De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda
Una órbita compleja en herradura (el bucle vertical se debe a la inclinación de la órbita del cuerpo más pequeño a la de la Tierra, y estaría ausente si ambos orbitaran en el mismo plano)
   Sol  ·    Tierra  ·    (419624) 2010 SO16

En mecánica celeste , una órbita en herradura es un tipo de movimiento coorbital de un cuerpo en órbita pequeño en relación con un cuerpo en órbita más grande. El período orbital del cuerpo más pequeño es casi el mismo que el del cuerpo más grande, y su trayectoria parece tener forma de herradura como se ve desde el objeto más grande en un marco de referencia giratorio .

El bucle no está cerrado, pero se desplazará ligeramente hacia adelante o hacia atrás cada vez, de modo que el punto en el que gira parecerá moverse suavemente a lo largo de la órbita del cuerpo más grande durante un largo período de tiempo. Cuando el objeto se acerca al cuerpo más grande de cerca en cualquier extremo de su trayectoria, su dirección aparente cambia. Durante todo un ciclo, el centro traza el contorno de una herradura, con el cuerpo más grande entre los 'cuernos'.

Los asteroides en órbitas en herradura con respecto a la Tierra incluyen 54509 YORP , 2002 AA 29 , 2010 SO 16 , 2015 SO 2 y posiblemente 2001 GO 2 . Una definición más amplia incluye 3753 Cruithne , que se puede decir que está en una órbita compuesta y / o de transición, [1] o (85770) 1998 UP 1 y 2003 YN 107 . Para 2016, se han descubierto 12 liberadores de herradura de la Tierra. [2]

Las lunas de Saturno , Epimeteo y Jano, ocupan órbitas de herradura entre sí (en su caso, no hay bucles repetidos: cada una traza una herradura completa con respecto a la otra).

Explicación del ciclo orbital en herradura [ editar ]

Antecedentes [ editar ]

La siguiente explicación se refiere a un asteroide que se encuentra en dicha órbita alrededor del Sol y también es afectado por la Tierra.

El asteroide está casi en la misma órbita solar que la Tierra. Ambos tardan aproximadamente un año en orbitar el Sol.

También es necesario comprender dos reglas de la dinámica de la órbita:

  1. Un cuerpo más cercano al Sol completa una órbita más rápidamente que un cuerpo más lejano.
  2. Si un cuerpo acelera a lo largo de su órbita, su órbita se mueve hacia afuera desde el Sol. Si desacelera, el radio orbital disminuye.

La órbita en herradura surge porque la atracción gravitacional de la Tierra cambia la forma de la órbita elíptica del asteroide. Los cambios de forma son muy pequeños pero dan como resultado cambios significativos en relación con la Tierra.

La herradura se vuelve aparente solo cuando se mapea el movimiento del asteroide en relación tanto con el Sol como con la Tierra. El asteroide siempre orbita alrededor del Sol en la misma dirección. Sin embargo, pasa por un ciclo de ponerse al día con la Tierra y quedarse atrás, de modo que su movimiento relativo tanto al Sol como a la Tierra traza una forma como el contorno de una herradura.

Etapas de la órbita [ editar ]

Figura 1. Plano que muestra posibles órbitas a lo largo de contornos gravitacionales. En esta imagen, la Tierra (y toda la imagen con ella) gira en sentido antihorario alrededor del Sol.
Figura 2. Órbita de herradura delgada

Comenzando en el punto A, en el anillo interior entre L 5 y la Tierra, el satélite está orbitando más rápido que la Tierra y está en camino de pasar entre la Tierra y el Sol. Pero la gravedad de la Tierra ejerce una fuerza de aceleración hacia afuera, empujando al satélite a una órbita más alta que (según la tercera ley de Kepler ) disminuye su velocidad angular.

Cuando el satélite llega al punto B, viaja a la misma velocidad que la Tierra. La gravedad de la Tierra todavía está acelerando al satélite a lo largo de la trayectoria orbital y continúa empujando al satélite a una órbita más alta. Finalmente, en el punto C, el satélite alcanza una órbita lo suficientemente alta y lenta como para comenzar a quedarse atrás de la Tierra. Luego pasa el próximo siglo o más pareciendo desplazarse 'hacia atrás' alrededor de la órbita cuando se ve en relación con la Tierra. Su órbita alrededor del Sol todavía toma solo un poco más de un año terrestre. Con el tiempo suficiente, la Tierra y el satélite estarán en lados opuestos del Sol.

Finalmente, el satélite llega al punto D, donde la gravedad de la Tierra ahora está reduciendo la velocidad orbital del satélite. Esto hace que caiga en una órbita más baja, lo que en realidad aumenta la velocidad angular del satélite alrededor del Sol. Esto continúa hasta el punto E, donde la órbita del satélite ahora es más baja y más rápida que la órbita de la Tierra , y comienza a moverse por delante de la Tierra. Durante los siguientes siglos, completa su viaje de regreso al punto A.

A largo plazo, los asteroides pueden transferirse entre órbitas en herradura y órbitas cuasi-satélites . Los cuasi-satélites no están ligados gravitacionalmente a su planeta, pero parecen girarlo en una dirección retrógrada cuando giran alrededor del Sol con el mismo período orbital que el planeta. Para 2016, los cálculos orbitales mostraron que cuatro de los liberadores de herradura de la Tierra y los cinco de sus cuasi-satélites conocidos en ese momento se transfieren repetidamente entre órbitas de herradura y cuasi-satélites. [3]

Mirador de energía [ editar ]

Se puede observar una visión algo diferente, pero equivalente, de la situación considerando la conservación de energía . Es un teorema de la mecánica clásica que un cuerpo que se mueve en un campo de potencial independiente del tiempo tendrá su energía total, E = T + V , conservada, donde E es la energía total, T es la energía cinética (siempre no negativa) y V es la energía potencial, que es negativa. Es evidente entonces, puesto que V = -GM / R cerca de un cuerpo gravitante de masa M y orbital radio R , que se ve desde un estacionarioframe, V aumentará para la región detrás de M y disminuirá para la región frente a ella. Sin embargo, las órbitas con menor energía total tienen períodos más cortos, por lo que un cuerpo que se mueva lentamente en el lado delantero de un planeta perderá energía, caerá en una órbita de período más corto y, por lo tanto, se alejará lentamente o será "repelido". Los cuerpos que se mueven lentamente en el lado posterior del planeta ganarán energía, ascenderán a una órbita más alta y más lenta y, por lo tanto, se quedarán atrás, repelidos de manera similar. Por lo tanto, un cuerpo pequeño puede moverse hacia adelante y hacia atrás entre una posición inicial y una final, sin acercarse nunca demasiado al planeta que domina la región.

Órbita de renacuajo [ editar ]

Un ejemplo de la órbita de un renacuajo
   Sol  ·    Tierra  ·    2010 TK7
Consulte también Trojan (astronomía) .

La Figura 1 de arriba muestra órbitas más cortas alrededor de los puntos lagrangianos L 4 y L 5 (por ejemplo, las líneas cercanas a los triángulos azules). Estas se llaman órbitas de renacuajo y se pueden explicar de manera similar, excepto que la distancia del asteroide a la Tierra no oscila hasta el punto L 3 al otro lado del Sol. A medida que se acerca o se aleja de la Tierra, el tirón cambiante del campo gravitacional de la Tierra hace que se acelere o desacelere, provocando un cambio en su órbita conocido como libración .

Un ejemplo de un cuerpo en la órbita de un renacuajo es Polideuces , una pequeña luna de Saturno que libra alrededor del punto final L 5 en relación con una luna más grande, Dione . En relación con la órbita de la Tierra, el asteroide 2010 TK 7 de 300 metros de diámetro (980 pies) se encuentra en una órbita de renacuajo alrededor del punto L 4 principal . 2020 VT1 sigue una órbita temporal en herradura con respecto a Marte . [4]


Ver también [ editar ]

  • Órbita de caja
  • Luna coorbital
  • Órbita de halo
  • Red de transporte interplanetario
  • Órbita de Lissajous
  • Satélite natural
  • Cuasi satélite
  • Satélite temporal

Referencias [ editar ]

  1. ^ Christou, Apostolos A .; Asher, David J. (2011). "Un compañero de herradura de larga vida para la Tierra". Avisos mensuales de la Royal Astronomical Society . 414 (4): 2965–2969. arXiv : 1104.0036 . Código bibliográfico : 2011MNRAS.414.2965C . doi : 10.1111 / j.1365-2966.2011.18595.x . S2CID  13832179 .
  2. de la Fuente Marcos, C .; de la Fuente Marcos, R. (abril de 2016). "Un trío de herraduras: evolución dinámica pasada, presente y futura de los asteroides coorbitales de la Tierra 2015 XX 169 , 2015 YA y 2015 YQ 1 ". Astrofísica y Ciencias Espaciales . 361 (4): 121-133. arXiv : 1603.02415 . Código bibliográfico : 2016Ap y SS.361..121D . doi : 10.1007 / s10509-016-2711-6 . S2CID 119222384 . 
  3. de la Fuente Marcos, C .; de la Fuente Marcos, R. (11 de noviembre de 2016). "Asteroide (469219) (469219) 2016 HO 3 , el cuasi-satélite más pequeño y cercano de la Tierra". Avisos mensuales de la Royal Astronomical Society . 462 (4): 3441–3456. arXiv : 1608.01518 . Código bibliográfico : 2016MNRAS.462.3441D . doi : 10.1093 / mnras / stw1972 . S2CID 118580771 . 
  4. de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (marzo de 2021). "Uso de coorbitales de Marte para estimar la importancia de los eventos de ruptura de YORP inducidos por rotación en el espacio coorbital de la Tierra" . Avisos mensuales de la Royal Astronomical Society . 501 (4): 6007–6025. arXiv : 2101.02563 . Código bibliográfico : 2021MNRAS.501.6007D . doi : 10.1093 / mnras / stab062 .

Enlaces externos [ editar ]

  • Artículo de investigación que describe las órbitas de herradura. Empiece en la página 105.
  • Una buena descripción de 2002 AA29