Registro de temperatura instrumental


El registro de temperatura instrumental proporciona la temperatura del sistema climático de la Tierra a partir de la red histórica de mediciones in situ de las temperaturas del aire en la superficie y las temperaturas de la superficie del océano.

Correlación de conjuntos de datos de temperatura instrumental de varias fuentes, algunas de las cuales datan de 1850.
La animación de la NASA retrata los cambios de temperatura de la superficie global desde 1880. Los azules denotan temperaturas más frías y los rojos denotan temperaturas más cálidas.

Los datos se recopilan en miles de estaciones meteorológicas, boyas y barcos en todo el mundo. El récord de temperatura de mayor duración es la serie de datos de temperatura de Inglaterra Central , que comienza en 1659. El récord cuasi global de mayor duración comienza en 1850. [1]

En las últimas décadas, un muestreo más extenso de las temperaturas del océano a diversas profundidades permite estimar el contenido de calor del océano , pero estas muestras no forman parte de los conjuntos de datos de temperatura de la superficie global .

La temperatura media global y la temperatura combinada de la superficie terrestre y oceánica muestran un calentamiento de 0,85 [0,65 a 1,06] ° C, en el período de 1880 a 2012, sobre la base de múltiples conjuntos de datos producidos de forma independiente. [2] Esto da una tendencia de 0.064 ± 0.015 ° C por década durante ese período. La tendencia es más rápida en la tierra que en el océano, más rápida en las regiones árticas y más rápida desde la década de 1970 que en el período más largo.

Calentamiento en el registro de temperatura instrumental

La mayor parte del calentamiento observado ocurrió en dos períodos: alrededor de 1900 hasta alrededor de 1940 y alrededor de 1970 en adelante; [3] el enfriamiento / meseta de 1940 a 1970 se ha atribuido principalmente al aerosol de sulfato . [4] [5] Algunas de las variaciones de temperatura durante este período de tiempo también pueden deberse a los patrones de circulación oceánica. [6]

La atribución del cambio de temperatura a factores naturales o antropogénicos (es decir, inducidos por el hombre ) es una cuestión importante: consulte el calentamiento global y la atribución del cambio climático reciente .

Las temperaturas del aire terrestre están aumentando más rápidamente que las temperaturas de la superficie del mar. Entre 1979 y 2012, la tendencia de la tierra fue de aproximadamente 0,254 ± 0,050 ° C por década por CruTemp4 o 0,273 ± 0,047 por GHCN, mientras que la tendencia de las temperaturas de la superficie del mar es de aproximadamente 0,072 ± 0,024 ° C por década por HadISST a 0,124 ± 0,030 ° C por década por HadSST3. [7]

De 1979 a 2012, la tendencia de calentamiento lineal para las temperaturas combinadas de la tierra y el mar ha sido de 0,155 ° C (0,122 a 0,188 ° C) por década, según AR5. [8]

El Cuarto Informe de Evaluación del IPCC encontró que el récord de temperatura instrumental durante el siglo pasado incluía efectos de islas de calor urbanas, pero que estos eran principalmente locales, con una influencia insignificante en las tendencias de la temperatura global (menos de 0,006 ° C por década en la tierra y cero en los océanos). ). [9]

Las incertidumbres en el registro de temperatura, por ejemplo, el efecto de isla de calor urbano , se analizan con más detalle en una sección posterior .

Años más cálidos

Gráfico NOAA de anomalías de la temperatura anual global, 1950-2012

En enero de 2017, varias agencias científicas de todo el mundo, incluidas la NASA y la NOAA en los Estados Unidos [10] [11] y la Met Office en el Reino Unido, nombraron 2016 como el año más cálido registrado. [12] [13] Esto marcó el tercer año consecutivo que alcanza una nueva temperatura récord, la primera vez desde que comenzó la actual tendencia al calentamiento en la década de 1970 que tres años consecutivos alcanzaron niveles récord. [11] El registro de 2016 significó que 16 de los 17 años más cálidos han ocurrido desde 2000, [11] 2017 siendo el tercer año más caluroso registrado significa que 17 de los últimos 18 años más cálidos han ocurrido desde 2000.

Si bien los años récord pueden atraer un interés público considerable, los años individuales son menos significativos que la tendencia general. Algunos climatólogos han criticado la atención que la prensa popular presta a las estadísticas del "año más cálido"; por ejemplo, Gavin Schmidt afirmó que "las tendencias a largo plazo o la secuencia esperada de registros son mucho más importantes que si un año es un registro o no". [14] De los registros de 2015 y 2016, Schmidt afirmó que el evento de El Niño de 2014-16 fue "un factor ... pero tanto 2015 como 2016 habrían sido récords incluso sin él"; Atribuyó alrededor del 90% del calentamiento de 2016 al cambio climático antropogénico . [15] De acuerdo con el comentario de Schmidt, el anuncio de la NASA / NOAA declaró que "las temperaturas promediadas a nivel mundial en 2016 fueron 1,78 grados Fahrenheit (0,99 grados Celsius) más cálidas que la media de mediados del siglo XX" y que se estimó el impacto del calentamiento de El Niño. haber "aumentado la anomalía anual de la temperatura global para 2016 en 0,2 grados Fahrenheit (0,12 grados Celsius)". [10] Los comentarios de los científicos del clima publicados en The Washington Post mostraron un fuerte acuerdo en atribuir el calentamiento principalmente al cambio climático antropogénico, con alguna contribución del calentamiento de El Niño, aunque hubo diferentes puntos de vista sobre la importancia de los registros individuales. [16] Deke Arndt lidera el grupo de monitoreo en los Centros Nacionales de Información Ambiental de la NOAA y ofreció una analogía en un informe sobre NPR : "El calentamiento a largo plazo es muy parecido a subir una escalera mecánica con el tiempo. escalera mecánica, cuanto más alto vas. Y el fenómeno de El Niño es como saltar arriba y abajo mientras estás en la escalera mecánica ". [17] Arndt también afirmó que "el calentamiento a largo plazo es impulsado casi en su totalidad por los gases de efecto invernadero". [18] Peter Stott , director interino de la Met Office, señaló la influencia del evento El Niño en las temperaturas de 2016, pero también afirmó que "el principal contribuyente al calentamiento durante los últimos 150 años es la influencia humana en el clima por el aumento de gases de efecto invernadero en el atmósfera." [12] [13] Tim Osborn , Director de Investigación de la Universidad de East Anglia 's Unidad de Investigación Climática , [19] acordado que establezca que "[m] ultiple líneas de evidencia confirman independiente de que el planeta se ha calentado en los últimos 150 años : océanos más cálidos, tierra más cálida, atmósfera inferior más cálida y hielo derretido. Esta tendencia a largo plazo es la causa principal del calor récord de 2015 y 2016, superando a todos los años anteriores, incluso a aquellos con fuertes eventos de El Niño ". [12]

Based on the NOAA dataset (note that other datasets produce different rankings[20]), the following table lists the global combined land and ocean annually averaged temperature rank and anomaly for each of the 10 warmest years on record.[21]

Although the NCDC temperature record begins in 1880, reconstructions of earlier temperatures based on climate proxies, suggest these years may be the warmest for several centuries to millennia, or longer.

Warmest decades

Refer to caption and image description
Global temperature change — decadal averages, 1880s–2000s (NOAA). [22]
Refer to caption
1880–2011 global annual and decadal mean surface temperature change. Data Source: NOAA

Numerous cycles have been found to influence annual global mean temperatures. The tropical El Niño–La Niña cycle and the pacific decadal oscillation are the most well-known of these cycles.[23] An examination of the average global temperature changes by decades reveals continuing climate change,[24] and AR5 reports "Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850 (see Figure SPM.1). In the Northern Hemisphere, 1983–2012 was likely the warmest 30-year period of the last 1,400 years (medium confidence)".[25]

The following chart is from NASA data of combined land-surface air and sea-surface water temperature anomalies.

Global temperature change (1850-2017).

Greenhouse gases trap outgoing radiation warming the atmosphere which in turn warms the land.

El Niño generally tends to increase global temperatures. La Niña, on the other hand, usually causes years which are cooler than the short-term average.[26] El Niño is the warm phase of the El Niño–Southern Oscillation (ENSO) and La Niña the cold phase.

Aerosols diffuse incoming radiation generally cooling the planet. Volcanoes are the largest source but there are also anthropogenic sources. There are several other effects such as clouds. Some aerosols like carbon black have warming effects.

Land use change like deforestation can increase greenhouse gases through burning biomass. Albedo can also be changed.

Incoming solar radiation varies very slightly, with the main variation controlled by the approximately 11-year solar magnetic activity cycle.

Records of global average surface temperature are usually presented as anomalies rather than as absolute temperatures. A temperature anomaly is measured against a reference value or long-term average.[27] For example, if the reference value is 15 °C, and the measured temperature is 17 °C, then the temperature anomaly is +2 °C (i.e., 17 °C −15 °C).

Temperature anomalies are useful for deriving average surface temperatures because they tend to be highly correlated over large distances (of the order of 1000 km).[28] In other words, anomalies are representative of temperature changes over large areas and distances. By comparison, absolute temperatures vary markedly over even short distances.

The Earth's average surface absolute temperature for the 1961–1990 period has been derived by spatial interpolation of average observed near-surface air temperatures from over the land, oceans and sea ice regions, with a best estimate of 14 °C (57.2 °F).[29] The estimate is uncertain, but probably lies within 0.5 °C of the true value.[29] Given the difference in uncertainties between this absolute value and any annual anomaly, it's not valid to add them together to imply a precise absolute value for a specific year.[30]

The period for which reasonably reliable instrumental records of near-surface temperature exist with quasi-global coverage is generally considered to begin around 1850. Earlier records exist, but with sparser coverage and less standardized instrumentation.

The temperature data for the record come from measurements from land stations and ships. On land, temperature sensors are kept in a Stevenson screen or a maximum minimum temperature system (MMTS). The sea record consists of surface ships taking sea temperature measurements from engine inlets or buckets. The land and marine records can be compared.[31] Land and sea measurement and instrument calibration is the responsibility of national meteorological services. Standardization of methods is organized through the World Meteorological Organization (and formerly through its predecessor, the International Meteorological Organization).[32]

Most meteorological observations are taken for use in weather forecasts. Centers such as ECMWF show instantaneous map of their coverage; or the Hadley Centre show the coverage for the average of the year 2000. Coverage for earlier in the 20th and 19th centuries would be significantly less. While temperature changes vary both in size and direction from one location to another, the numbers from different locations are combined to produce an estimate of a global average change.

There is a scientific consensus that climate is changing and that greenhouse gases emitted by human activities are the primary driver.[33] The scientific consensus is reflected, for example, by the Intergovernmental Panel on Climate Change (IPCC), an international body which summarizes existing science, and the U.S. Global Change Research Program.[33]

The methods used to derive the principal estimates of global surface temperature trends—HadCRUT3, NOAA and NASA/GISS—are largely independent.

Other reports and assessments

Refer to caption
This graph shows how short-term variations occur in the global temperature record. However, the graph still shows a long-term trend of global warming. Image source: NCADAC. [34]

The U.S. National Academy of Sciences, both in its 2002 report to President George W. Bush, and in later publications, has strongly endorsed evidence of an average global temperature increase in the 20th century.[35]

The preliminary results of an assessment carried out by the Berkeley Earth Surface Temperature group and made public in October 2011, found that over the past 50 years the land surface warmed by 0.911 °C, and their results mirrors those obtained from earlier studies carried out by the NOAA, the Hadley Centre and NASA's GISS. The study addressed concerns raised by "skeptics"[36][37] including urban heat island effect, "poor"[36] station quality, and the "issue of data selection bias"[36] and found that these effects did not bias the results obtained from these earlier studies.[36][38][39][40]

Internal climate variability and global warming

One of the issues that has been raised in the media is the view that global warming "stopped in 1998".[41][42] This view ignores the presence of internal climate variability.[42][43] Internal climate variability is a result of complex interactions between components of the climate system, such as the coupling between the atmosphere and ocean.[44] An example of internal climate variability is the El Niño–Southern Oscillation (ENSO).[42][43] The El Niño in 1998 was particularly strong, possibly one of the strongest of the 20th century.[42]

Cooling between 2006 and 2008, for instance, was likely driven by La Niña, the opposite of El Niño conditions.[45] The area of cooler-than-average sea surface temperatures that defines La Niña conditions can push global temperatures downward, if the phenomenon is strong enough.[45] Even accounting for the presence of internal climate variability, recent years rank among the warmest on record.[46] For example, every year of the 2000s was warmer than the 1990 average.[22]

Average global temperatures from 2010 to 2019 compared to a baseline average from 1951 to 1978. Source: NASA
Top graphic (comprehensive): 196 rows represent 196 countries, grouped by continent. Each row has 118 color-coded annual temperatures, showing 19012018 warming patterns in each region and country. [47][48]
- Bottom graphic (summary): global average 19012018. [49]
- Data visualization:warming stripes.
Land surface temperatures have increased faster than ocean temperatures as the ocean absorbs about 92% of excess heat generated by climate change. [50] Chart with data from NASA [51] showing how land and sea surface air temperatures have changed vs a pre-industrial baseline. [52]

Temperature trends from 1901 are positive over most of the world's surface except for Atlantic Ocean south of Greenland, the southeastern United States, and parts of Bolivia. Warming is strongest over inland areas in Asia and North America as well as south-eastern Brazil and some areas in the South Atlantic and Indian oceans.

Since 1979 temperature increase is considerably stronger over land while cooling has been observed over some oceanic regions in the Pacific Ocean and Southern Hemisphere; the spatial pattern of ocean temperature trend in those regions is possibly related to the pacific decadal oscillation and Southern Annular Mode.[53]

Seasonal temperature trends are positive over most of the globe but weak cooling is observed over the mid latitudes of the southern ocean but also over eastern Canada in spring because of strengthening of the North Atlantic oscillation. Warming is stronger over northern Europe, China and North America in winter, Europe and Asia interior in spring, Europe and north Africa in summer and northern North America, Greenland and eastern Asia in autumn.

Enhanced warming over north Eurasia is partly linked to the Northern Annular Mode,[54][55] while in the southern hemisphere the trend toward stronger westerlies over the Southern ocean favoured a cooling over much of Antarctica with the exception of the Antarctic Peninsula where strong westerlies decrease cold air outbreaks from the south.[56] The Antarctic Peninsula has warmed by 2.5 °C (4.5 °F) in the past five decades at Bellingshausen Station.[57]

Satellite temperature records

Comparison of ground-based (blue) and satellite-based (red: University of Alabama in Huntsville; green: RSS) records of global surface temperature change from 1979–2009. Linear trends plotted since 1982.

The most recent climate model simulations give a range of results for changes in global-average temperature. Some models show more warming in the troposphere than at the surface, while a slightly smaller number of simulations show the opposite behaviour. There is no fundamental inconsistency among these model results and observations at the global scale.[58]

The satellite records used to show much smaller warming trends for the troposphere which were considered to disagree with model prediction; however, following revisions to the satellite records, the trends are now similar.

The IPCC fifth assessment report concluded "assessment of the large body of studies comparing various long-term radiosonde and MSU products since AR4 is hampered by data set version changes, and inherent data uncertainties. These factors substantially limit the ability to draw robust and consistent inferences from such studies about the true long-term trends or the value of different data products".[59]

The U.S. National Weather Service Cooperative Observer Program has established minimum standards regarding the instrumentation, siting, and reporting of surface temperature stations.[60] The observing systems available are able to detect year-to-year temperature variations such as those caused by El Niño or volcanic eruptions.[61]

The urban heat island effect is very small, estimated to account for less than 0.002 °C of warming per decade since 1900.[62]

Brooks investigated Historical Climate Network (USHCN) sites in Indiana in 2005, and assigned 16% of the sites an 'excellent' rating, 59% a 'good' rating, 12.5% a 'fair' rating, and 12.5% 'poor' rating.[63] A 2006 study analyzed 366 U.S. surface stations; results indicate relatively few significant temperature trends, and these are generally evenly divided between warming and cooling trends. 95% of the stations displayed a warming trend after land use/land cover changes took place, and the authors noted "this does not necessarily imply that the changes are the causative factor."[64] Another study that same year documented examples of well and poorly sited monitoring stations in the United States, including ones near buildings, roadways, and air conditioning exhausts.[65]

Another study concluded in 2006, that existing empirical techniques for validating the local and regional consistency of temperature data are adequate to identify and remove biases from station records, and that such corrections allow information about long-term trends to be preserved.[66] A study in 2013 also found that urban bias can be accounted for, and when all available station data is divided into rural and urban, that both temperature sets are broadly consistent.[67]

National Oceanic and Atmospheric Administration (NOAA) maintains the Global Historical Climatology Network (GHCN-Monthly) data base containing historical temperature, precipitation, and pressure data for thousands of land stations worldwide.[68] Also, NOAA's National Climatic Data Center (NCDC)[69] of surface temperature measurements maintains a global temperature record since 1880.[70]

HadCRUT, a collaboration between the University of East Anglia's Climatic Research Unit and the Hadley Centre for Climate Prediction and Research

NASA's Goddard Institute for Space Studies maintains GISTEMP.

More recently the Berkeley Earth Surface Temperature dataset. These datasets are updated frequently, and are generally in close agreement.

Map of the land-based long-term monitoring stations included in the Global Historical Climatology Network. Colors indicate the length of the temperature record available at each site.

Trends in global temperatures since January 1979 (the beginning of the satellite temperature record), measured in degrees Celsius per decade, at as 31 October 2019:

Instrumental record:

NOAA: +0.171

GISS (NASA): +0.185

HadCrut (UK Met Office): +0.171

Berkeley (Air): +0.188

Berkeley (Water): +0.165

JMA (Japan): +0.138


Satellite Record:

RSS: +0.206

UAH: +0.130

  • List of large-scale temperature reconstructions of the last 2,000 years – Wikipedia list article
  • Satellite temperature measurements
  • Sea surface temperature – Water temperature close to the ocean's surface
  • Temperature record of the past 1000 years

  1. ^ Brohan, P., J.J. Kennedy, I. Harris, S.F.B. Tett, P.D. Jones (2006). "Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850". J. Geophys. Res. 111 (D12): D12106. Bibcode:2006JGRD..11112106B. CiteSeerX 10.1.1.184.4382. doi:10.1029/2005JD006548.CS1 maint: multiple names: authors list (link)
  2. ^ "Climate Change 2013: The Physical Science Basis, IPCC Fifth Assessment Report (WGI AR5)". IPCC AR5."Full Report" (PDF). 2013. p. 5.
  3. ^ IPCC AR5 Chapter 2 page 193
  4. ^ Houghton(eds); et al. (2001). "Climate Change 2001: Working Group I: The Scientific Basis – Chapter 12: Detection of Climate Change and Attribution of Causes". IPCC. Archived from the original on 11 July 2007. Retrieved 13 July 2007.CS1 maint: extra text: authors list (link)
  5. ^ "Ch 6. Changes in the Climate System". Advancing the Science of Climate Change. 2010., in US NRC 2010, p. 207
  6. ^ Swanson, K.L.; Sugihara, G.; Tsonis, A.A. (22 September 2009). "Long-term natural variability and 20th century climate change". Proc. Natl. Acad. Sci. U.S.A. 106 (38): 16120–3. Bibcode:2009PNAS..10616120S. doi:10.1073/pnas.0908699106. PMC 2752544. PMID 19805268.
  7. ^ IPCC AR5 WG1 Chapter 2 page 187 and page 192
  8. ^ IPCC AR5 WG1 Chapter 2 p193
  9. ^ Trenberth, K.E.; et al. (2007). (Solomon, S.; et al. (eds.). Executive summary, in: Observations: Surface and Atmospheric Climate Change. in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  10. ^ a b Potter, Sean; Cabbage, Michael; McCarthy, Leslie (19 January 2017). "NASA, NOAA Data Show 2016 Warmest Year on Record Globally" (Press release). NASA. Retrieved 20 January 2017.
  11. ^ a b c "Earth Sets a Temperature Record for the Third Straight Year". the New York Times. 18 January 2017. Retrieved 19 January 2017.
  12. ^ a b c "2016: one of the warmest two years on record" (Press release). Met Office of the United Kingodom. 18 January 2017. Retrieved 20 January 2017.
  13. ^ a b "Climate change: Data shows 2016 likely to be warmest year yet". BBC News Online. 18 January 2017. Retrieved 19 January 2017.
  14. ^ Schmidt, Gavin (22 January 2015). "Thoughts on 2014 and ongoing temperature trends". RealClimate. Retrieved 4 September 2015.
  15. ^ Carrington, Damian (19 January 2017). "2016 hottest year ever recorded – and scientists say human activity to blame". The Guardian. Retrieved 20 January 2017.
  16. ^ Samenow, Jason (18 January 2017). "Scientists react to Earth's warmest year: 'We are heading into a new unknown'". The Washington Post. Retrieved 20 January 2017.
  17. ^ Brumfiel, Geoff (18 January 2017). "U.S. Report Confirms 2016 Was The Hottest Year On Record". NPR. Retrieved 20 January 2017.
  18. ^ Greenfield-Boyce, Nell (18 January 2017). "2016 Was The Hottest Year Yet, Scientists Declare". NPR. Retrieved 20 January 2017.
  19. ^ "Tim Osborn to take over leadership of CRU" (Press release). University of East Anglia. 21 December 2016. Retrieved 20 January 2017.
  20. ^ https://uk.reuters.com/article/uk-climatechange-temperatures/2017-was-second-hottest-year-on-record-after-sizzling-2016-report-idUKKBN1ET1L3
  21. ^ "Global Climate Report – Annual 2020". NOAA. Retrieved 14 January 2021.
  22. ^ a b 1 Introduction (PDF). p. 5. In State of the Climate in 2009
  23. ^ Natural Climate Oscillations of Short Duration and the Long Term Climate Warming – Sorting Out the Climate System USGCRP Seminar, 20 March 2000 Updated 13 August, 2004
  24. ^ NASA Research Finds Last Decade was Warmest on Record, 2009 One of Warmest Years
  25. ^ IPCC AR5 WG1 SPM page 5
  26. ^ "NOAA National Climatic Data Center, State of the Climate: Global Analysis for Annual 2014". NOAA. Retrieved 21 January 2015.
  27. ^ CMB and Crouch, J. (17 September 2012). "Global Surface Temperature Anomalies: Background Information – FAQ 1". NOAA NCDC. Cite journal requires |journal= (help)
  28. ^ Hansen, J.E. (20 November 2012). "Data.GISS: GISS Surface Temperature Analysis (GISTEMP)". New York, NY, USA: NASA GISS. Cite journal requires |journal= (help). Website curator: Schmunk, R.B.
  29. ^ a b Jones PD, New M, Parker DE, Martin S, Rigor IG (1999). "Surface air temperature and its changes over the past 150 years". Reviews of Geophysics. 37 (2): 173–199. Bibcode:1999RvGeo..37..173J. doi:10.1029/1999RG900002.
  30. ^ http://data.giss.nasa.gov/gistemp/abs_temp.html
  31. ^ Houghton (eds); et al. (2001). "Climate Change 2001: Working Group I: The Scientific Basis – Figure 2.6". IPCC. Archived from the original on 15 June 2007. Retrieved 13 July 2007.CS1 maint: extra text: authors list (link)
  32. ^ Guide to the Global Observing System (PDF). WMO. 2007. ISBN 978-9263134882.
  33. ^ a b Joint-statement by leaders of 18 scientific organizations: American Association for the Advancement of Science, American Chemical Society, American Geophysical Union, American Institute of Biological Sciences, American Meteorological Society, American Society of Agronomy, American Society of Plant Biologists, American Statistical Association, Association of Ecosystem Research Centers, Botanical Society of America, Crop Science Society of America, Ecological Society of America, Natural Science Collections, Alliance Organization of Biological Field Stations, Society for Industrial and Applied Mathematics, Society of Systematic Biologists, Soil Science Society of America, University Corporation for Atmospheric Research (21 October 2009). "Joint-statement on climate change by leaders of 18 scientific organizations" (PDF). Washington DC, USA: American Association for the Advancement of Science. Archived from the original (PDF) on 6 August 2013. Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  34. ^ Walsh, J.; et al., Figure 6: Short-term Variations Versus Long-term Trend, in: D. Is the global temperature still increasing? Isn't there recent evidence that it is actually 1 cooling?, in: Appendix I: NCA Climate Science – Addressing Commonly Asked Questions from A to Z (PDF), in NCADAC 2013, p. 1065
  35. ^ "Understanding and Responding to Climate Change – Highlights of National Academies Reports" (PDF). United States National Academies. 2005. Archived from the original (PDF) on 11 June 2007. Retrieved 13 July 2007.
  36. ^ a b c d "Cooling the Warming Debate: Major New Analysis Confirms That Global Warming Is Real". Science Daily. 21 October 2011. Retrieved 22 October 2011.
  37. ^ see also: PBS (10 January 2007). "Interviews – James Hansen: Hot Politics: FRONTLINE: PBS". PBS. Cite journal requires |journal= (help). "(...) The 1990s is the real appearance of the science skeptics. How much did they come after you? I actually don't like the word "skeptics" for them; I think it's better to call them "contrarians," because skepticism is part of science; all scientists are skeptics (...)"
  38. ^ Ian Sample (20 October 2011). "Global warming study finds no grounds for climate sceptics' concerns". The Guardian. Retrieved 22 October 2011.
  39. ^ Richard Black (21 October 2011). "Global warming 'confirmed' by independent study". BBC News. Retrieved 21 October 2011.
  40. ^ "Climate change: The heat is on". The Economist. 22 October 2011. Retrieved 22 October 2011.
  41. ^ e.g., see Carter, B. (9 April 2006). "There IS a problem with global warming... it stopped in 1998". The Daily Telegraph. Telegraph Media Group.
  42. ^ a b c d Edited quote from public-domain source: Scott, M. (31 December 2009). "Short-term Cooling on a Warming Planet, p.1". ClimateWatch Magazine. NOAA. Introduction. Archived from the original on 19 February 2013. Retrieved 22 September 2012.
  43. ^ a b Met Office, Fitzroy Road (14 September 2009). "Global warming set to continue". UK Met Office. Archived from the original on 27 October 2012. Cite journal requires |journal= (help)
  44. ^ Albritton, D.L.; et al. (2001). Houghton, J.T.; et al. (eds.). Box 1: What drives changes in climate? in: Technical Summary, in: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  45. ^ a b Edited quote from public-domain source: Scott, M. (31 December 2009). "Short-term Cooling on a Warming Planet, p.3". ClimateWatch Magazine. NOAA. Deciphering Natural Variability.
  46. ^ Edited quote from public-domain source: Scott, M. (31 December 2009). "Short-term Cooling on a Warming Planet, p.2". ClimateWatch Magazine. NOAA. Deciphering Natural Variability.
  47. ^ Hawkins, Ed (21 July 2019). "#ShowYourStripes / Temperature changes around the world (1901-2018)". Climate Lab Book. Archived from the original on 2 August 2019. (Direct link to image).
  48. ^ Amos, Jonathan (21 June 2019). "The chart that defines our warming world / Is this the simplest way to show what is meant by global warming? The chart below organises all the countries of the world by region, time and temperature. The trend is unmistakeable". BBC. Archived from the original on 29 June 2019. (Link to png image)
  49. ^ Hawkins, Ed (4 December 2018). "2018 visualisation update / Warming stripes for 1850-2018 using the WMO annual global temperature dataset". Climate Lab Book. Archived from the original on 17 April 2019. LICENSE / Creative Commons License / These blog pages & images are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. (Direct link to image).
  50. ^ "The Oceans Are Heating Up Faster Than Expected". scientific american. Retrieved 3 March 2020.
  51. ^ "Global Annual Mean Surface Air Temperature Change". NASA. Retrieved 23 February 2020.
  52. ^ IPCC AR5 SYR Glossary 2014, p. 124.
  53. ^ "IPCC Fourth Assessment Report, Chapter 3" (PDF). 5 February 2007. pp. 250–1. Retrieved 14 March 2009.
  54. ^ Polyakov, I.V.; Bekryaev, R.V.; Bhatt, U.S.; Colony, R.L.; Maskshtas, A.P.; Walsh, D.; Bekryaev, R.V.; Alekseev, G.V. (2003). "Variability and trends of air temperature in the Maritime Arctic". J. Clim. 16 (12): 2067–77. Bibcode:2003JCli...16.2067P. doi:10.1175/1520-0442(2003)016<2067:VATOAT>2.0.CO;2.
  55. ^ Liu, J.P.; Curry, J.A.; Da, Y.J.; Horton, Radley (2007). "Causes of the northern high-latitude land surface winter climate change". Geophys. Res. Lett. 34 (14): L14702. Bibcode:2007GeoRL..3414702L. doi:10.1029/2007GL030196.
  56. ^ David W. J. Thompson; Susan Solomon (2002). "Interpretation of Recent Southern Hemisphere Climate Change" (PDF). Science. 296 (5569): 895–9. Bibcode:2002Sci...296..895T. doi:10.1126/science.1069270. PMID 11988571. S2CID 7732719. Archived from the original (PDF) on 11 August 2011.
  57. ^ "Antarctic temperature data – Monthly mean surface temperature data and derived statistics for some Antarctic stations". British Antarctic Survey. Retrieved 13 July 2007.
  58. ^ Temperature Trends in the Lower Atmosphere – Understanding and Reconciling Differences
  59. ^ IPCC 5AR WG1 Chapter 2 page 196
  60. ^ NOAA National Weather Service Cooperative Observer Program: Proper Siting
  61. ^ Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. Archived 3 February 2007 at the Wayback Machine Thomas R. Karl, Susan J. Hassol, Christopher D. Miller, and William L. Murray, editors, 2006. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.
  62. ^ Trenberth et al., Ch. 3, Observations: Atmospheric Surface and Climate Change, Section 3.2.2.2: Urban Heat Islands and Land Use Effects Archived 12 May 2014 at the Wayback Machine, p. 244, in IPCC AR4 WG1 2007.
  63. ^ Indiana State Climate Office Archived 8 July 2007 at the Wayback Machine
  64. ^ Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, T.R. (June 2006). "Land use/land cover change effects on temperature trends at U.S. Climate Normals stations". Geophys. Res. Lett. 33 (11): L11703. Bibcode:2006GeoRL..3311703H. doi:10.1029/2006GL026358.
  65. ^ Mahmood R, Foster SA, Logan D (2006). "The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited". International Journal of Climatology. 26 (8): 1091–1124. Bibcode:2006IJCli..26.1091M. doi:10.1002/joc.1298.
  66. ^ Peterson, Thomas C. (August 2006). "Examination of potential biases in air temperature caused by poor station locations". Bull. Amer. Meteor. Soc. 87 (8): 1073–89. Bibcode:2006BAMS...87.1073P. doi:10.1175/BAMS-87-8-1073.
  67. ^ Zeke Hausfather, Matthew J. Menne, Claude N. Williams, Troy Masters, Ronald Broberg, David Jones (30 January 2013). "Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records". Journal of Geophysical Research. 118 (2): 481–494. Bibcode:2013JGRD..118..481H. doi:10.1029/2012JD018509.CS1 maint: uses authors parameter (link)
  68. ^ "GHCN-Monthly Version 2". NOAA. Retrieved 13 July 2007.
  69. ^ NCDC State of the Climate Global Analysis, April 2010
  70. ^ "Global Surface Temperature Anomalies". National Climatic Data Center. Retrieved 16 June 2010.

  • GISS Surface Temperature Analysis (GISTEMP)
  • Google Earth interface for CRUTEM4 land temperature data
  • International Surface Temperature Initiative