . ISBN 978-0-409-95162-2.
  • Aznar, M .; Silva Telles, A. (1997). "Un banco de datos de parámetros para el coeficiente atractivo de la ecuación de estado de Peng-Robinson" . Revista Brasileña de Ingeniería Química . 14 (1): 19–39. doi : 10.1590 / S0104-66321997000100003 .
  • Rao, YV C (2004). Introducción a la termodinámica . Prensa de Universidades . ISBN 978-81-7371-461-0.
  • Xiang, HW (2005). El principio de estados correspondientes y su práctica: propiedades termodinámicas, de transporte y de superficie de los fluidos . Elsevier . ISBN 978-0-08-045904-2.

Enlaces externos [ editar ]

  • http://www.ccl.net/cca/documents/dyoung/topics-orig/eq_state.html