This is a good article. Click here for more information.
De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Un monte submarino es un gran relieve geológico que se eleva desde el fondo del océano pero que no llega a la superficie del agua ( nivel del mar ) y, por lo tanto, no es una isla , islote o acantilado . Los montes submarinos se forman típicamente a partir de volcanes extintos que se elevan abruptamente y, por lo general, se encuentran elevándose desde el lecho marino hasta una altura de 1.000 a 4.000 m (3.300 a 13.100 pies). Los oceanógrafos los definen como elementos independientes que se elevan al menos a 1000 m (3281 pies) sobre el lecho marino, característicamente de forma cónica. [1]Los picos se encuentran a menudo a cientos o miles de metros por debajo de la superficie y, por lo tanto, se considera que están dentro de las profundidades del mar . [2] Durante su evolución a lo largo del tiempo geológico, los montes submarinos más grandes pueden alcanzar la superficie del mar donde la acción de las olas erosiona la cumbre para formar una superficie plana. Una vez que se han hundido y hundido bajo la superficie del mar, estos montes submarinos de superficie plana se denominan " guyots " o "tablemounts". [1]

Los océanos de la Tierra contienen más de 14,500 montes submarinos identificados [3] de los cuales 9,951 montes submarinos y 283 guyots, que cubren un área total de 8,796,150 km 2 (3,396,210 millas cuadradas), han sido cartografiados [4] pero solo unos pocos han sido estudiados en detalle por científicos. Los montes submarinos y los guyots son más abundantes en el Océano Pacífico Norte y siguen un patrón evolutivo distintivo de erupción, acumulación, hundimiento y erosión. En los últimos años, se han observado varios montes submarinos activos, por ejemplo, Loihi en las islas hawaianas .

Debido a su abundancia, los montes submarinos son uno de los ecosistemas marinos más comunes del mundo. Las interacciones entre los montes submarinos y las corrientes submarinas, así como su posición elevada en el agua, atraen por igual al plancton , los corales , los peces y los mamíferos marinos . La industria pesquera comercial ha observado su efecto de agregación , y muchos montes submarinos sustentan pesquerías extensivas. Existe una preocupación constante sobre el impacto negativo de la pesca en los ecosistemas de montañas submarinas y casos bien documentados de disminución de la población, por ejemplo, con el reloj anaranjado ( Hoplostethus atlanticus ). El 95% del daño ecológico se debe a la pesca de arrastre de fondo., que raspa ecosistemas enteros de los montes submarinos.

Debido a su gran número, quedan muchos montes submarinos por estudiar adecuadamente e incluso cartografiarlos. La batimetría y la altimetría satelital son dos tecnologías que trabajan para cerrar la brecha. Ha habido casos en los que los buques de guerra han chocado con montes submarinos desconocidos; por ejemplo, Muirfield Seamount lleva el nombre del barco que lo golpeó en 1973. Sin embargo, el mayor peligro de los montes submarinos son los derrumbes de flancos; a medida que envejecen, las extrusiones que se filtran en los montes submarinos ejercen presión sobre sus lados, provocando deslizamientos de tierra que tienen el potencial de generar tsunamis masivos .

Geografía [ editar ]

Los montes submarinos se pueden encontrar en todas las cuencas oceánicas del mundo, distribuidos extremadamente ampliamente tanto en el espacio como en la edad. Un monte submarino se define técnicamente como una elevación aislada de 1000 m (3281 pies) o más desde el lecho marino circundante, y con un área de cumbre limitada, [5] de forma cónica. [1] Hay más de 14.500 montes submarinos. [3] Además de los montes submarinos, hay más de 80.000 pequeños montículos, crestas y colinas de menos de 1.000 m de altura en los océanos del mundo. [4]

La mayoría de los montes submarinos son de origen volcánico y, por lo tanto, tienden a encontrarse en la corteza oceánica cerca de las dorsales oceánicas , las plumas del manto y los arcos de islas . En general, la cobertura de montes submarinos y guyot es mayor como proporción del área del lecho marino en el Océano Pacífico Norte, equivalente al 4,39% de esa región oceánica. El Océano Ártico tiene solo 16 montes submarinos y ningún guyots, y los mares Mediterráneo y Negro juntos tienen solo 23 montes submarinos y 2 guyots. Los 9,951 montes submarinos, que han sido cartografiados, cubren un área de 8,088,550 km 2 (3,123,010 millas cuadradas). Los montes submarinos tienen un área promedio de 790 km 2(310 millas cuadradas), con los montes submarinos más pequeños que se encuentran en el Océano Ártico y los mares Mediterráneo y Negro, mientras que el tamaño medio de los montes submarinos más grande se encuentra en el Océano Índico 890 km 2 (340 millas cuadradas). El monte submarino más grande tiene un área de 15,500 km 2 (6,000 millas cuadradas) y se encuentra en el Pacífico Norte. Los Guyots cubren un área total de 707,600 km 2 (273,200 millas cuadradas) y tienen un área promedio de 2,500 km 2 (970 millas cuadradas), más del doble del tamaño promedio de los montes submarinos. Casi el 50% del área de guyot y el 42% del número de guyots ocurren en el Océano Pacífico Norte, cubriendo 342,070 km 2 (132,070 millas cuadradas). Los tres guyots más grandes están todos en el Pacífico Norte: Kuko Guyot (estimado 24,600 km 2(9,500 millas cuadradas)), Suiko Guyot (estimado 20,220 km 2 (7,810 millas cuadradas)) y Pallada Guyot (estimado 13,680 km 2 (5,280 millas cuadradas)). [4]

Agrupación [ editar ]

Los montes submarinos se encuentran a menudo en agrupaciones o archipiélagos sumergidos , un ejemplo clásico son los montes submarinos Emperador , una extensión de las islas hawaianas . Formados hace millones de años por el vulcanismo , desde entonces se han hundido muy por debajo del nivel del mar. Esta larga cadena de islas y montes submarinos se extiende a miles de kilómetros al noroeste de la isla de Hawai .

Distribución de montes submarinos y guyots en el Pacífico norte
Distribución de montes submarinos y guyots en el Atlántico norte

Hay más montes submarinos en el Océano Pacífico que en el Atlántico, y su distribución puede describirse como compuesta por varias cadenas alargadas de montes submarinos superpuestas en una distribución de fondo más o menos aleatoria. [6] Las cadenas de montes submarinos se encuentran en las tres principales cuencas oceánicas, y el Pacífico tiene el mayor número y las cadenas de montes submarinos más extensas. Estos incluyen los montes submarinos (y grupos de islas) de Hawai (Emperador), Mariana, Gilbert, Tuomotu y Austral en el Pacífico norte y las cordilleras Louisville y Sala y Gómez en el Océano Pacífico sur. En el Océano Atlántico Norte, los montes submarinos de Nueva Inglaterra se extienden desde la costa este de los Estados Unidos hasta la cresta oceánica. Craig y Sandwell [6]señaló que los grupos de grandes montes submarinos del Atlántico tienden a estar asociados con otra evidencia de actividad de puntos críticos, como en Walvis Ridge , las islas Bermudas y las islas de Cabo Verde . La cordillera del Atlántico medio y las cordilleras extendidas en el Océano Índico también están asociadas con abundantes montes submarinos. [7] De lo contrario, los montes submarinos tienden a no formar cadenas distintivas en los océanos Índico y Austral, sino que su distribución parece ser más o menos aleatoria.

Los montes submarinos aislados y los que no tienen un origen volcánico claro son menos comunes; los ejemplos incluyen Bollons Seamount , Eratosthenes Seamount , Axial Seamount y Gorringe Ridge . [8]

If all known seamounts were collected into one area, they would make a landform the size of Europe.[9] Their overall abundance makes them one of the most common, and least understood, marine structures and biomes on Earth,[10] a sort of exploratory frontier.[11]

Geology[edit]

Geochemistry and evolution[edit]

Diagram of a submarine eruption (key: 1. Water vapor cloud 2. Water 3. Stratum 4. Lava flow 5. Magma conduit 6. Magma chamber 7. Dike 8. Pillow lava) Click to enlarge

Most seamounts are built by one of two volcanic processes, although some, such as the Christmas Island Seamount Province near Australia, are more enigmatic.[12] Volcanoes near plate boundaries and mid-ocean ridges are built by decompression melting of rock in the upper mantle. The lower density magma rises through the crust to the surface. Volcanoes formed near or above subducting zones are created because the subducting tectonic plate adds volatiles to the overriding plate that lowers its melting point. Which of these two process involved in the formation of a seamount has a profound effect on its eruptive materials. Lava flows from mid-ocean ridge and plate boundary seamounts are mostly basaltic (both tholeiitic and alkalic), whereas flows from subducting ridge volcanoes are mostly calc-alkaline lavas. Compared to mid-ocean ridge seamounts, subduction zone seamounts generally have more sodium, alkali, and volatile abundances, and less magnesium, resulting in more explosive, viscous eruptions.[11]

All volcanic seamounts follow a particular pattern of growth, activity, subsidence and eventual extinction. The first stage of a seamount's evolution is its early activity, building its flanks and core up from the sea floor. This is followed by a period of intense volcanism, during which the new volcano erupts almost all (e.g. 98%) of its total magmatic volume. The seamount may even grow above sea level to become an oceanic island (for example, the 2009 eruption of Hunga Tonga). After a period of explosive activity near the ocean surface, the eruptions slowly die away. With eruptions becoming infrequent and the seamount losing its ability to maintain itself, the volcano starts to erode. After finally becoming extinct (possibly after a brief rejuvenated period), they are ground back down by the waves. Seamounts are built in a far more dynamic oceanic setting than their land counterparts, resulting in horizontal subsidence as the seamount moves with the tectonic plate towards a subduction zone. Here it is subducted under the plate margin and ultimately destroyed, but it may leave evidence of its passage by carving an indentation into the opposing wall of the subduction trench. The majority of seamounts have already completed their eruptive cycle, so access to early flows by researchers is limited by late volcanic activity.[11]

Ocean-ridge volcanoes in particular have been observed to follow a certain pattern in terms of eruptive activity, first observed with Hawaiian seamounts but now shown to be the process followed by all seamounts of the ocean-ridge type. During the first stage the volcano erupts basalt of various types, caused by various degrees of mantle melting. In the second, most active stage of its life, ocean-ridge volcanoes erupt tholeiitic to mildly alkalic basalt as a result of a larger area melting in the mantle. This is finally capped by alkalic flows late in its eruptive history, as the link between the seamount and its source of volcanism is cut by crustal movement. Some seamounts also experience a brief "rejuvenated" period after a hiatus of 1.5 to 10 million years, the flows of which are highly alkalic and produce many xenoliths.[11]

In recent years, geologists have confirmed that a number of seamounts are active undersea volcanoes; two examples are Lo‘ihi in the Hawaiian Islands and Vailulu'u in the Manu'a Group (Samoa).[8]

Lava types[edit]

Pillow lava, a type of basalt flow that originates from lava-water interactions during submarine eruptions[13]

The most apparent lava flows at a seamount are the eruptive flows that cover their flanks, however igneous intrusions, in the forms of dikes and sills, are also an important part of seamount growth. The most common type of flow is pillow lava, named so after its distinctive shape. Less common are sheet flows, which are glassy and marginal, and indicative of larger-scale flows. Volcaniclastic sedimentary rocks dominate shallow-water seamounts. They are the products of the explosive activity of seamounts that are near the water's surface, and can also form from mechanical wear of existing volcanic rock.[11]

Structure[edit]

Seamounts can form in a wide variety of tectonic settings, resulting in a very diverse structural bank. Seamounts come in a wide variety of structural shapes, from conical to flat-topped to complexly shaped.[11] Some are built very large and very low, such as Koko Guyot[14] and Detroit Seamount;[15] others are built more steeply, such as Loihi Seamount[16] and Bowie Seamount.[17] Some seamounts also have a carbonate or sediment cap.[11]

Many seamounts show signs of intrusive activity, which is likely to lead to inflation, steepening of volcanic slopes, and ultimately, flank collapse.[11] There are also several sub-classes of seamounts. The first are guyots, seamounts with a flat top. These tops must be 200 m (656 ft) or more below the surface of the sea; the diameters of these flat summits can be over 10 km (6.2 mi).[18] Knolls are isolated elevation spikes measuring less than 1,000 meters (3,281 ft). Lastly, pinnacles are small pillar-like seamounts.[5]

Ecology[edit]

Ecological role of seamounts[edit]

Seamounts are exceptionally important to their biome ecologically, but their role in their environment is poorly understood. Because they project out above the surrounding sea floor, they disturb standard water flow, causing eddies and associated hydrological phenomena that ultimately result in water movement in an otherwise still ocean bottom. Currents have been measured at up to 0.9 knots, or 48 centimeters per second. Because of this upwelling seamounts often carry above-average plankton populations, seamounts are thus centers where the fish that feed on them aggregate, in turn falling prey to further predation, making seamounts important biological hotspots.[5]

Seamounts provide habitats and spawning grounds for these larger animals, including numerous fish. Some species, including black oreo (Allocyttus niger) and blackstripe cardinalfish (Apogon nigrofasciatus), have been shown to occur more often on seamounts than anywhere else on the ocean floor. Marine mammals, sharks, tuna, and cephalopods all congregate over seamounts to feed, as well as some species of seabirds when the features are particularly shallow.[5]

Grenadier fish (Coryphaenoides sp.) and bubblegum coral (Paragorgia arborea) on the crest of Davidson Seamount. These are two species attracted to the seamount; Paragorgia arborea in particular grows in the surrounding area as well, but nowhere near as profusely.[19]

Seamounts often project upwards into shallower zones more hospitable to sea life, providing habitats for marine species that are not found on or around the surrounding deeper ocean bottom. Because seamounts are isolated from each other they form "undersea islands" creating the same biogeographical interest. As they are formed from volcanic rock, the substrate is much harder than the surrounding sedimentary deep sea floor. This causes a different type of fauna to exist than on the seafloor, and leads to a theoretically higher degree of endemism.[20] However, recent research especially centered at Davidson Seamount suggests that seamounts may not be especially endemic, and discussions are ongoing on the effect of seamounts on endemicity. They have, however, been confidently shown to provide a habitat to species that have difficulty surviving elsewhere.[21][22]

The volcanic rocks on the slopes of seamounts are heavily populated by suspension feeders, particularly corals, which capitalize on the strong currents around the seamount to supply them with food. This is in sharp contrast with the typical deep-sea habitat, where deposit-feeding animals rely on food they get off the ground.[5] In tropical zones extensive coral growth results in the formation of coral atolls late in the seamount's life.[22][23]

In addition soft sediments tend to accumulate on seamounts, which are typically populated by polychaetes (annelid marine worms) oligochaetes (microdrile worms), and gastropod mollusks (sea slugs). Xenophyophores have also been found. They tend to gather small particulates and thus form beds, which alters sediment deposition and creates a habitat for smaller animals.[5] Many seamounts also have hydrothermal vent communities, for example Suiyo[24] and Loihi seamounts.[25] This is helped by geochemical exchange between the seamounts and the ocean water.[11]

Seamounts may thus be vital stopping points for some migratory animals, specifically whales. Some recent research indicates whales may use such features as navigational aids throughout their migration.[26] For a long time it has been surmised that many pelagic animals visit seamounts as well, to gather food, but proof of this aggregating effect has been lacking. The first demonstration of this conjecture was published in 2008.[27]

Fishing[edit]

The effect that seamounts have on fish populations has not gone unnoticed by the commercial fishing industry. Seamounts were first extensively fished in the second half of the 20th century, due to poor management practices and increased fishing pressure seriously depleting stock numbers on the typical fishing ground, the continental shelf. Seamounts have been the site of targeted fishing since that time.[28]

Nearly 80 species of fish and shellfish are commercially harvested from seamounts, including spiny lobster (Palinuridae), mackerel (Scombridae and others), red king crab (Paralithodes camtschaticus), red snapper (Lutjanus campechanus), tuna (Scombridae), Orange roughy (Hoplostethus atlanticus), and perch (Percidae).[5]

Conservation[edit]

Because of overfishing at their seamount spawning grounds, stocks of orange roughy (Hoplostethus atlanticus) have plummeted; experts say that it could take decades for the species to restore itself to its former numbers.[28]

The ecological conservation of seamounts is hurt by the simple lack of information available. Seamounts are very poorly studied, with only 350 of the estimated 100,000 seamounts in the world having received sampling, and fewer than 100 in depth.[29] Much of this lack of information can be attributed to a lack of technology,[clarification needed] and to the daunting task of reaching these underwater structures; the technology to fully explore them has only been around the last few decades. Before consistent conservation efforts can begin, the seamounts of the world must first be mapped, a task that is still in progress.[5]

Overfishing is a serious threat to seamount ecological welfare. There are several well-documented cases of fishery exploitation, for example the orange roughy (Hoplostethus atlanticus) off the coasts of Australia and New Zealand and the pelagic armorhead (Pseudopentaceros richardsoni) near Japan and Russia.[5] The reason for this is that the fishes that are targeted over seamounts are typically long-lived, slow-growing, and slow-maturing. The problem is confounded by the dangers of trawling, which damages seamount surface communities, and the fact that many seamounts are located in international waters, making proper monitoring difficult.[28] Bottom trawling in particular is extremely devastating to seamount ecology, and is responsible for as much as 95% of ecological damage to seamounts.[30]

Coral earrings of this type are often made from coral harvested off seamounts.

Corals from seamounts are also vulnerable, as they are highly valued for making jewellery and decorative objects. Significant harvests have been produced from seamounts, often leaving coral beds depleted.[5]

Individual nations are beginning to note the effect of fishing on seamounts, and the European Commission has agreed to fund the OASIS project, a detailed study of the effects of fishing on seamount communities in the North Atlantic.[28] Another project working towards conservation is CenSeam, a Census of Marine Life project formed in 2005. CenSeam is intended to provide the framework needed to prioritise, integrate, expand and facilitate seamount research efforts in order to significantly reduce the unknown and build towards a global understanding of seamount ecosystems, and the roles they have in the biogeography, biodiversity, productivity and evolution of marine organisms.[29][31]

Possibly the best ecologically studied seamount in the world is Davidson Seamount, with six major expeditions recording over 60,000 species observations. The contrast between the seamount and the surrounding area was well-marked.[21] One of the primary ecological havens on the seamount is its deep sea coral garden, and many of the specimens noted were over a century old.[19] Following the expansion of knowledge on the seamount there was extensive support to make it a marine sanctuary, a motion that was granted in 2008 as part of the Monterey Bay National Marine Sanctuary.[32] Much of what is known about seamounts ecologically is based on observations from Davidson.[19][27] Another such seamount is Bowie Seamount, which has also been declared a marine protected area by Canada for its ecological richness.[33]

Exploration[edit]

Graph showing the rise in global sea level (in mm) as measured by the NASA/CNES oceanic satellite altimeter TOPEX/Poseidon (left) and its follow-on mission Jason-1

The study of seamounts has been hindered for a long time by the lack of technology. Although seamounts have been sampled as far back as the 19th century, their depth and position meant that the technology to explore and sample seamounts in sufficient detail did not exist until the last few decades. Even with the right technology available,[clarification needed] only a scant 1% of the total number have been explored,[9] and sampling and information remains biased towards the top 500 m (1,640 ft).[5] New species are observed or collected and valuable information is obtained on almost every submersible dive at seamounts.[10]

Before seamounts and their oceanographic impact can be fully understood, they must be mapped, a daunting task due to their sheer number.[5] The most detailed seamount mappings are provided by multibeam echosounding (sonar), however after more than 5000 publicly held cruises, the amount of the sea floor that has been mapped remains minuscule. Satellite altimetry is a broader alternative, albeit not as detailed, with 13,000 catalogued seamounts; however this is still only a fraction of the total 100,000. The reason for this is that uncertainties in the technology limit recognition to features 1,500 m (4,921 ft) or larger. In the future, technological advances could allow for a larger and more detailed catalogue.[23]

Observations from CryoSat-2 combined with data from other satellites has shown thousands of previously uncharted seamounts, with more to come as data is interpreted.[34][35][36][37]

Deep-sea mining[edit]

Seamounts are a possible future source of economically important metals. Even though the ocean makes up 70% of Earth's surface area, technological challenges have severely limited the extent of deep sea mining. But with the constantly decreasing supply on land, some mining specialists see oceanic mining as the destined future, and seamounts stand out as candidates.[38]

Seamounts are abundant, and all have metal resource potential because of various enrichment processes during the seamount's life. An example for epithermal gold mineralization on the seafloor is Conical Seamount, located about 8 km south of Lihir Island in Papua New Guinea. Conical Seamount has a basal diameter of about 2.8 km and rises about 600 m above the seafloor to a water depth of 1050 m. Grab samples from its summit contain the highest gold concentrations yet reported from the modern seafloor (max. 230 g/t Au, avg. 26 g/t, n=40).[39] Iron-manganese, hydrothermal iron oxide, sulfide, sulfate, sulfur, hydrothermal manganese oxide, and phosphorite[40] (the latter especially in parts of Micronesia) are all mineral resources that are deposited upon or within seamounts. However, only the first two have any potential of being targeted by mining in the next few decades.[38]

Dangers[edit]

USS San Francisco in dry dock in Guam in January 2005, following its collision with an uncharted seamount. The damage was extensive and the submarine was just barely salvaged.[41]

Some seamounts have not been mapped and thus pose a navigational danger. For instance, Muirfield Seamount is named after the ship that hit it in 1973.[42] More recently, the submarine USS San Francisco ran into an uncharted seamount in 2005 at a speed of 35 knots (40.3 mph; 64.8 km/h), sustaining serious damage and killing one seaman.[41]

One major seamount risk is that often, in the late of stages of their life, extrusions begin to seep in the seamount. This activity leads to inflation, over-extension of the volcano's flanks, and ultimately flank collapse, leading to submarine landslides with the potential to start major tsunamis, which can be among the largest natural disasters in the world. In an illustration of the potent power of flank collapses, a summit collapse on the northern edge of Vlinder Seamount resulted in a pronounced headwall scarp and a field of debris up to 6 km (4 mi) away.[11] A catastrophic collapse at Detroit Seamount flattened its whole structure extensively.[15] Lastly, in 2004, scientists found marine fossils 61 m (200 ft) up the flank of Kohala mountain in Hawaii (island). Subsidation analysis found that at the time of their deposition, this would have been 500 m (1,640 ft) up the flank of the volcano,[43] far too high for a normal wave to reach. The date corresponded with a massive flank collapse at the nearby Mauna Loa, and it was theorized that it was a massive tsunami, generated by the landslide, that deposited the fossils.[44]

See also[edit]

  • Asphalt volcano
  • Bathymetry
  • Evolution of Hawaiian volcanoes
  • High island
  • Hotspot (geology)
  • List of submarine volcanoes
  • Marine protected area
  • Mud volcano
  • Oceanic trench
  • Rosa Seamount
  • Submarine eruption
  • Submarine volcano
  • Topographic prominence

References[edit]

  1. ^ a b c IHO, 2008. Standardization of Undersea Feature Names: Guidelines Proposal form Terminology, 4th ed. International Hydrographic Organisation and Intergovernmental Oceanographic Commission, Monaco.
  2. ^ Nybakken, James W. and Bertness, Mark D., 2008. Marine Biology: An Ecological Approach. Sixth Edition. Benjamin Cummings, San Francisco
  3. ^ a b Watts, T. (2019). "Science, Seamounts and Society". Geoscientist. August 2019: 10–16.
  4. ^ a b c Harris, P.T., MacMillan-Lawler, M., Rupp, J., Baker, E.K., 2014. Geomorphology of the oceans. Marine Geology 352, 4–24
  5. ^ a b c d e f g h i j k l "Seamount". Encyclopedia of Earth. December 9, 2008. Retrieved 24 July 2010.
  6. ^ a b Craig, C.H.; Sandwell, D.T. (1988). "Global distribution of seamounts from Seasat profiles". Journal of Geophysical Research. 93 (B9): 10408–410, 420. Bibcode:1988JGR....9310408C. doi:10.1029/jb093ib09p10408.
  7. ^ Kitchingman, A., Lai, S., 2004. Inferences on Potential Seamount Locations from Mid-Resolution Bathymetric Data. in: Morato, T., Pauly, D. (Eds.), FCRR Seamounts: Biodiversity and Fisheries. Fisheries Centre Research Reports. University of British Columbia, Vanvouver, BC, pp. 7–12.
  8. ^ a b Keating, Barbara H.; Fryer, Patricia; Batiza, Rodey; Boehlert, George W. (1987), "Seamounts, Islands, and Atolls", Washington DC American Geophysical Union Geophysical Monograph Series, Geophysical Monograph Series, American Geophysical Union, 43, Bibcode:1987GMS....43.....K, doi:10.1029/GM043, ISBN 9781118664209
  9. ^ a b "Seamount Scientists Offer New Comprehensive View of Deep-Sea Mountains". ScienceDaily. 23 February 2010. Retrieved 25 July 2010.
  10. ^ a b "Seamounts Identified as Significant, Unexplored Territory". ScienceDirect. 30 April 2010. Retrieved 25 July 2010.
  11. ^ a b c d e f g h i j Hubert Straudigal & David A Clauge. "The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions" (PDF). Oceanography. Seamounts Special Issue. 32 (1). Archived from the original (PDF) on 13 June 2010. Retrieved 25 July 2010.
  12. ^ K. Hoernle; F. Hauff; R. Werner; P. van den Bogaard; A. D. Gibbons; S. Conrad & R. D. Müller (27 November 2011). "Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere". Nature Geoscience. 4 (12): 883–887. Bibcode:2011NatGe...4..883H. CiteSeerX 10.1.1.656.2778. doi:10.1038/ngeo1331.
  13. ^ "Pillow lava". NOAA. Retrieved 25 July 2010.
  14. ^ "SITE 1206". Ocean Drilling Program Database-Results of Site 1206. Ocean Drilling Program. Retrieved 26 July 2010.
  15. ^ a b Kerr, B. C., D. W. Scholl, and S. L. Klemperer (July 12, 2005). "Seismic stratigraphy of Detroit Seamount, Hawaiian–Emperor Seamount chain" (PDF). Stanford University. Retrieved 15 July 2010.CS1 maint: multiple names: authors list (link)
  16. ^ Rubin, Ken (January 19, 2006). "General Information About Loihi". Hawaii Center for Volcanology. SOEST. Retrieved 26 July 2010.
  17. ^ "The Bowie Seamount Area" (PDF). John F. Dower and Frances J. Fee. February 1999. Retrieved 26 July 2010.
  18. ^ "Guyots". Encyclopædia Britannica. Retrieved 24 July 2010.
  19. ^ a b c "Seamounts may serve as refuges for deep-sea animals that struggle to survive elsewhere". PhysOrg. February 11, 2009. Retrieved December 7, 2009.
  20. ^ "Davidson Seamount" (PDF). NOAA, Monterey Bay National Marine Sanctuary. 2006. Retrieved 2 December 2009.
  21. ^ a b McClain, Craig R.; Lundsten L., Ream M., Barry J., DeVogelaere A. (January 7, 2009). Rands, Sean (ed.). "Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount". PLoS ONE. 4 (1): e4141. Bibcode:2009PLoSO...4.4141M. doi:10.1371/journal.pone.0004141. PMC 2613552. PMID 19127302.CS1 maint: multiple names: authors list (link)
  22. ^ a b Lundsten, L; J. P. Barry, G. M. Cailliet, D. A. Clague, A. DeVogelaere, J. B. Geller (January 13, 2009). "Benthic invertebrate communities on three seamounts off southern and central California". Marine Ecology Progress Series. 374: 23–32. Bibcode:2009MEPS..374...23L. doi:10.3354/meps07745.CS1 maint: multiple names: authors list (link)
  23. ^ a b Pual Wessel; David T. Sandwell; Seung-Sep Kim. "The Global Seamount Census" (PDF). Oceanography. Seamounts Special Issue. 23 (1). ISSN 1042-8275. Archived from the original (PDF) on 13 June 2010. Retrieved 25 June 2010.
  24. ^ Higashi, Y; et al. (2004). "Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber". FEMS Microbiology Ecology. 47 (3): 327–336. doi:10.1016/S0168-6496(04)00004-2. PMID 19712321.
  25. ^ "Introduction to the Biology and Geology of Lōʻihi Seamount". Lōʻihi Seamount. Fe-Oxidizing Microbial Observatory (FeMO). 2009-02-01. Retrieved 2009-03-02.
  26. ^ Kennedy, Jennifer. "Seamount: What is a Seamount?". ask.com. Retrieved 25 July 2010.
  27. ^ a b Morato, T., Varkey, D.A., Damaso, C., Machete, M., Santos, M., Prieto, R., Santos, R.S. and Pitcher, T.J. (2008). "Evidence of a seamount effect on aggregating visitors". Marine Ecology Progress Series 357: 23–32.
  28. ^ a b c d "Seamounts – hotspots of marine life". International Council for the Exploration of the Sea. Archived from the original on 13 April 2010. Retrieved 24 July 2010.
  29. ^ a b "CenSeam Mission". CenSeam. Archived from the original on 24 May 2010. Retrieved 22 July 2010.
  30. ^ Report of the Secretary-General (2006) The Impacts of Fishing on Vulnerable Marine Ecosystems United Nations. 14 July 2006. Retrieved on 26 July 2010.
  31. ^ "CenSeam Science". CenSeam. Retrieved 22 July 2010.
  32. ^ "NOAA Releases Plans for Managing and Protecting Cordell Bank, Gulf of Farallones and Monterey Bay National Marine Sanctuaries" (PDF). Press release. NOAA. November 20, 2008. Retrieved 2 December 2009.[permanent dead link]
  33. ^ "Bowie Seamount Marine Protected Area". Fisheries and Oceans Canada. 1 October 2011. Retrieved 31 December 2011.
  34. ^ Amos, Jonathan. "Satellites detect 'thousands' of new ocean-bottom mountains" BBC News, 2 October 2014.
  35. ^ "New Map Exposes Previously Unseen Details of Seafloor"
  36. ^ Sandwell, David T.; Müller, R. Dietmar; Smith, Walter H. F.; Garcia, Emmanuel; Francis, Richard (2014). "New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure". Science. 346 (6205): 65–67. Bibcode:2014Sci...346...65S. doi:10.1126/science.1258213. PMID 25278606.
  37. ^ "Cryosat 4 Plus" DTU Space
  38. ^ a b James R. Hein; Tracy A. Conrad; Hubert Staudigel. "Seamount Mineral Deposits: A Source for Rare Minerals for High Technology Industries" (PDF). Oceanography. Seamounts Special Issue. 23 (1). ISSN 1042-8275. Archived from the original (PDF) on 13 June 2010. Retrieved 26 July 2010.
  39. ^ Muller, Daniel; Leander Franz; Sven Petersen; Peter Herzig; Mark Hannington (2003). "Comparison between magmatic activity and gold mineralization at Conical Seamount and Lihir Island, Papua New Guinea". Mineralogy and Petrology. 79 (3–4): 259–283. Bibcode:2003MinPe..79..259M. doi:10.1007/s00710-003-0007-3.
  40. ^ C.Michael Hogan. 2011. Phosphate. Encyclopedia of Earth. Topic ed. Andy Jorgensen. Ed.-in-Chief C.J.Cleveland. National Council for Science and the Environment. Washington DC
  41. ^ a b "USS San Francisco (SSN 711)". Archived from the original on 25 September 2009. Retrieved 25 July 2010.
  42. ^ Nigel Calder (2002). How to Read a Navigational Chart: A Complete Guide to the Symbols, Abbreviations, and Data Displayed on Nautical Charts. International Marine/Ragged Mountain Press.
  43. ^ Seach, John. "Kohala Volcano". Volcanism reference base. John Seach, vulcanologist. Retrieved 25 July 2010.
  44. ^ "Hawaiian tsunami left a gift at foot of volcano". New Scientist (2464): 14. 2004-09-11. Retrieved 25 July 2010.


Bibliography[edit]

Geology

  • Keating, B.H., Fryer, P., Batiza, R., Boehlert, G.W. (Eds.), 1987: Seamounts, islands and atolls. Geophys. Monogr. 43:319–334.
  • Menard, H.W. (1964). Marine Geology of the Pacific. International Series in the Earth Sciences. McGraw-Hill, New York, 271 pp.

Ecology

  • Clark, M. R.; Rowden, A. A.; Schlacher, T.; Williams, A.; Consalvey, M.; Stocks, K. I.; Rogers, A. D.; O'Hara, T. D.; White, M.; Shank, T. M.; Hall-Spencer, J. M. (2010). "The Ecology of Seamounts: Structure, Function, and Human Impacts". Annual Review of Marine Science. 2: 253–278. Bibcode:2010ARMS....2..253C. doi:10.1146/annurev-marine-120308-081109. hdl:10026.1/1339. PMID 21141665.
  • Richer de Forges; J. Anthony Koslow & G. C. B. Poore (22 June 2000). "Diversity and endemism of the benthic seamount fauna in the southwest Pacific". Nature. 405 (6789): 944–947. doi:10.1038/35016066. PMID 10879534.
  • Koslow, J.A. (1997). "Seamounts and the ecology of deep-sea fisheries". Am. Sci. 85 (2): 168–176. Bibcode:1997AmSci..85..168K.
  • Lundsten, L; McClain, CR; Barry, JP; Cailliet, GM; Clague, DA; DeVogelaere, AP (2009). "Ichthyofauna on Three Seamounts off Southern and Central California, USA". Marine Ecology Progress Series. 389: 223–232. Bibcode:2009MEPS..389..223L. doi:10.3354/meps08181.
  • Pitcher, T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N. and Santos, R.S. (eds) (2007). "Seamounts: Ecology, Fisheries and Conservation". Fish and Aquatic Resources Series 12, Blackwell, Oxford, UK. 527pp. ISBN 978-1-4051-3343-2

External links[edit]

Geography and geology

  • Earthref Seamount Catalogue. A database of seamount maps and catalogue listings.
  • Volcanic History of Seamounts in the Gulf of Alaska.
  • The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand. Aftermath of a seamount carving into the far side of a subduction trench.
  • Evolution of Hawaiian volcanoes. The life cycle of seamounts was originally observed off of the Hawaiian arc.
  • How Volcanoes Work: Lava and Water. An explanation of the different types of lava-water interactions.

Ecology

  • A review of the effects of seamounts on biological processes. NOAA paper.
  • Mountains in the Sea, a volume on the biological and geological effects of seamounts, available fully online.
  • SeamountsOnline, seamount biology database.
  • Vulnerability of deep sea corals to fishing on seamounts beyond areas of national jurisdiction, United Nations Environment Program.