Bacteria


Bacteria (/bækˈtɪəriə/ (listen)About this sound; common noun bacteria, singular bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria are vital in many stages of the nutrient cycle by recycling nutrients such as the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Humans and most animals carry millions of bacteria. Most are in the gut, and there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system, though many are beneficial, particularly the ones in the gut. However, several species of bacteria are pathogenic and cause infectious diseases, including cholera, syphilis, anthrax, leprosy, and bubonic plague. The most common fatal bacterial diseases are respiratory infections. Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and the breakdown of oil spills, the production of cheese and yogurt through fermentation, the recovery of gold, palladium, copper and other metals in the mining sector, as well as in biotechnology, and the manufacture of antibiotics and other chemicals.

Once regarded as plants constituting the class Schizomycetes ("fission fungi"), bacteria are now classified as prokaryotes. Unlike cells of animals and other eukaryotes, bacterial cells do not contain a nucleus and rarely harbour membrane-bound organelles. Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor. These evolutionary domains are called Bacteria and Archaea.[2]

The word bacteria is the plural of the New Latin bacterium, which is the latinisation of the Greek βακτήριον (bakterion),[3] the diminutive of βακτηρία (bakteria), meaning "staff, cane",[4] because the first ones to be discovered were rod-shaped.[5] [6]

The ancestors of bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago.[8] For about 3 billion years, most organisms were microscopic, and bacteria and archaea were the dominant forms of life.[9][10][11] Although bacterial fossils exist, such as stromatolites, their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny, and these studies indicate that bacteria diverged first from the archaeal/eukaryotic lineage.[12] The most recent common ancestor of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago.[13][14][15] The earliest life on land may have been bacteria some 3.22 billion years ago.[16]


Rod-shaped Bacillus subtilis
Phylogenetic tree of Bacteria, Archaea and Eucarya. The vertical line at bottom represents the last universal common ancestor.[7]
Bacteria display many cell morphologies and arrangements[6]
The range of sizes shown by prokaryotes (Bacteria), relative to those of other organisms and biomolecules.[38]
Structure and contents of a typical Gram-positive bacterial cell (seen by the fact that only one cell membrane is present).
An electron micrograph of Halothiobacillus neapolitanus cells with carboxysomes inside, with arrows highlighting visible carboxysomes. Scale bars indicate 100 nm.
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface
Bacillus anthracis (stained purple) growing in cerebrospinal fluid[83]
Many bacteria reproduce through binary fission, which is compared to mitosis and meiosis in this image.
A culture of Salmonella
A colony of Escherichia coli[105]
Helium ion microscopy image showing T4 phage infecting E. coli. Some of the attached phage have contracted tails indicating that they have injected their DNA into the host. The bacterial cells are ~ 0.5 µm wide.[118]
Transmission electron micrograph of Desulfovibrio vulgaris showing a single flagellum at one end of the cell. Scale bar is 0.5 micrometers long.
The different arrangements of bacterial flagella: A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous
Streptococcus mutans visualised with a Gram stain.
Phylogenetic tree showing the diversity of bacteria, compared to other organisms. Here bacteria are represented by three main supergroups: the CPR ultramicrobacterias, Terrabacteria and Gracilicutes according to recent genomic analyzes (2019).[154]
Overview of bacterial infections and main species involved.[181]
Colour-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells
In bacterial vaginosis beneficial bacteria in the vagina (top) are displaced by pathogens (bottom). Gram stain.
Antonie van Leeuwenhoek, the first microbiologist and the first person to observe bacteria using a microscope.