De Wikipedia, la enciclopedia libre
  (Redirigido de la concentración calórica )
Saltar a navegación Saltar a búsqueda

En física , la densidad de energía es la cantidad de energía almacenada en un determinado sistema o región de espacio por unidad de volumen . También se puede usar para energía por unidad de masa , aunque un término más preciso para esto es energía específica (o densidad de energía gravimétrica).

A menudo, solo se mide la energía útil o extraíble, es decir, se ignora la energía inaccesible (como la energía de la masa en reposo ). [1] En cosmológico y otros contextos relativistas generales , sin embargo, las densidades de energía consideradas son aquellas que corresponden a los elementos del tensor de tensión-energía y por lo tanto incluyen la energía de masa así como las densidades de energía asociadas con las presiones descritas en el siguiente párrafo. .

La energía por unidad de volumen tiene las mismas unidades físicas que la presión , y en muchas circunstancias es un sinónimo : por ejemplo, la densidad de energía de un campo magnético puede expresarse como (y se comporta como) una presión física, y la energía requerida para comprimir un campo magnético. Se puede determinar un poco más de gas comprimido multiplicando la diferencia entre la presión del gas y la presión externa por el cambio de volumen. Un gradiente de presión tiene el potencial de realizar trabajo en el entorno al convertir la energía interna en trabajo hasta que se alcanza el equilibrio.

Resumen [ editar ]

Hay diferentes tipos de energía almacenada en los materiales y se necesita un tipo particular de reacción para liberar cada tipo de energía. En orden de la magnitud típica de la energía liberada, estos tipos de reacciones son: nuclear, química, electroquímica y eléctrica.

Las reacciones nucleares tienen lugar en estrellas y plantas de energía nuclear, y ambas obtienen energía de la energía de enlace de los núcleos. Los animales utilizan las reacciones químicas para obtener energía de los alimentos y los automóviles para obtener energía de la gasolina. Los hidrocarburos líquidos (combustibles como gasolina, diesel y queroseno) son hoy en día la forma más densa conocida para almacenar y transportar económicamente energía química a gran escala (1 kg de combustible diesel se quema con el oxígeno contenido en ~ 15 kg de aire). La mayoría de los dispositivos móviles, como las computadoras portátiles y los teléfonos móviles, utilizan las reacciones electroquímicas para liberar la energía de las baterías.

Tipos de contenido energético [ editar ]

Hay varios tipos diferentes de contenido energético. Uno es la cantidad teórica total de trabajo termodinámico que se puede derivar de un sistema, con una temperatura y presión determinadas para el entorno. A esto se le llama exergía . Otra es la cantidad teórica de trabajo que se puede derivar de los reactivos que están inicialmente a temperatura ambiente y presión atmosférica. Esto viene dado por el cambio en la energía libre estándar de Gibbs . Pero como fuente de calor o para uso en un motor térmico , la cantidad relevante es el cambio en la entalpía estándar o el calor de combustión .

Hay dos tipos de calor de combustión:

  • El valor más alto (HHV), o calor bruto de combustión, incluye todo el calor liberado cuando los productos se enfrían a temperatura ambiente y el vapor de agua presente se condensa.
  • El valor más bajo (LHV), o calor neto de combustión, no incluye el calor que podría liberarse al condensar el vapor de agua y puede no incluir el calor liberado al enfriar hasta la temperatura ambiente.

En las referencias se puede encontrar una práctica tabla de HHV y LHV de algunos combustibles. [2]

En almacenamiento de energía y combustibles [ editar ]

Gráfico de densidades de energía seleccionadas [3] [4] [5] [6] [7] [8] [9]

En aplicaciones de almacenamiento de energía , la densidad de energía relaciona la energía en un acumulador de energía con el volumen de la instalación de almacenamiento, por ejemplo, el tanque de combustible . Cuanto mayor sea la densidad de energía del combustible, más energía se puede almacenar o transportar por la misma cantidad de volumen. La densidad de energía de un combustible por unidad de masa se denomina energía específica de ese combustible. En general, un motor que usa ese combustible generará menos energía cinética debido a ineficiencias y consideraciones termodinámicas ; por lo tanto, el consumo específico de combustible de un motor siempre será mayor que su tasa de producción de la energía cinética de movimiento.

La densidad de energía difiere de la eficiencia de conversión de energía (producción neta por insumo) o la energía incorporada (los costos de producción de energía para proporcionar, ya que la recolección , el refinado , la distribución y el tratamiento de la contaminación usan energía). El uso intensivo de energía a gran escala impacta y se ve afectado por el clima , el almacenamiento de desechos y las consecuencias ambientales .

Ningún método de almacenamiento de energía solo cuenta con los mejores de potencia específica , la energía específica , y la densidad de energía. La ley de Peukert describe cómo la cantidad de energía útil que se puede obtener (para una celda de plomo-ácido) depende de la rapidez con la que se extrae. Para maximizar tanto la energía específica como la densidad de energía, se puede calcular la densidad de energía específica de una sustancia multiplicando los dos valores, donde cuanto mayor sea el número, mejor será la sustancia para almacenar energía de manera eficiente.

Se discuten opciones alternativas para el almacenamiento de energía para aumentar la densidad de energía y disminuir el tiempo de carga. [10] [11] [12] [13]

La figura de la derecha muestra la densidad de energía gravimétrica y volumétrica de algunos combustibles y tecnologías de almacenamiento (modificado del artículo Gasoline ).

Nota: Es posible que algunos valores no sean precisos debido a isómeros u otras irregularidades. Consulte Valor calorífico para obtener una tabla completa de energías específicas de combustibles importantes.
Nota: También es importante darse cuenta de que generalmente los valores de densidad para combustibles químicos no incluyen el peso de oxígeno requerido para la combustión. Suele ser dos átomos de oxígeno por átomo de carbono y uno por dos átomos de hidrógeno. El peso atómicode carbono y oxígeno son similares, mientras que el hidrógeno es mucho más ligero que el oxígeno. Las cifras se presentan de esta manera para aquellos combustibles en los que, en la práctica, el aire solo entraría localmente al quemador. Esto explica la densidad de energía aparentemente más baja de los materiales que ya incluyen su propio oxidante (como pólvora y TNT), donde la masa del oxidante en efecto agrega peso muerto y absorbe parte de la energía de combustión para disociar y liberar oxígeno para continuar. la reacción. Esto también explica algunas anomalías aparentes, como la densidad de energía de un sándwich que parece ser más alta que la de una barra de dinamita.

Lista de densidades de energía material [ editar ]

Las siguientes conversiones de unidades pueden ser útiles al considerar los datos de las tablas: 3.6  MJ = 1  kW⋅h ≈ 1.34  hp⋅h . Dado que 1 J = 10 −6 MJ y 1 m 3 = 10 3 L, divida joule / m 3 por 10 9 para obtener MJ / L = GJ / m 3 . Divida MJ / L por 3.6 para obtener kW⋅h / L.

En reacciones nucleares [ editar ]

En reacciones químicas (oxidación) [ editar ]

A menos que se indique lo contrario, los valores de la siguiente tabla son valores caloríficos más bajos para una combustión perfecta , sin contar la masa o el volumen del oxidante. Tenga en cuenta que cuando se utiliza para producir electricidad en una celda de combustible o para realizar un trabajo , es la energía de reacción libre de Gibbs (ΔG) la que establece el límite superior teórico. Si el H producido2O es vapor, esto es generalmente mayor que el menor calor de combustión, mientras que si el H producido
2
O
es líquido, generalmente es menor que el calor de combustión más alto. Pero en el caso más relevante del hidrógeno, ΔG es 113 MJ / kg si se produce vapor de agua, y 118 MJ / kg si se produce agua líquida, siendo ambos menores que el menor calor de combustión (120 MJ / kg). [17]

Otros mecanismos de liberación [ editar ]

En deformación material [ editar ]

La capacidad de almacenamiento de energía mecánica, o resiliencia , de un material Hookean cuando se deforma hasta el punto de falla se puede calcular calculando la resistencia a la tracción multiplicada por el alargamiento máximo dividido por dos. El alargamiento máximo de un material Hookean se puede calcular dividiendo la rigidez de ese material por su resistencia máxima a la tracción. La siguiente tabla enumera estos valores calculados utilizando el módulo de Young como medida de rigidez:

En pilas [ editar ]

Fuentes de energía nuclear [ editar ]

La mayor fuente de energía, con mucho, es la masa misma. Esta energía, E = mc 2 , donde m = ρV , ρ es la masa por unidad de volumen, V es el volumen de la propia masa y c es la velocidad de la luz. Esta energía, sin embargo, solo puede ser liberada por los procesos de fisión nuclear (0.1%), fusión nuclear (1%) o la aniquilación de parte o toda la materia en el volumen V por colisiones materia- antimateria (100%). . [ cita requerida ]Las reacciones nucleares no pueden realizarse mediante reacciones químicas como la combustión. Aunque se pueden lograr mayores densidades de materia, la densidad de una estrella de neutrones se aproximaría al sistema más denso capaz de aniquilar materia-antimateria posible. Un agujero negro , aunque más denso que una estrella de neutrones, no tiene una forma antipartícula equivalente, pero ofrecería la misma tasa de conversión del 100% de masa en energía en forma de radiación de Hawking. En el caso de agujeros negros relativamente pequeños (más pequeños que los objetos astronómicos), la potencia de salida sería enorme.

Las fuentes de energía de mayor densidad, además de la antimateria, son la fusión y la fisión . La fusión incluye energía del sol que estará disponible durante miles de millones de años (en forma de luz solar), pero hasta ahora (2021), la producción sostenida de energía de fusión sigue siendo difícil de alcanzar.

La energía procedente de la fisión del uranio y el torio en las centrales nucleares estará disponible durante muchas décadas o incluso siglos debido al abundante suministro de elementos en la tierra [80], aunque todo el potencial de esta fuente solo puede realizarse mediante reactores reproductores , que , aparte del reactor BN-600 , aún no se utilizan comercialmente. [81] El carbón , el gas y el petróleo son las fuentes de energía primaria actuales en los EE . UU. [82] pero tienen una densidad energética mucho menor. La quema de combustibles de biomasa local satisface las necesidades energéticas de los hogares ( fuegos para cocinar , lámparas de aceite, etc.) en todo el mundo.

Energía térmica de los reactores de fisión nuclear [ editar ]

La densidad de energía térmica contenida en el núcleo de un reactor de agua ligera ( PWR o BWR ) de típicamente 1 GWe (1000 MW eléctricos correspondientes a ≈3 000 MW térmicos) está en el rango de 10 a 100 MW de energía térmica por cúbico. metro de agua de refrigeración en función de la ubicación considerada en el sistema (el propio núcleo (≈30 m 3 ), la vasija de presión del reactor (≈50 m 3 ) o todo el circuito primario (≈300 m 3 )). Esto representa una densidad de energía considerable que requiere en todas las circunstancias un flujo de agua continuo a alta velocidad para poder eliminar el calor.del núcleo, incluso después de una parada de emergencia del reactor. La incapacidad para enfriar los núcleos de tres reactores de agua hirviendo (BWR) en Fukushima en 2011 después del tsunami y la pérdida resultante de la energía eléctrica externa y de la fuente de frío fue la causa de la fusión de los tres núcleos en solo unas pocas horas. , a pesar de que los tres reactores se apagaron correctamente justo después del terremoto de Tōhoku . Esta densidad de potencia extremadamente alta distingue a las centrales nucleares (CN) de las centrales térmicas (que queman carbón, combustible o gas) o cualquier planta química y explica la gran redundancia necesaria para controlar permanentemente la reactividad de los neutrones y eliminar el calor residual del núcleo. de centrales nucleares.

Densidad energética de campos eléctricos y magnéticos [ editar ]

Los campos eléctricos y magnéticos almacenan energía. En el vacío, la densidad de energía (volumétrica) viene dada por

donde E es el campo eléctrico y B es el campo magnético . La solución estará (en unidades SI) en julios por metro cúbico. En el contexto de la magnetohidrodinámica , la física de los fluidos conductores, la densidad de energía magnética se comporta como una presión adicional que se suma a la presión del gas de un plasma .

En sustancias normales (lineales y no dispersivas), la densidad de energía (en unidades SI) es

donde D es el campo de desplazamiento eléctrico y H es el campo de magnetización .

En el caso de ausencia de campos magnéticos, al explotar las relaciones de Fröhlich también es posible extender estas ecuaciones a dieléctricos anisotrópicos y no lineales , así como calcular las densidades de energía libre y entropía de Helmholtz correlacionadas . [83]

Cuando un láser pulsado impacta en una superficie, la exposición radiante , es decir, la energía depositada por unidad de superficie, puede denominarse densidad de energía o fluencia. [84]

Ver también [ editar ]

  • Contenido energético del biocombustible
  • Tabla de referencia ampliada de densidad de energía
  • Figura de mérito
  • Energía alimentaria
  • Calor de combustión
  • Materia de alta densidad energética
  • Densidad de potencia y específicamente
  • Relación peso-potencia
  • Batería recargable
  • Batería de estado sólido
  • Energía específica
  • Impulso específico

Notas al pie [ editar ]

  1. ^ "Las dos clases de unidades SI y los prefijos SI" . Guía NIST para el SI . 2009-07-02 . Consultado el 25 de enero de 2012 .
  2. ^ "Combustibles fósiles y alternativos - contenido energético (2008)" . Caja de herramientas de ingeniería . Consultado el 8 de octubre de 2018 .
  3. ^ Jeong, Goojin; Kim, Hansu; Park, Jong Hwan; Jeon, Jaehwan; Jin, Xing; Song, Juhye; Kim, Bo-Ram; Park, Min-Sik; Kim, Ji Man; Kim, Young-Jun (2015). "La nanotecnología habilitó las baterías recargables de Li-SO2: otro enfoque hacia los sistemas de baterías de iones de litio posteriores". Energía y Ciencias Ambientales . 8 (11): 3173–3180. doi : 10.1039 / C5EE01659B .
  4. ^ "Panasonic desarrolla nuevas celdas de iones de litio 18650 de mayor capacidad". Congreso de coches ecológicos. Np, 25 de diciembre de 2009. Web.
  5. ^ Stura, Enrico; Nicolini, Claudio (2006). "Nuevos nanomateriales para baterías de litio ligeras". Analytica Chimica Acta . 568 (1–2): 57–64. doi : 10.1016 / j.aca.2005.11.025 . PMID 17761246 . 
  6. ↑ a b c Fisher, Julia (2003). Elert, Glenn (ed.). "Densidad energética del carbón" . El libro de datos de física . Consultado el 28 de julio de 2019 .
  7. ^ "Valores de calor de varios combustibles - Asociación Nuclear Mundial". Asociación Nuclear Mundial. Np, septiembre de 2016. Web.
  8. ^ "Descripción general del programa de hidrógeno DOE de desarrollo de almacenamiento". Oficina de Eficiencia Energética y Energías Renovables. Np, mayo de 2000. Web.
  9. ^ Wong, Kaufui; Dia, Sarah (2017). "Nanotecnología en Baterías". Revista de tecnología de recursos energéticos . 139 . doi : 10.1115 / 1.4034860 .
  10. ^ Ionescu-Zanetti, C .; et., al. (2005). "Condensadores Nanogap: sensibilidad a los cambios de permitividad de la muestra". Revista de Física Aplicada . 99 (2): 024305. Código Bibliográfico : 2006JAP .... 99b4305I . doi : 10.1063 / 1.2161818 . S2CID 120910476 . 
  11. ^ Naoi, K .; et., al. (2013). "Supercondensador nanohíbrido de nueva generación " ". Cuentas de Investigación Química . 46 (5): 1075–1083. doi : 10.1021 / ar200308h . PMID 22433167 . 
  12. ^ Hubler, A .; Osuagwu, O. (2010). "Baterías cuánticas digitales: almacenamiento de información y energía en matrices de tubos de nanovacío". Complejidad . 15 (5): NA. doi : 10.1002 / cplx.20306 . S2CID 6994736 . 
  13. ^ Lyon, D .; et., al. (2013). "Dependencia del tamaño de la brecha de la rigidez dieléctrica en nano brechas de vacío". Transacciones IEEE sobre dieléctricos y aislamiento eléctrico . 2 (4): 1467–1471. doi : 10.1109 / TDEI.2013.6571470 . S2CID 709782 . 
  14. ^ a b Calculado a partir de la pérdida de masa fraccionaria multiplicada por c al cuadrado.
  15. ^ Calculado a partir de la pérdida de masa fraccionaria multiplicada por c al cuadrado. Bola, Justin (2019). "Maximización de la energía específica mediante la cría de deuterio". Fusión nuclear . 59 (10): 106043. arXiv : 1908.00834 . Código bibliográfico : 2019NucFu..59j6043B . doi : 10.1088 / 1741-4326 / ab394c . S2CID 199405246 . 
  16. ^ a b "Calcular la densidad de energía del combustible nuclear" . whatisnuclear.com . Consultado el 17 de abril de 2014 .
  17. ^ Manual CRC de química y física , 49ª edición, página D-42.
  18. ^ a b c Colegio del desierto, "Módulo 1, Propiedades del hidrógeno", Revisión 0, Diciembre de 2001 Propiedades del hidrógeno . Consultado el 8 de junio de 2014.
  19. Mike Millikin (18 de noviembre de 2014). "Toyota FCV Mirai se lanza en Los Ángeles; especificaciones iniciales de TFCS; arrendamiento de $ 57,500 o $ 499; apoyándose en la analogía del Prius" . Congreso de coches ecológicos . Consultado el 23 de noviembre de 2014 .
  20. ^ Greenwood, Norman N .; Earnshaw, Alan (1997), Química de los elementos (2a ed) (página 164)
  21. ^ "Boro: ¿un portador de energía mejor que el hidrógeno? (28 de febrero de 2009)" . Eagle.ca . Consultado el 7 de mayo de 2010 .
  22. ^ a b c d Envestra Limited. Gas natural Archivado el 10 de octubre de 2008 en la Wayback Machine . Consultado el 5 de octubre de 2008.
  23. ^ a b c d e IOR Energía. Lista de factores de conversión comunes (factores de conversión de ingeniería) . Consultado el 5 de octubre de 2008.
  24. ^ a b c d e Paul A. Kittle, Ph.D. "MATERIALES ALTERNATIVOS DE LA PORTADA DIARIA Y SUBTÍTULO D - LA TÉCNICA DE SELECCIÓN" (PDF) . Archivado desde el original (PDF) el 27 de mayo de 2008 . Consultado el 25 de enero de 2012 .
  25. ^ "537.PDF" (PDF) . Junio ​​de 1993 . Consultado el 25 de enero de 2012 .
  26. ^ Gofman, Evelyn (2003). Elert, Glenn (ed.). "Densidad energética del combustible de aviación" . El libro de datos de física . Consultado el 28 de julio de 2019 .
  27. ^ "Manual de productos" (PDF) . Air BP. págs. 11-13. Archivado desde el original (PDF) en 2011-06-08.
  28. ^ Características de los productos petrolíferos almacenados y dispensados (PDF) , División de productos petrolíferos - GN, p. 132, archivado desde el original (PDF) el 16 de enero de 2017 , consultado el 15 de enero de 2017
  29. ^ Román-Leshkov, Yuriy; Barrett, Christopher J .; Liu, Zhen Y .; Dumesic, James A. (21 de junio de 2007). "Producción de dimetilfurano para combustibles líquidos a partir de carbohidratos derivados de la biomasa". Naturaleza . 447 (7147): 982–985. Código bibliográfico : 2007Natur.447..982R . doi : 10.1038 / nature05923 . PMID 17581580 . S2CID 4366510 .  
  30. Justin Lemire-Elmore (13 de abril de 2004). "El costo energético de las bicicletas eléctricas y de propulsión humana" (PDF) . pag. 5 . Consultado el 26 de febrero de 2009 . un atleta debidamente entrenado tendrá eficiencias del 22 al 26%
  31. ^ Meroueh, Laureen (2020). "Almacenamiento de energía térmica en silicio". doi : 10.1016 / j.renene.2019.06.036 . Cite journal requiere |journal=( ayuda )
  32. ^ Bossel, Ulf (julio de 2003). "La física de la economía del hidrógeno" (PDF) . Noticias europeas sobre pilas de combustible. Archivado desde el original (PDF) el 19 de marzo de 2006 . Consultado el 6 de abril de 2019 . Los valores de calentamiento más altos son 22,7, 29,7 o 31,7 MJ / kg para metanol, etanol y DME, respectivamente, mientras que la gasolina contiene alrededor de 45 MJ por kg.
  33. ^ "Dimetil éter (DME)" (PDF) . Plataforma Tecnológica Europea de Biocombustibles . 2013-11-18 . Consultado el 6 de abril de 2019 . La densidad de DME y el valor calorífico inferior se obtuvieron de la tabla de la primera página.
  34. ^ "Elite_bloc.indd" (PDF) . Archivado desde el original (PDF) el 15 de julio de 2011 . Consultado el 7 de mayo de 2010 .
  35. ^ "Fundación de energía de biomasa: densidades de combustible" . Woodgas.com. Archivado desde el original el 10 de enero de 2010 . Consultado el 7 de mayo de 2010 .
  36. ^ "Bord na Mona, turba de energía" (PDF) . Bnm.ie. Archivado desde el original (PDF) el 19 de noviembre de 2007 . Consultado el 25 de enero de 2012 .
  37. ^ Justin Lemire-elmore (13 de abril de 2004). "El costo energético de la bicicleta eléctrica y de propulsión humana" (PDF) . Consultado el 25 de enero de 2012 .
  38. ^ "amortiguadores de energía" . Home.hccnet.nl . Consultado el 7 de mayo de 2010 .
  39. ^ Anne Wignall y Terry Wales. Cuaderno de ejercicios de Química 12, página 138 Archivado el 13 de septiembre de 2011 en la Wayback Machine . Pearson Education NZ ISBN 978-0-582-54974-6 
  40. ^ Mitchell, Robert R .; Gallant, Betar M .; Thompson, Carl V .; Shao-Horn, Yang (2011). "Electrodos de nanofibras de carbono para baterías recargables de Li – O2 de alta energía". Energía y Ciencias Ambientales . 4 (8): 2952–2958. doi : 10.1039 / C1EE01496J . S2CID 96799565 . 
  41. ^ David E. Dirkse. amortiguadores de energía . "Residuos domésticos 8..11 MJ / kg"
  42. ^ Lu, Gui-e; Chang, Wen-ping; Jiang, Jin-yong; Du, Shi-guo (mayo de 2011). "Estudio sobre la densidad energética de la fuente de calor de la pólvora". 2011 Conferencia Internacional sobre Materiales para Energías Renovables y Medio Ambiente . IEEE : 1185–1187. doi : 10.1109 / ICMREE.2011.5930549 . ISBN 978-1-61284-749-8. S2CID  36130191 .
  43. ^ "Boletín técnico sobre baterías de zinc-aire" . Duracell . Archivado desde el original el 27 de enero de 2009 . Consultado el 21 de abril de 2009 .
  44. ^ C. Knowlen, AT Mattick, AP Bruckner y A. Hertzberg, "Sistemas de conversión de alta eficiencia para automóviles con nitrógeno líquido" , Sociedad de ingenieros automotrices Inc, 1988.
  45. ^ "Descripción general de las baterías de iones de litio" (PDF) . Panasonic. Enero de 2007. Archivado (PDF) desde el original el 7 de noviembre de 2011.
  46. ^ "Panasonic NCR18650B" (PDF) . Archivado desde el original (PDF) el 22 de julio de 2015.
  47. ^ [45] [46]
  48. ^ "Prueba de Duracell Ultra Power AA" . lygte-info.dk . Consultado el 16 de febrero de 2019 .
  49. ^ "Ficha técnica de pilas alcalinas Energizer EN91 AA" (PDF) . Consultado el 10 de enero de 2016 .
  50. ^ a b "Prueba de GP ReCyko + AA 2700mAh (verde)" . lygte-info.dk . Consultado el 16 de febrero de 2019 .
  51. ^ a b "Comparación de supercondensadores de Maxwell" (PDF) . Consultado el 10 de enero de 2016 .
  52. ^ a b "Hoja de datos del supercondensador de la serie Nesscap ESHSP" (PDF) . Archivado desde el original (PDF) el 29 de marzo de 2016 . Consultado el 10 de enero de 2016 .
  53. ^ a b "Hoja de datos del supercondensador de la serie Cooper PowerStor XL60" (PDF) . Consultado el 10 de enero de 2016 .
  54. ^ a b "Hoja de datos del supercondensador de la serie Kemet S301" (PDF) . Archivado desde el original (PDF) el 4 de marzo de 2016 . Consultado el 10 de enero de 2016 .
  55. ^ a b "Hoja de datos del supercondensador de la serie Nichicon JJD" (PDF) . Consultado el 10 de enero de 2016 .
  56. ^ a b "Ultracondensador de alta energía skelcap" (PDF) . Tecnologías esqueléticas . Archivado desde el original (PDF) el 2 de abril de 2016 . Consultado el 13 de octubre de 2015 .
  57. ^ a b "HOJA DE DATOS DE LA CÉLULA ULTRACAPACIADOR 3.0V 3400F BCAP3400 P300 K04 / 05" (PDF) . Consultado el 12 de enero de 2020 .
  58. ^ "Generación de energía hidroeléctrica" . www.mpoweruk.com . Woodbank Communications Ltd . Consultado el 13 de abril de 2018 .
  59. ^ "2.1 Energía, descarga, relación de cabeza | Ingeniería y restauración de río en OSU | Universidad del estado de Oregon" . rivers.bee.oregonstate.edu . Consultado el 13 de abril de 2018 . Sea ε = 0,85, lo que significa un índice de eficiencia del 85%, típico de una central eléctrica más antigua.
  60. ^ a b "Hoja de datos de los condensadores de tantalio de la serie Vishay STE" (PDF) . Consultado el 10 de enero de 2016 .
  61. ^ "hoja de datos de condensadores electrolíticos de aluminio nichicon TVX" (PDF) . Consultado el 10 de enero de 2016 .
  62. ^ "Hoja de datos de condensadores electrolíticos de aluminio LGU nichicon" (PDF) . Consultado el 10 de enero de 2016 .
  63. ^ a b c "¿Cuánta energía se puede almacenar en una goma elástica?" . Cableado . ISSN 1059-1028 . Consultado el 21 de enero de 2020 . 
  64. ^ a b c "MatWeb - el recurso de información de materiales en línea" . www.matweb.com . Consultado el 15 de diciembre de 2019 .
  65. ^ PubChem. "Acetal" . pubchem.ncbi.nlm.nih.gov . Consultado el 12 de diciembre de 2019 .
  66. ^ a b c d e f g h i j k l m n o p q r s t u v "Módulo de Young - Resistencia a la tracción y elástico para materiales comunes" . www.engineeringtoolbox.com . Consultado el 12 de diciembre de 2019 .
  67. ^ a b c d e f g h i Cepille los productos de aleación Wellman. "Elastic Resilience" (PDF) . Tidbits técnicos . Consultado el 15 de diciembre de 2019 .
  68. ^ "Especificaciones de aleación C17200 | E. Jordan Brookes Company" . www.ejbmetals.com . Consultado el 15 de diciembre de 2019 .
  69. ^ "información y propiedades del policarbonato" . www.polymerprocessing.com . Consultado el 12 de diciembre de 2019 .
  70. ^ "Hoja de datos del material ASM" . asm.matweb.com . Consultado el 15 de diciembre de 2019 .
  71. ^ Sutherland, Karen; Martín, Mónica (2004). Elert, Glenn (ed.). "Densidad del acero" . El libro de datos de física . Consultado el 18 de junio de 2020 .
  72. ^ "Especies de madera - contenido de humedad y peso" . www.engineeringtoolbox.com . Consultado el 12 de diciembre de 2019 .
  73. ^ a b c "Acero suave / con poco carbono AISI 1018" . AZoM.com . 2012-06-28 . Consultado el 22 de enero de 2020 .
  74. ^ "Hoja de datos del material ASM" . asm.matweb.com . Consultado el 12 de diciembre de 2019 .
  75. ^ a b c "Madera de pino blanco del este americano" . www.matweb.com . Consultado el 15 de diciembre de 2019 .
  76. ^ a b "Masa, peso, densidad o gravedad específica de diferentes metales" . www.simetric.co.uk . Consultado el 12 de diciembre de 2019 .
  77. ^ "Propiedades físicas del vidrio | Saint Gobain Building Glass UK" . uk.saint-gobain-building-glass.com . Consultado el 12 de diciembre de 2019 .
  78. ^ a b "Tablas de energía de la batería" . Archivado desde el original el 4 de diciembre de 2011.
  79. ^ "Capacidades de la batería 18650" .
  80. ^ "Suministro de uranio" . world-nuclear.org. 2014-10-08 . Consultado el 13 de junio de 2015 .
  81. ^ "Hechos de Cohen" . Formal.stanford.edu. 2007-01-26. Archivado desde el original el 10 de abril de 2007 . Consultado el 7 de mayo de 2010 .
  82. ^ "Administración de información de energía de Estados Unidos (EIA) - revisión anual de energía" . Eia.doe.gov. 2009-06-26. Archivado desde el original el 6 de mayo de 2010 . Consultado el 7 de mayo de 2010 .
  83. Parravicini, J. (2018). "Potenciales termodinámicos en dieléctricos anisotrópicos y no lineales". Physica B . 541 : 54–60. Código Bibliográfico : 2018PhyB..541 ... 54P . doi : 10.1016 / j.physb.2018.04.029 .
  84. ^ "Terminología" . Terapia Láser Regenerativa .

Lectura adicional [ editar ]

  • El universo inflacionario: la búsqueda de una nueva teoría de los orígenes cósmicos por Alan H. Guth (1998) ISBN 0-201-32840-2 
  • Inflación cosmológica y estructura a gran escala por Andrew R. Liddle, David H. Lyth (2000) ISBN 0-521-57598-2 
  • Richard Becker, "Campos e interacciones electromagnéticos", Dover Publications Inc., 1964

Enlaces externos [ editar ]

  • ^ "Combustibles para aviones". Energía, Tecnología y Medio AmbienteEd. Attilio Bisio. Vol. 1. Nueva York: John Wiley and Sons, Inc., 1995. 257–259
  • " Combustibles del futuro para automóviles y camiones " - Dr. James J. Eberhardt - Eficiencia energética y energías renovables, Departamento de Energía de EE. UU. - 2002 Taller de reducción de emisiones de motores diésel (DEER) San Diego, California - 25 al 29 de agosto de 2002
  • "Valores caloríficos de varios combustibles - Asociación Nuclear Mundial" . www.world-nuclear.org . Consultado el 4 de noviembre de 2018 .
  • "Energía y tipos de energía - Springer" (PDF) . Consultado el 4 de noviembre de 2018 .