De Wikipedia, la enciclopedia libre
  (Redirigido desde el receptor EGF )
Saltar a navegación Saltar a búsqueda

El receptor del factor de crecimiento epidérmico ( EGFR ; ErbB-1 ; HER1 en humanos) es una proteína transmembrana que es un receptor para miembros de la familia del factor de crecimiento epidérmico (familia EGF) de ligandos proteicos extracelulares . [5]

El receptor del factor de crecimiento epidérmico es un miembro de la familia de receptores ErbB , una subfamilia de cuatro receptores tirosina quinasas estrechamente relacionados : EGFR (ErbB-1), HER2 / neu (ErbB-2), Her 3 (ErbB-3) y Her 4 (ErbB-4). En muchos tipos de cáncer, las mutaciones que afectan la expresión o la actividad de EGFR podrían provocar cáncer . [6]

El factor de crecimiento epidérmico y su receptor fue descubierto por Stanley Cohen de la Universidad de Vanderbilt . Cohen compartió el Premio Nobel de Medicina de 1986 con Rita Levi-Montalcini por su descubrimiento de los factores de crecimiento .

La señalización deficiente del EGFR y otras tirosina quinasas receptoras  en humanos se asocia con enfermedades como el Alzheimer, mientras que la sobreexpresión se asocia con el desarrollo de una amplia variedad de tumores. La interrupción de la señalización de EGFR, ya sea bloqueando los sitios de unión de EGFR en el dominio extracelular del receptor o inhibiendo la actividad de tirosina quinasa intracelular, puede prevenir el crecimiento de tumores que expresan EGFR y mejorar la condición del paciente.

Función [ editar ]

Cascadas de señalización EGFR
Diagrama del receptor de EGF que destaca dominios importantes

Factor de crecimiento epidérmico receptor (EGFR) es una proteína transmembrana que se activa mediante la unión de sus específicas ligandos , incluyendo factor de crecimiento epidérmico y la transformación de α factor de crecimiento (TGF?) [7] ErbB2 no ha conocido activador directo de ligando , y puede estar en un estado activado se declaran constitutivamente o se vuelven activos tras la heterodimerización con otros miembros de la familia tales como EGFR. Tras la activación por sus ligandos de factor de crecimiento, EGFR sufre una transición de una forma monomérica inactiva a un homodímero activo . [8]- aunque existe alguna evidencia de que los dímeros inactivos preformados también pueden existir antes de la unión del ligando. [ cita requerida ] Además de formar homodímeros después de la unión del ligando, EGFR puede emparejarse con otro miembro de la familia de receptores ErbB, como ErbB2 / Her2 / neu , para crear un heterodímero activado . También hay evidencia que sugiere que se forman grupos de EGFR activados, aunque no está claro si este agrupamiento es importante para la activación en sí mismo o si ocurre después de la activación de dímeros individuales. [ cita requerida ]

La dimerización de EGFR estimula su actividad intrínseca de proteína tirosina quinasa intracelular. Como resultado, se produce la autofosforilación de varios residuos de tirosina (Y) en el dominio C-terminal de EGFR. Estos incluyen Y992, Y1045, Y1068, Y1148 e Y1173, como se muestra en el diagrama adyacente. [9] Esta autofosforilación provoca la activación aguas abajo y la señalización de varias otras proteínas que se asocian con las tirosinas fosforiladas a través de sus propios dominios SH2 de unión a fosfotirosina . Estas proteínas de señalización aguas abajo inician varias cascadas de transducción de señales , principalmente MAPK , Akt y JNK.vías que conducen a la síntesis de ADN y la proliferación celular. [10] Estas proteínas modulan fenotipos como la migración , adhesión y proliferación celular . La activación del receptor es importante para la respuesta inmune innata en la piel humana. El dominio quinasa de EGFR también puede fosforilar de forma cruzada residuos de tirosina de otros receptores con los que está agregado, y puede activarse él mismo de esa manera.

Roles biológicos [ editar ]

El EGFR es esencial para el desarrollo ductal de las glándulas mamarias , [11] [12] [13] y los agonistas del EGFR como la anfirregulina , el TGF-α y la herregulina inducen el desarrollo tanto ductal como lobuloalveolar incluso en ausencia de estrógeno y progesterona . [14] [15]

Papel en la enfermedad humana [ editar ]

Cáncer [ editar ]

Las mutaciones que conducen a la sobreexpresión de EGFR (conocidas como regulación positiva o amplificación) se han asociado con varios cánceres , incluido el adenocarcinoma de pulmón (40% de los casos), cánceres anales , [16] glioblastoma (50%) y tumores epiteliales de la cabeza y cuello (80-100%). [17] Estas mutaciones somáticas que involucran al EGFR conducen a su activación constante, lo que produce una división celular descontrolada. [18] En el glioblastoma , a menudo se observa una mutación específica de EGFR, llamada EGFRvIII. [19] Las mutaciones, amplificaciones o desregulaciones de EGFR o miembros de la familia están implicadas en aproximadamente el 30% de todoscánceres epiteliales . [ cita requerida ]

Enfermedad inflamatoria [ editar ]

La señalización aberrante del EGFR se ha relacionado con la psoriasis, el eccema y la aterosclerosis. [20] [21] Sin embargo, sus funciones exactas en estas condiciones están mal definidas.

Enfermedad monogénica [ editar ]

Se descubrió que un solo niño que presentaba inflamación epitelial multiorgánica tenía una mutación homocigótica de pérdida de función en el gen EGFR . La patogenicidad de la mutación EGFR fue apoyada por experimentos in vitro y análisis funcional de una biopsia de piel. Su fenotipo severo refleja muchos hallazgos de investigaciones previas sobre la función del EGFR. Sus características clínicas incluían erupción papulopustulosa, piel seca, diarrea crónica, anomalías en el crecimiento del cabello, dificultades para respirar y desequilibrios electrolíticos. [22]

Curación de heridas y fibrosis [ editar ]

Se ha demostrado que EGFR juega un papel crítico en la diferenciación de fibroblasto dependiente de TGF-beta1 para miofibroblastos . [23] [24] La persistencia aberrante de miofibroblastos dentro de los tejidos puede conducir a una fibrosis tisular progresiva , alterando la función de los tejidos u órganos (p. Ej. , Cicatrices hipertróficas o queloides de la piel , cirrosis hepática , fibrosis miocárdica , enfermedad renal crónica ).

Aplicaciones médicas [ editar ]

Objetivo farmacológico [ editar ]

La identificación de EGFR como oncogén ha llevado al desarrollo de terapias contra el cáncer dirigidas contra EGFR (llamados "inhibidores de EGFR", EGFRi), incluidos gefitinib , [25] erlotinib , afatinib , brigatinib e icotinib [26] para el cáncer de pulmón y cetuximab. para el cáncer de colon . Más recientemente, AstraZeneca ha desarrollado Osimertinib , un inhibidor de tirosina quinasa de tercera generación. [27]

Muchos enfoques terapéuticos están dirigidos al EGFR. Cetuximab y panitumumab son ejemplos de inhibidores de anticuerpos monoclonales . Sin embargo, el primero es del tipo IgG1 , el segundo del tipo IgG2 ; las consecuencias sobre la citotoxicidad celular dependiente de anticuerpos pueden ser bastante diferentes. [28] Otros monoclonales en desarrollo clínico son zalutumumab , nimotuzumab y matuzumab . Los anticuerpos monoclonales bloquean el dominio de unión del ligando extracelular. Con el sitio de unión bloqueado, las moléculas de señal ya no pueden unirse allí y activar la tirosina quinasa.

Otro método consiste en utilizar moléculas pequeñas para inhibir la tirosina quinasa EGFR, que se encuentra en el lado citoplásmico del receptor. Sin actividad quinasa, EGFR no puede activarse por sí mismo, lo que es un requisito previo para la unión de proteínas adaptadoras posteriores. Aparentemente, al detener la cascada de señalización en las células que dependen de esta vía para el crecimiento, se reduce la proliferación y migración de tumores. Gefitinib , erlotinib , brigatinib y lapatinib (inhibidor mixto de EGFR y ERBB2) son ejemplos de inhibidores de quinasas de molécula pequeña .

CimaVax-EGF , una vacuna activa dirigida a EGF como ligando principal de EGF, utiliza un enfoque diferente, generando anticuerpos contra el propio EGF, negando así los cánceres dependientes de EGFR de un estímulo proliferativo; [29] se utiliza como terapia contra el cáncer contra el carcinoma de pulmón de células no pequeñas (la forma más común de cáncer de pulmón) en Cuba, y está siendo sometido a más ensayos para su posible autorización en Japón, Europa y Estados Unidos. [30]

Hay varios métodos cuantitativos disponibles que utilizan la detección de fosforilación de proteínas para identificar los inhibidores de la familia EGFR. [31]

Los nuevos fármacos como osimertinib , gefitinib , erlotinib y brigatinib se dirigen directamente al EGFR. Los pacientes se han dividido en EGFR positivos y EGFR negativos, en función de si una prueba de tejido muestra una mutación. Los pacientes con EGFR positivo han mostrado una tasa de respuesta del 60%, que supera la tasa de respuesta de la quimioterapia convencional. [32]

Sin embargo, muchos pacientes desarrollan resistencia. Dos fuentes principales de resistencia son la mutación T790M y el oncogén MET. [32] Sin embargo, en 2010 no hubo consenso sobre un enfoque aceptado para combatir la resistencia ni la aprobación de una combinación específica por parte de la FDA. Se informaron los resultados de la fase II del ensayo clínico para brigatinib dirigido a la mutación T790M, y brigatinib recibió el estado de designación de Terapia Avanzada por parte de la FDA en febrero de 2015.

El efecto adverso más común de los inhibidores de EGFR, que se encuentra en más del 90% de los pacientes, es una erupción papulopustulosa que se extiende por la cara y el torso; la presencia de la erupción se correlaciona con el efecto antitumoral del fármaco. [33] En el 10% al 15% de los pacientes, los efectos pueden ser graves y requerir tratamiento. [34] [35]

Algunas pruebas tienen como objetivo predecir los beneficios del tratamiento con EGFR, como Veristrat . [36]

En 2014 se informó que la investigación de laboratorio que utiliza células madre modificadas genéticamente para atacar EGFR en ratones es prometedora. [37] El EGFR es un objetivo bien establecido para los anticuerpos monoclonales y los inhibidores específicos de la tirosina quinasa. [38]

Destino para agentes de imágenes [ editar ]

Se han desarrollado agentes de formación de imágenes que identifican cánceres dependientes de EGFR utilizando EGF marcado. [39] La viabilidad de la obtención de imágenes in vivo de la expresión de EGFR se ha demostrado en varios estudios. [40] [41]

Interacciones [ editar ]

Se ha demostrado que el receptor del factor de crecimiento epidérmico interactúa con:

  • AR , [42] [43]
  • ARF4 , [44]
  • CAV1 , [45]
  • CAV3 , [45]
  • CBL , [46] [47] [48] [49] [50]
  • CBLB , [47] [51]
  • CBLC , [52] [53]
  • CD44 , [23]
  • CDC25A , [54]
  • CRK , [51] [55]
  • CTNNB1 , [56] [57] [58]
  • DCN , [59] [60]
  • EGF , [61] [62]
  • GRB14 , [63]
  • Grb2 , [51] [61] [63] [64] [65] [66] [67] [68] [69] [70]
  • JAK2 , [71]
  • MUC1 , [72] [73]
  • NCK1 , [64] [74] [75]
  • NCK2 [64] [76] [77]
  • PKC alfa , [78]
  • PLCG1 , [46] [79]
  • PLSCR1 , [80]
  • PTPN1 , [81] [82]
  • PTPN11 , [51] [83]
  • PTPN6 , [83] [84]
  • PTPRK , [85]
  • SH2D3A , [86]
  • SH3KBP1 , [87] [88]
  • SHC1 , [51] [89]
  • SOS1 , [69] [90] [91]
  • Src , [71] [92] [93]
  • STAT1 , [71] [94]
  • STAT3 , [71] [95]
  • STAT5A , [51] [71]
  • UBC , [48] [49] [96] y
  • ERA , [97]
  • PAR2 . [98]

En las moscas de la fruta, el receptor del factor de crecimiento epidérmico interactúa con Spitz . [99]

Referencias [ editar ]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000146648 - Ensembl , mayo de 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020122 - Ensembl , mayo de 2017
  3. ^ "Referencia humana de PubMed:" . Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed del ratón:" . Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ Herbst RS (2004). "Revisión de la biología del receptor del factor de crecimiento epidérmico". Revista Internacional de Oncología Radioterápica, Biología, Física . 59 (2 Suppl): 21–6. doi : 10.1016 / j.ijrobp.2003.11.041 . PMID 15142631 . 
  6. ^ Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (agosto de 2007). "Receptores ErbB: de oncogenes al tratamiento del cáncer dirigido" . La Revista de Investigación Clínica . 117 (8): 2051–8. doi : 10.1172 / JCI32278 . PMC 1934579 . PMID 17671639 .  
  7. ^ tenga en cuenta que en elartículo de ErbB se proporciona una lista completa de los ligandos capaces de activar EGFR y otros miembros de la familia ErbB ).
  8. ^ Yarden Y, Schlessinger J (marzo de 1987). "El factor de crecimiento epidérmico induce una agregación rápida y reversible del receptor del factor de crecimiento epidérmico purificado". Bioquímica . 26 (5): 1443–51. doi : 10.1021 / bi00379a035 . PMID 3494473 . 
  9. ^ Hacia abajo J, Parker P, Waterfield MD (1984). "Sitios de autofosforilación en el receptor del factor de crecimiento epidérmico". Naturaleza . 311 (5985): 483–5. Código Bibliográfico : 1984Natur.311..483D . doi : 10.1038 / 311483a0 . PMID 6090945 . S2CID 4332354 .  
  10. ^ Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). "Un mapa completo de la vía de la señalización del receptor del factor de crecimiento epidérmico" . Biología de sistemas moleculares . 1 (1): E1 – E17. doi : 10.1038 / msb4100014 . PMC 1681468 . PMID 16729045 .  
  11. ^ Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, Hom YK, Cunha GR, DiAugustine RP (septiembre de 1998). "Activación y función del receptor del factor de crecimiento epidérmico y erbB-2 durante la morfogénesis de la glándula mamaria". Crecimiento y diferenciación celular . 9 (9): 777–85. PMID 9751121 . 
  12. ^ McBryan J, Howlin J, Napoletano S, Martin F (junio de 2008). "Anfirregulina: papel en el desarrollo de la glándula mamaria y el cáncer de mama". Revista de biología y neoplasia de la glándula mamaria . 13 (2): 159–69. doi : 10.1007 / s10911-008-9075-7 . PMID 18398673 . S2CID 13229645 .  
  13. ^ Sternlicht MD, Sunnarborg SW (junio de 2008). "El eje ADAM17-anfirregulina-EGFR en el desarrollo mamario y el cáncer" . Revista de biología y neoplasia de la glándula mamaria . 13 (2): 181–94. doi : 10.1007 / s10911-008-9084-6 . PMC 2723838 . PMID 18470483 .  
  14. ^ Kenney NJ, Bowman A, Korach KS, Barrett JC, Salomon DS (mayo de 2003). "Efecto de factores de crecimiento de tipo epidérmico exógeno sobre el desarrollo y la diferenciación de la glándula mamaria en el ratón knockout del receptor alfa de estrógeno (ERKO)". Investigación y tratamiento del cáncer de mama . 79 (2): 161–73. doi : 10.1023 / a: 1023938510508 . PMID 12825851 . S2CID 30782707 .  
  15. ^ Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB (diciembre de 1996). "Inducción de la morfogénesis ductal y la hiperplasia lobulillar por anfirregulina en la glándula mamaria del ratón". Crecimiento y diferenciación celular . 7 (12): 1769–81. PMID 8959346 . 
  16. ^ Walker F, Abramowitz L, Benabderrahmane D, Duval X, Descatoire V, Hénin D, Lehy T, Aparicio T (noviembre de 2009). "Expresión del receptor del factor de crecimiento en lesiones escamosas anales: modificaciones asociadas con el virus del papiloma humano oncogénico y el virus de la inmunodeficiencia humana" . Patología humana . 40 (11): 1517–27. doi : 10.1016 / j.humpath.2009.05.010 . PMID 19716155 . 
  17. ^ Kumar V, Abbas A, Aster J (2013). Patología básica de Robbins . Filadelfia: Elsevier / Saunders. pag. 179. ISBN 9781437717815.
  18. ^ Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (mayo de 2004). "Activación de mutaciones en el receptor del factor de crecimiento epidérmico subyacente a la capacidad de respuesta del cáncer de pulmón de células no pequeñas al gefitinib" (PDF) . La Revista de Medicina de Nueva Inglaterra . 350 (21): 2129–39. doi : 10.1056 / NEJMoa040938 . PMID 15118073 .  
  19. ^ Kuan CT, Wikstrand CJ, Bigner DD (junio de 2001). "Receptor mutante vIII de EGF como diana molecular en la terapia del cáncer". Cáncer relacionado con endocrino . 8 (2): 83–96. doi : 10.1677 / erc.0.0080083 . PMID 11397666 . S2CID 11790891 .  
  20. ^ Jost M, Kari C, Rodeck U (2000). "El receptor de EGF - un regulador esencial de múltiples funciones epidérmicas". Revista europea de dermatología . 10 (7): 505–10. PMID 11056418 . 
  21. ^ Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA (mayo de 2006). "Los receptores del factor de crecimiento epidérmico y su familia de ligandos: su papel putativo en la aterogénesis". Aterosclerosis . 186 (1): 38–53. doi : 10.1016 / j . ateroesclerosis.2005.06.038 . PMID 16076471 . 
  22. ^ Campbell P, Morton PE, Takeichi T, Salam A, Roberts N, Proudfoot LE, Mellerio JE, Aminu K, Wellington C, Patil SN, Akiyama M, Liu L, McMillan JR, Aristodemou S, Ishida-Yamamoto A, Abdul- Wahab A, Petrof G, Fong K, Harnchoowong S, Stone KL, Harper JI, McLean WH, Simpson MA, Parsons M, McGrath JA (octubre de 2014). "Inflamación epitelial resultante de una mutación hereditaria de pérdida de función en EGFR" . La Revista de Dermatología Investigativa . 134 (10): 2570–8. doi : 10.1038 / jid.2014.164 . PMC 4090136 . PMID 24691054 .  
  23. ^ a b Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R (mayo de 2013). La transformación de fibroblasto estimulado por factor de crecimiento β1 (TGF-β1) en diferenciación de miofibroblastos está mediada por el receptor del factor de crecimiento epidérmico facilitado por hialuronano (HA) (EGFR) y la co-localización de CD44 en balsas de lípidos . La Revista de Química Biológica . 288 (21): 14824–38. doi : 10.1074 / jbc.M113.451336 . PMC 3663506 . PMID 23589287 .  
  24. ^ Midgley AC, Bowen T, Phillips AO, Steadman R (abril de 2014). "La inhibición de microARN-7 rescata la pérdida asociada a la edad del receptor del factor de crecimiento epidérmico y la diferenciación dependiente de hialuronano en fibroblastos" . Célula de envejecimiento . 13 (2): 235–44. doi : 10.1111 / acel.12167 . PMC 4331777 . PMID 24134702 .  
  25. ^ Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (junio de 2004). "Mutaciones de EGFR en cáncer de pulmón: correlación con la respuesta clínica a la terapia con gefitinib" . Ciencia . 304 (5676): 1497–500. Código Bibliográfico : 2004Sci ... 304.1497P . doi : 10.1126 / science.1099314 . PMID 15118125 . 
  26. ^ Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu Z, Xue C, Zhang J, Zhang J, Ma Y, Zhou T, Yan Y, Hou X, Qin T, Dinglin X, Tian Y, Huang P, Huang Y, Zhao H, Zhang L (12 de febrero de 2014). "Metanálisis en red de erlotinib, gefitinib, afatinib e icotinib en pacientes con cáncer de pulmón de células no pequeñas avanzado que alberga mutaciones de EGFR" . PLOS ONE . 9 (2): e85245. Código Bibliográfico : 2014PLoSO ... 985245L . doi : 10.1371 / journal.pone.0085245 . PMC 3922700 . PMID 24533047 .  
  27. ^ Greig SL (febrero de 2016). "Osimertinib: primera aprobación mundial". Drogas . 76 (2): 263–73. doi : 10.1007 / s40265-015-0533-4 . PMID 26729184 . S2CID 45076898 .  
  28. ^ Yan L, Beckman RA (octubre de 2005). "Farmacogenética y farmacogenómica en el desarrollo de anticuerpos terapéuticos oncológicos" . BioTechniques . 39 (4): 565–8. doi : 10.2144 / 000112043 . PMID 16235569 . 
  29. ^ Rodríguez PC, Rodríguez G, González G, Lage A (invierno de 2010). "Desarrollo clínico y perspectivas de CIMAvax EGF, vacuna cubana para la terapia del cáncer de pulmón no microcítico" . Revisión MEDICC . 12 (1): 17–23. doi : 10.37757 / MR2010.V12.N1.4 . PMID 20387330 . 
  30. ^ Patel N (11 de mayo de 2015). "Cuba tiene una vacuna contra el cáncer de pulmón, y Estados Unidos la quiere" . Cableado . Consultado el 13 de mayo de 2015 .
  31. ^ Olive DM (octubre de 2004). "Métodos cuantitativos para el análisis de la fosforilación de proteínas en el desarrollo de fármacos". Revisión de expertos de proteómica . 1 (3): 327–41. doi : 10.1586 / 14789450.1.3.327 . PMID 15966829 . S2CID 30003827 .  
  32. ^ a b Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE (agosto de 2009). "Impacto del receptor del factor de crecimiento epidérmico y mutaciones de KRAS en los resultados clínicos en pacientes con cáncer de pulmón de células no pequeñas no tratados previamente: resultados de un registro de tumores en línea de ensayos clínicos" . Investigación clínica del cáncer . 15 (16): 5267–73. doi : 10.1158 / 1078-0432.CCR-09-0888 . PMC 3219530 . PMID 19671843 .  
  33. ^ Liu HB, Wu Y, Lv TF, Yao YW, Xiao YY, Yuan DM, Song Y (2013). "La erupción cutánea podría predecir la respuesta al inhibidor de la tirosina quinasa EGFR y el pronóstico para los pacientes con cáncer de pulmón de células no pequeñas: una revisión sistemática y un metanálisis" . PLOS ONE . 8 (1): e55128. Código bibliográfico : 2013PLoSO ... 855128L . doi : 10.1371 / journal.pone.0055128 . PMC 3559430 . PMID 23383079 .  
  34. ^ Gerber PA, Meller S, Eames T, Buhren BA, Schrumpf H, Hetzer S, Ehmann LM, Budach W, Bölke E, Matuschek C, Wollenberg A, Homey B (2012). "Manejo de la erupción asociada al inhibidor de EGFR: un estudio retrospectivo en 49 pacientes" . Revista europea de investigación médica . 17 (1): 4. doi : 10.1186 / 2047-783X-17-4 . PMC 3351712 . PMID 22472354 .  
  35. ^ Lacouture ME (octubre de 2006). "Mecanismos de toxicidad cutánea a inhibidores de EGFR". Reseñas de la naturaleza. Cáncer . 6 (10): 803–12. doi : 10.1038 / nrc1970 . PMID 16990857 . S2CID 7782594 .  
  36. ^ Molina-Pinelo S, Pastor MD, Paz-Ares L (febrero de 2014). "VeriStrat: ¿un biomarcador pronóstico y / o predictivo para pacientes con cáncer de pulmón avanzado?". Revisión de expertos en medicina respiratoria . 8 (1): 1–4. doi : 10.1586 / 17476348.2014.861744 . PMID 24308656 . S2CID 44854672 .  
  37. ^ Stuckey DW, Hingtgen SD, Karakas N, Rich BE, Shah K (febrero de 2015). "Ingeniería de células madre terapéuticas resistentes a toxinas para tratar tumores cerebrales" . Células madre . 33 (2): 589–600. doi : 10.1002 / madre.1874 . PMC 4305025 . PMID 25346520 .  
  38. ^ Roskoski R Jr (2014). "La familia ErbB / HER de proteína-tirosina quinasas y cáncer". Pharmacol Res . 79 : 34–74. doi : 10.1016 / j.phrs.2013.11.002 . PMID 24269963 . 
  39. ^ Lucas LJ, Tellez CA, Castilho ML, Lee CL, Hupman MA, Vieira LS, Ferreira I, Raniero L, Hewitt KC (mayo de 2015). "Desarrollo de un agente de imagen molecular sensible, estable y específico de EGFR para espectroscopía Raman mejorada de superficie". Revista de espectroscopia Raman . 46 (5): 434–446. Código bibliográfico : 2015JRSp ... 46..434L . doi : 10.1002 / jrs.4678 .
  40. ^ Lucas LJ, Chen XK, Smith AJ, Korbelik M, Zeng, Haitian L, Lee PW, Hewitt KC (23 de enero de 2015). "La agregación de nanopartículas en endosomas y lisosomas produce espectroscopía Raman mejorada en la superficie" . Revista de nanofotónica . 9 (1): 093094–1–14. Código bibliográfico : 2015JNano ... 9.3094L . doi : 10.1117 / 1.JNP.9.093094 .
  41. ^ Andersson KG, Oroujeni M, Garousi J, Mitran B, Ståhl S, Orlova A, Löfblom J, Tolmachev V (diciembre de 2016). "Viabilidad de la formación de imágenes de la expresión del receptor del factor de crecimiento epidérmico con ZEGFR: molécula affibody 2377 marcada con 99mTc utilizando un quelante que contiene cisteína basado en péptidos" . Revista Internacional de Oncología . 49 (6): 2285–2293. doi : 10.3892 / ijo.2016.3721 . PMC 5118000 . PMID 27748899 .  
  42. ^ Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E (octubre de 2004). "La señalización del receptor de EGF (EGFR) que promueve la invasión se interrumpe en las células de cáncer de próstata sensibles a los andrógenos por una interacción entre el EGFR y el receptor de andrógenos (AR)". Revista Internacional de Cáncer . 112 (1): 78–86. doi : 10.1002 / ijc.20362 . hdl : 2158/395766 . PMID 15305378 . S2CID 46121331 .  
  43. ^ Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (agosto de 2004). "El receptor de andrógenos se asocia con el receptor del factor de crecimiento epidérmico en las células de cáncer de próstata sensibles a los andrógenos". Esteroides . 69 (8–9): 549–52. doi : 10.1016 / j . esteroides.2004.05.011 . hdl : 2158/395763 . PMID 15288768 . S2CID 23831527 .  
  44. ^ Kim SW, Hayashi M, Lo JF, Yang Y, Yoo JS, Lee JD (enero de 2003). "ADP-factor de ribosilación 4 pequeña GTPasa media la activación de fosfolipasa D2 dependiente del receptor del factor de crecimiento epidérmico" . La Revista de Química Biológica . 278 (4): 2661–8. doi : 10.1074 / jbc.M205819200 . PMID 12446727 . 
  45. ↑ a b Couet J, Sargiacomo M, Lisanti MP (noviembre de 1997). "Interacción de un receptor de tirosina quinasa, EGF-R, con caveolinas. La unión de caveolina regula negativamente las actividades de tirosina y serina / treonina quinasa" . La Revista de Química Biológica . 272 (48): 30429–38. doi : 10.1074 / jbc.272.48.30429 . PMID 9374534 . 
  46. ↑ a b Tvorogov D, Carpenter G (julio de 2002). "Asociación dependiente de EGF de fosfolipasa C-gamma1 con c-Cbl". Investigación celular experimental . 277 (1): 86–94. doi : 10.1006 / excr.2002.5545 . PMID 12061819 . 
  47. ^ a b Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, Lipkowitz S (marzo de 1999). "cbl-b inhibe la señalización del receptor del factor de crecimiento epidérmico" . Oncogén . 18 (10): 1855–66. doi : 10.1038 / sj.onc.1202499 . PMID 10086340 . 
  48. ↑ a b Pennock S, Wang Z (mayo de 2008). "Una historia de dos Cbls: interacción de c-Cbl y Cbl-b en la regulación negativa del receptor del factor de crecimiento epidérmico" . Biología Molecular y Celular . 28 (9): 3020–37. doi : 10.1128 / MCB.01809-07 . PMC 2293090 . PMID 18316398 .  
  49. ↑ a b Umebayashi K, Stenmark H, Yoshimori T (agosto de 2008). "Ubc4 / 5 y c-Cbl continúan ubiquitinando el receptor de EGF después de la internalización para facilitar la poliubiquitinación y la degradación" . Biología molecular de la célula . 19 (8): 3454–62. doi : 10.1091 / mbc.E07-10-0988 . PMC 2488299 . PMID 18508924 .  
  50. ^ Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J (marzo de 2008). "Base estructural para un nuevo enlace H intrapeptidilo y unión inversa de sustratos de dominio c-Cbl-TKB" . El diario EMBO . 27 (5): 804–16. doi : 10.1038 / emboj.2008.18 . PMC 2265755 . PMID 18273061 .  
  51. ↑ a b c d e f Schulze WX, Deng L, Mann M (2005). "Interactoma de fosfotirosina de la familia de quinasas del receptor ErbB" . Biología de sistemas moleculares . 1 (1): E1 – E13. doi : 10.1038 / msb4100012 . PMC 1681463 . PMID 16729043 .  
  52. ^ Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (octubre de 1999). "Clonación molecular y caracterización de un nuevo gen de la familia cbl, cbl-c". Gene . 239 (1): 145–54. doi : 10.1016 / S0378-1119 (99) 00356-X . PMID 10571044 . 
  53. ^ Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, Lipkowitz S (junio de 1999). "cbl-3: una nueva proteína de la familia cbl de mamíferos" . Oncogén . 18 (22): 3365–75. doi : 10.1038 / sj.onc.1202753 . PMID 10362357 . 
  54. ^ Wang Z, Wang M, Lazo JS, Carr BI (mayo de 2002). "Identificación del receptor del factor de crecimiento epidérmico como diana de la proteína fosfatasa Cdc25A" . La Revista de Química Biológica . 277 (22): 19470–5. doi : 10.1074 / jbc.M201097200 . PMID 11912208 . 
  55. ^ Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (julio de 1998). "Fosforilación de la proteína adaptadora CrkII en la tirosina 221 por el receptor del factor de crecimiento epidérmico" . La Revista de Química Biológica . 273 (27): 17186–91. doi : 10.1074 / jbc.273.27.17186 . PMID 9642287 . 
  56. ^ Hazan RB, Norton L (abril de 1998). "El receptor del factor de crecimiento epidérmico modula la interacción de E-cadherina con el citoesqueleto de actina" . La Revista de Química Biológica . 273 (15): 9078–84. doi : 10.1074 / jbc.273.15.9078 . PMID 9535896 . 
  57. ^ Schroeder JA, Adriance MC, McConnell EJ, Thompson MC, Pockaj B, Gendler SJ (junio de 2002). "Los complejos de ErbB-beta-catenina están asociados con carcinomas transgénicos de mama ductal infiltrante humano y virus de tumor mamario murino (MMTV) -Wnt-1 y MMTV-c-Neu" . La Revista de Química Biológica . 277 (25): 22692–8. doi : 10.1074 / jbc.M201975200 . PMID 11950845 . 
  58. ^ Takahashi K, Suzuki K, Tsukatani Y (julio de 1997). "Inducción de la fosforilación de tirosina y asociación de beta-catenina con el receptor de EGF en la digestión tríptica de células quiescentes en la confluencia" . Oncogén . 15 (1): 71–8. doi : 10.1038 / sj.onc.1201160 . PMID 9233779 . 
  59. ^ Santra M, Reed CC, Iozzo RV (septiembre de 2002). "La decorina se une a una región estrecha del receptor del factor de crecimiento epidérmico (EGF), parcialmente superpuesto pero distinto del epítopo de unión a EGF" . La Revista de Química Biológica . 277 (38): 35671–81. doi : 10.1074 / jbc.M205317200 . PMID 12105206 . 
  60. ^ Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I (febrero de 1999). "La decorina es un ligando biológico para el receptor del factor de crecimiento epidérmico" . La Revista de Química Biológica . 274 (8): 4489–92. doi : 10.1074 / jbc.274.8.4489 . PMID 9988678 . 
  61. ^ a b Wong L, Deb TB, Thompson SA, Wells A, Johnson GR (marzo de 1999). "Un requisito diferencial para la región COOH-terminal del receptor del factor de crecimiento epidérmico (EGF) en la señalización mitogénica de anfirregulina y EGF" . La Revista de Química Biológica . 274 (13): 8900–9. doi : 10.1074 / jbc.274.13.8900 . PMID 10085134 . 
  62. ^ Stortelers C, Souriau C, van Liempt E, van de Poll ML, van Zoelen EJ (julio de 2002). "Papel del N-terminal del factor de crecimiento epidérmico en la unión de ErbB-2 / ErbB-3 estudiado por presentación de fagos". Bioquímica . 41 (27): 8732–41. doi : 10.1021 / bi025878c . PMID 12093292 . 
  63. ^ a b Daly RJ, Sanderson GM, Janes PW, Sutherland RL (mayo de 1996). "Clonación y caracterización de GRB14, un miembro novedoso de la familia de genes GRB7" . La Revista de Química Biológica . 271 (21): 12502–10. doi : 10.1074 / jbc.271.21.12502 . PMID 8647858 . 
  64. ↑ a b c Braverman LE, Quilliam LA (febrero de 1999). "Identificación de Grb4 / Nckbeta, una proteína adaptadora que contiene el dominio 2 y 3 de homología src que tiene propiedades biológicas y de unión similares a Nck" . La Revista de Química Biológica . 274 (9): 5542–9. doi : 10.1074 / jbc.274.9.5542 . PMID 10026169 . 
  65. ^ Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (marzo de 2003). "Una estrategia proteómica para dilucidar las interacciones proteína-proteína funcionales aplicadas a la señalización de EGF". Biotecnología de la naturaleza . 21 (3): 315–8. doi : 10.1038 / nbt790 . PMID 12577067 . S2CID 26838266 .  
  66. ^ Oneyama C, Nakano H, Sharma SV (marzo de 2002). "UCS15A, una nueva molécula pequeña, fármaco bloqueador de la interacción proteína-proteína mediada por el dominio SH3" . Oncogén . 21 (13): 2037–50. doi : 10.1038 / sj.onc.1205271 . PMID 11960376 . 
  67. ^ Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M (diciembre de 1994). "Grb2 / Ash se une directamente a las tirosinas 1068 y 1086 e indirectamente a la tirosina 1148 de los receptores del factor de crecimiento epidérmico humano activado en células intactas". La Revista de Química Biológica . 269 (49): 31310–4. PMID 7527043 . 
  68. ^ Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (febrero de 1997). "La subunidad RIalpha de la proteína quinasa A (PKA) se une a Grb2 y permite la interacción de la PKA con el receptor EGF activado" . Oncogén . 14 (8): 923–8. doi : 10.1038 / sj.onc.1200906 . PMID 9050991 . 
  69. ↑ a b Buday L, Egan SE, Rodriguez Viciana P, Cantrell DA, Downward J (marzo de 1994). "Un complejo de proteína adaptadora Grb2, factor de intercambio Sos y una fosfoproteína de tirosina unida a membrana de 36 kDa está implicada en la activación de ras en las células T". La Revista de Química Biológica . 269 (12): 9019–23. PMID 7510700 . 
  70. ^ Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (agosto de 1992). "La proteína GRB2 que contiene el dominio SH2 y SH3 une las tirosina quinasas receptoras a la señalización de ras" . Celular . 70 (3): 431–42. doi : 10.1016 / 0092-8674 (92) 90167-B . PMID 1322798 . 
  71. ↑ a b c d e Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (junio de 1999). "La activación de factores de transcripción stat inducida por el receptor ErbB está mediada por tirosina quinasas Src" . La Revista de Química Biológica . 274 (24): 17209–18. doi : 10.1074 / jbc.274.24.17209 . PMID 10358079 . 
  72. ^ Schroeder JA, Thompson MC, Gardner MM, Gendler SJ (abril de 2001). "MUC1 transgénico interactúa con el receptor del factor de crecimiento epidérmico y se correlaciona con la activación de la proteína quinasa activada por mitógenos en la glándula mamaria del ratón" . La Revista de Química Biológica . 276 (16): 13057–64. doi : 10.1074 / jbc.M011248200 . PMID 11278868 . 
  73. ^ Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL, Kufe D (septiembre de 2001). "El receptor del factor de crecimiento epidérmico regula la interacción del antígeno del carcinoma humano DF3 / MUC1 con c-Src y beta-catenina" . La Revista de Química Biológica . 276 (38): 35239–42. doi : 10.1074 / jbc.C100359200 . PMID 11483589 . 
  74. ^ Tang J, Feng GS, Li W (octubre de 1997). "Unión directa inducida de la proteína adaptadora Nck a la proteína asociada a la proteína activadora de GTPasa p62 por el factor de crecimiento epidérmico" . Oncogén . 15 (15): 1823–32. doi : 10.1038 / sj.onc.1201351 . PMID 9362449 . 
  75. ^ Li W, Hu P, Skolnik EY, Ullrich A, Schlessinger J (diciembre de 1992). "La proteína Nck que contiene los dominios SH2 y SH3 es oncogénica y un objetivo común para la fosforilación por diferentes receptores de superficie" . Biología Molecular y Celular . 12 (12): 5824–33. doi : 10.1128 / MCB.12.12.5824 . PMC 360522 . PMID 1333047 .  
  76. ^ Chen M, She H, Davis EM, Spicer CM, Kim L, Ren R, Le Beau MM, Li W (septiembre de 1998). "Identificación de genes de la familia Nck, localización cromosómica, expresión y especificidad de señalización" . La Revista de Química Biológica . 273 (39): 25171–8. doi : 10.1074 / jbc.273.39.25171 . PMID 9737977 . 
  77. ^ Tu Y, Li F, Wu C (diciembre de 1998). "Nck-2, una nueva proteína adaptadora que contiene homología Src2 / 3 que interactúa con la proteína PINCH sólo LIM y los componentes de las vías de señalización de la quinasa del receptor del factor de crecimiento" . Biología molecular de la célula . 9 (12): 3367–82. doi : 10.1091 / mbc.9.12.3367 . PMC 25640 . PMID 9843575 .  
  78. ^ Gauthier ML, Torretto C, Ly J, Francescutti V, O'Day DH (agosto de 2003). "La proteína quinasa Calpha regula negativamente la difusión celular y la motilidad en las células de cáncer de mama humano MDA-MB-231 aguas abajo del receptor del factor de crecimiento epidérmico". Comunicaciones de investigación bioquímica y biofísica . 307 (4): 839–46. doi : 10.1016 / S0006-291X (03) 01273-7 . PMID 12878187 . 
  79. ^ Bedrin MS, Abolafia CM, Thompson JF (julio de 1997). "La asociación citoesquelética del receptor del factor de crecimiento epidérmico y las proteínas de señalización asociadas está regulada por la densidad celular en las células intestinales IEC-6". Revista de fisiología celular . 172 (1): 126–36. doi : 10.1002 / (SICI) 1097-4652 (199707) 172: 1 <126 :: AID-JCP14> 3.0.CO; 2-A . PMID 9207933 . 
  80. ^ Sun J, Nanjundan M, Pike LJ, Wiedmer T, Sims PJ (mayo de 2002). "La scramblase 1 de fosfolípidos de la membrana plasmática se enriquece en balsas de lípidos e interactúa con el receptor del factor de crecimiento epidérmico". Bioquímica . 41 (20): 6338–45. doi : 10.1021 / bi025610l . PMID 12009895 . 
  81. ^ Sarmiento M, Puius YA, Vetter SW, Keng YF, Wu L, Zhao Y, Lawrence DS, Almo SC, Zhang ZY (julio de 2000). "Base estructural de plasticidad en el reconocimiento de sustrato de proteína tirosina fosfatasa 1B". Bioquímica . 39 (28): 8171–9. doi : 10.1021 / bi000319w . PMID 10889023 . 
  82. ^ Zhang ZY, Walsh AB, Wu L, McNamara DJ, Dobrusin EM, Miller WT (marzo de 1996). "Determinantes del reconocimiento de sustrato en la proteína-tirosina fosfatasa, PTP1" . La Revista de Química Biológica . 271 (10): 5386–92. doi : 10.1074 / jbc.271.10.5386 . PMID 8621392 . 
  83. ↑ a b Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (septiembre de 1995). "Asociación de proteína tirosina fosfatasas de dominio SH2 con el receptor del factor de crecimiento epidérmico en células tumorales humanas. El ácido fosfatídico activa la desfosforilación del receptor por PTP1C" . La Revista de Química Biológica . 270 (36): 21277–84. doi : 10.1074 / jbc.270.36.21277 . PMID 7673163 . 
  84. ^ Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD (septiembre de 1998). "La fosfotirosina 1173 media la unión de la proteína-tirosina fosfatasa SHP-1 al receptor del factor de crecimiento epidérmico y la atenuación de la señalización del receptor" . La Revista de Química Biológica . 273 (38): 24839–46. doi : 10.1074 / jbc.273.38.24839 . PMID 9733788 . 
  85. ^ Wang SE, Wu FY, Shin I, Qu S, Arteaga CL (junio de 2005). "Factor de crecimiento transformante {beta} (TGF- {beta}) - Se requiere el receptor de tirosina fosfatasa de proteína de gen diana Smad tipo kappa para la función de TGF- {beta}" . Biología Molecular y Celular . 25 (11): 4703-15. doi : 10.1128 / MCB.25.11.4703-4715.2005 . PMC 1140650 . PMID 15899872 .  
  86. ^ Lu Y, Brush J, Stewart TA (abril de 1999). "NSP1 define una nueva familia de proteínas adaptadoras que unen los receptores de integrina y tirosina quinasa a la vía de señalización de la quinasa c-Jun N-terminal / proteína quinasa activada por estrés" . La Revista de Química Biológica . 274 (15): 10047–52. doi : 10.1074 / jbc.274.15.10047 . PMID 10187783 . 
  87. ^ Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I (marzo de 2002). "El complejo Cbl-CIN85-endofilina media la regulación a la baja inducida por ligando de los receptores de EGF". Naturaleza . 416 (6877): 183–7. Código Bibliográfico : 2002Natur.416..183S . doi : 10.1038 / 416183a . PMID 11894095 . S2CID 635702 .  
  88. ^ Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I (octubre de 2002). "CIN85 participa en la regulación a la baja mediada por Cbl-b de tirosina quinasas receptoras" . La Revista de Química Biológica . 277 (42): 39666–72. doi : 10.1074 / jbc.M205535200 . PMID 12177062 . 
  89. ^ Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (abril de 1998). "El dominio de unión a fosfotirosina de Shc interactúa de forma dominante con los receptores del factor de crecimiento epidérmico y media la activación de Ras en células intactas" . Endocrinología molecular . 12 (4): 536–43. doi : 10.1210 / me.12.4.536 . PMID 9544989 . 
  90. ^ Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K, Ward JM, Lowy DR, Santos E (febrero de 2000). "Los factores de intercambio específicos de Sos1 y Sos2 Ras: diferencias en la expresión placentaria y propiedades de señalización" . El diario EMBO . 19 (4): 642–54. doi : 10.1093 / emboj / 19.4.642 . PMC 305602 . PMID 10675333 .  
  91. ^ Qian X, Vass WC, Papageorge AG, Anborgh PH, Lowy DR (febrero de 1998). "N terminal del factor de intercambio Sos1 Ras: roles críticos para los dominios de homología Dbl y pleckstrin" . Biología Molecular y Celular . 18 (2): 771–8. doi : 10.1128 / mcb.18.2.771 . PMC 108788 . PMID 9447973 .  
  92. ^ Keely SJ, Calandrella SO, Barrett KE (abril de 2000). "La transactivación estimulada por carbacol del receptor del factor de crecimiento epidérmico y la proteína quinasa activada por mitógenos en células T (84) está mediada por Ca2 + intracelular, PYK-2 y p60 (src)" . La Revista de Química Biológica . 275 (17): 12619–25. doi : 10.1074 / jbc.275.17.12619 . PMID 10777553 . 
  93. ^ Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, Fukami Y (septiembre de 2000). "La proteína adaptadora Shc sufre translocación y media en la regulación positiva de la tirosina quinasa c-Src en células A431 estimuladas con EGF" . Genes to Cells . 5 (9): 749–64. doi : 10.1046 / j.1365-2443.2000.00358.x . PMID 10971656 . S2CID 26366427 .  
  94. ^ Xia L, Wang L, Chung AS, Ivanov SS, Ling MY, Dragoi AM, Platt A, Gilmer TM, Fu XY, Chin YE (agosto de 2002). "Identificación de dominios positivos y negativos dentro de la región terminal COOH del receptor del factor de crecimiento epidérmico para la activación del transductor de señal y el activador de la transcripción (STAT)" . La Revista de Química Biológica . 277 (34): 30716–23. doi : 10.1074 / jbc.M202823200 . PMID 12070153 . 
  95. ^ Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE (noviembre de 2004). "Papel central del residuo de treonina dentro del bucle p + 1 del receptor tirosina quinasa en la fosforilación constitutiva de STAT3 en células cancerosas metastásicas" . Biología Molecular y Celular . 24 (21): 9390–400. doi : 10.1128 / MCB.24.21.9390-9400.2004 . PMC 522220 . PMID 15485908 .  
  96. ^ Sehat B, Andersson S, Girnita L, Larsson O (julio de 2008). "Identificación de c-Cbl como una nueva ligasa para el receptor del factor de crecimiento similar a la insulina-I con funciones distintas de Mdm2 en la ubiquitinación y endocitosis del receptor" . Investigación del cáncer . 68 (14): 5669–77. doi : 10.1158 / 0008-5472.CAN-07-6364 . PMID 18632619 . 
  97. ^ Ella HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B, Li W (septiembre de 1997). "La proteína del síndrome de Wiskott-Aldrich está asociada con la proteína adaptadora Grb2 y el receptor del factor de crecimiento epidérmico en las células vivas" . Biología molecular de la célula . 8 (9): 1709–21. doi : 10.1091 / mbc.8.9.1709 . PMC 305731 . PMID 9307968 .  
  98. ^ Jiang Y, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP (noviembre de 2020). "PAR2 induce la motilidad de las células de cáncer de ovario mediante la fusión de tres vías de señalización para transactivar EGFR". Revista británica de farmacología . (n / a) ((n / a)). doi : 10.1111 / bph.15332 . PMID 33226635 . 
  99. ^ Shilo BZ (marzo de 2003). "Señalización por la vía del receptor del factor de crecimiento epidérmico de Drosophila durante el desarrollo". Investigación celular experimental . 284 (1): 140–9. doi : 10.1016 / S0014-4827 (02) 00094-0 . PMID 12648473 . 

Lectura adicional [ editar ]

  • Carpenter G. (1987). "Receptores del factor de crecimiento epidérmico y otros mitógenos polipeptídicos". Revisión anual de bioquímica . 56 (1): 881–914. doi : 10.1146 / annurev.bi.56.070187.004313 . PMID  3039909 .
  • Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P (mayo de 1995). "El factor de crecimiento epidérmico". Cell Biology International . 19 (5): 413-30. doi : 10.1006 / cbir.1995.1086 . PMID  7640657 . S2CID  20186286 .
  • Carpenter G (agosto de 2000). "El receptor de EGF: un nexo para el tráfico y la señalización". BioEssays . 22 (8): 697–707. doi : 10.1002 / 1521-1878 (200008) 22: 8 <697 :: AID-BIES3> 3.0.CO; 2-1 . PMID  10918300 .
  • Filardo EJ (febrero de 2002). "Transactivación del receptor del factor de crecimiento epidérmico (EGFR) por estrógeno a través del receptor acoplado a proteína G, GPR30: una nueva vía de señalización con potencial significado para el cáncer de mama". The Journal of Steroid Biochemistry and Molecular Biology . 80 (2): 231–8. doi : 10.1016 / S0960-0760 (01) 00190-X . PMID  11897506 . S2CID  34995614 .
  • Tiganis T (enero de 2002). "Proteínas tirosina fosfatasas: desfosforilación del receptor del factor de crecimiento epidérmico" . IUBMB Life . 53 (1): 3-14. doi : 10.1080 / 15216540210811 . PMID  12018405 . S2CID  8376444 .
  • Di Fiore PP, Scita G (octubre de 2002). "Eps8 en medio de GTPasas". La Revista Internacional de Bioquímica y Biología Celular . 34 (10): 1178–83. doi : 10.1016 / S1357-2725 (02) 00064-X . PMID  12127568 .
  • Benaim G, Villalobo A (agosto de 2002). "Fosforilación de calmodulina. Implicaciones funcionales" (PDF) . Revista Europea de Bioquímica / FEBS . 269 (15): 3619–31. doi : 10.1046 / j.1432-1033.2002.03038.x . hdl : 10261/79981 . PMID  12153558 .
  • Leu TH, Maa MC (enero de 2003). "Implicación funcional de la interacción entre el receptor de EGF y c-Src". Fronteras en biociencias . 8 (1-3): págs. 28–38. doi : 10.2741 / 980 . PMID  12456372 . S2CID  20827945 .
  • Anderson NL, Anderson NG (noviembre de 2002). "El proteoma del plasma humano: historia, carácter y perspectivas de diagnóstico" . Proteómica molecular y celular . 1 (11): 845–67. doi : 10.1074 / mcp.R200007-MCP200 . PMID  12488461 .
  • Kari C, Chan TO, Rocha de Quadros M, Rodeck U (enero de 2003). "Dirigirse al receptor del factor de crecimiento epidérmico en el cáncer: la apoptosis ocupa un lugar central". Investigación del cáncer . 63 (1): 1–5. PMID  12517767 .
  • Bonaccorsi L, Muratori M, Carloni V, Zecchi S, Formigli L, Forti G, Baldi E (febrero de 2003). "Invasión de cáncer de próstata y receptor de andrógenos". Revista Internacional de Andrología . 26 (1): 21–5. doi : 10.1046 / j.1365-2605.2003.00375.x . hdl : 2158/252370 . PMID  12534934 .
  • Reiter J, Maihle NJ (mayo de 2003). "Caracterización y expresión de nuevas isoformas EGFR de 60 kDa y 110 kDa en placenta humana". Anales de la Academia de Ciencias de Nueva York . 995 (1): 39–47. Código bibliográfico : 2003NYASA.995 ... 39R . doi : 10.1111 / j.1749-6632.2003.tb03208.x . PMID  12814937 . S2CID  9377682 .
  • Adams TE, McKern NM, Ward CW (junio de 2004). "Señalización por el receptor del factor de crecimiento similar a la insulina tipo 1: interacción con el receptor del factor de crecimiento epidérmico". Factores de crecimiento . 22 (2): 89–95. doi : 10.1080 / 08977190410001700998 . PMID  15253384 . S2CID  86844427 .
  • Ferguson KM (noviembre de 2004). "Conformaciones activas e inactivas del receptor del factor de crecimiento epidérmico". Transacciones de la sociedad bioquímica . 32 (Pt 5): 742–5. doi : 10.1042 / BST0320742 . PMID  15494003 .
  • Chao C, Hellmich MR (diciembre de 2004). "Señalización bidireccional entre receptores de hormonas peptídicas gastrointestinales y receptor del factor de crecimiento epidérmico". Factores de crecimiento . 22 (4): 261–8. doi : 10.1080 / 08977190412331286900 . PMID  15621729 . S2CID  35208079 .
  • Carlsson J, Ren ZP, Wester K, Sundberg AL, Heldin NE, Hesselager G, Persson M, Gedda L, Tolmachev V, Lundqvist H, Blomquist E, Nistér M (marzo de 2006). "Planificación de la terapia intracavitaria con radionúclidos anti-EGFR de gliomas. Revisión de la literatura y datos sobre la expresión de EGFR". Revista de Neuro-Oncología . 77 (1): 33–45. doi : 10.1007 / s11060-005-7410-z . PMID  16200342 . S2CID  42293693 .
  • Scartozzi M, Pierantoni C, Berardi R, Antognoli S, Bearzi I, Cascinu S (abril de 2006). "Receptor del factor de crecimiento epidérmico: un objetivo terapéutico prometedor para el cáncer colorrectal". Citología e Histología Analítica y Cuantitativa . 28 (2): 61–8. PMID  16637508 .
  • Prudkin L, Wistuba II (octubre de 2006). "Anomalías del receptor del factor de crecimiento epidérmico en el cáncer de pulmón. Implicaciones patogenéticas y clínicas". Anales de patología diagnóstica . 10 (5): 306–15. doi : 10.1016 / j.anndiagpath.2006.06.011 . PMID  16979526 .
  • Ahmed SM, Salgia R (noviembre de 2006). "Mutaciones del receptor del factor de crecimiento epidérmico y susceptibilidad a la terapia dirigida en el cáncer de pulmón". Respirología . 11 (6): 687–92. doi : 10.1111 / j.1440-1843.2006.00887.x . PMID  17052295 . S2CID  38429131 .
  • Zhang X, Chang A (marzo de 2007). "Mutaciones somáticas del receptor del factor de crecimiento epidérmico y cáncer de pulmón de células no pequeñas" . Revista de Genética Médica . 44 (3): 166–72. doi : 10.1136 / jmg.2006.046102 . PMC  2598028 . PMID  17158592 .
  • Cohenuram M, Saif MW (2007). "Estrategias de inhibición del receptor del factor de crecimiento epidérmico en el cáncer de páncreas: pasado, presente y futuro". JOP . 8 (1): 4–15. PMID  17228128 .
  • Mellinghoff IK, Cloughesy TF , Mischel PS (enero de 2007). "Resistencia mediada por PTEN a inhibidores de la quinasa del receptor del factor de crecimiento epidérmico" . Investigación clínica del cáncer . 13 (2 Pt 1): 378–81. doi : 10.1158 / 1078-0432.CCR-06-1992 . PMID  17255257 .
  • Nakamura JL (abril de 2007). "El receptor del factor de crecimiento epidérmico en gliomas malignos: patogenia e implicaciones terapéuticas". Opinión de expertos sobre objetivos terapéuticos . 11 (4): 463–72. doi : 10.1517 / 14728222.11.4.463 . PMID  17373877 . S2CID  21947310 .

Enlaces externos [ editar ]

  • Receptor del factor de crecimiento epidérmico en los encabezados de temas médicos (MeSH) de la Biblioteca Nacional de Medicina de EE. UU .
  • Resumen de toda la información estructural disponible en el PDB para UniProt : P00533 (receptor del factor de crecimiento epidérmico humano) en el PDBe-KB .