De Wikipedia, la enciclopedia libre
Ir a navegaciónSaltar a buscar

La eficiencia energética en el transporte es la distancia útil recorrida , de pasajeros, mercancías o cualquier tipo de carga; dividido por la energía total invertida en los medios de propulsión de transporte . El aporte de energía puede presentarse en varios tipos diferentes según el tipo de propulsión, y normalmente dicha energía se presenta en combustibles líquidos , energía eléctrica o energía alimentaria . [1] [2] La eficiencia energética también se conoce ocasionalmente como intensidad energética . [3] La inversa de la eficiencia energética en el transporte, es laconsumo de energía en el transporte.

La eficiencia energética en el transporte se describe a menudo en términos de consumo de combustible, siendo el consumo de combustible el recíproco del ahorro de combustible . [2] No obstante, el consumo de combustible está vinculado a un medio de propulsión que utiliza combustibles líquidos , mientras que la eficiencia energética es aplicable a cualquier tipo de propulsión. Para evitar dicha confusión, y poder comparar la eficiencia energética en cualquier tipo de vehículo, los expertos tienden a medir la energía en el Sistema Internacional de Unidades , es decir, en julios .

Por lo tanto, en el Sistema Internacional de Unidades, la eficiencia energética en el transporte se mide en términos de metro por julio, om / J , mientras que el consumo de energía en el transporte se mide en términos de julio por metro, o J / m . Cuanto más eficiente es el vehículo, más metros recorre con un joule (más eficiencia), o menos joules utiliza para recorrer más de un metro (menos consumo). La eficiencia energética en el transporte varía en gran medida según el medio de transporte. Los diferentes tipos de transporte van desde unos cientos de kilojulios por kilómetro (kJ / km) para una bicicleta hasta decenas de megajulios por kilómetro (MJ / km) para un helicóptero .

A través del tipo de combustible utilizado y la tasa de consumo de combustible, la eficiencia energética también se relaciona a menudo con el costo operativo ($ / km) y las emisiones ambientales (por ejemplo, CO 2 / km).

Unidades de medida

En el Sistema Internacional de Unidades , la eficiencia de energía en el transporte se mide en términos de metros por joule, o m / J . No obstante, son aplicables varias conversiones, dependiendo de la unidad de distancia y de la unidad de energía. Para los combustibles líquidos , normalmente la cantidad de entrada de energía se mide en términos del volumen del líquido, como litros o galones. Para la propulsión que funciona con electricidad, normalmente se utilizan kW · h , mientras que para cualquier tipo de vehículo propulsado por humanos, la entrada de energía se mide en términos de calorías . Es típico convertir entre diferentes tipos de energía y unidades.

Para el transporte de pasajeros , la eficiencia energética se mide normalmente en términos de pasajeros por distancia por unidad de energía, en el SI, pasajeros metros por julio ( pax.m / J ); mientras que para el transporte de carga la eficiencia energética se mide normalmente en términos de masa de carga transportada multiplicada por la distancia por unidad de energía, en el SI, kilogramos metros por julio ( kg.m / J ). También se puede informar la eficiencia volumétrica con respecto a la capacidad del vehículo, como pasajero-milla por galón (PMPG), [4] obtenido al multiplicar las millas por galón de combustible por la capacidad de pasajeros o la ocupación promedio.[5] La ocupación de los vehículos personales suele ser inferior a la capacidad en un grado considerable [6] [7] y, por lo tanto, los valores calculados en función de la capacidad y la ocupación a menudo serán bastante diferentes.

Conversiones típicas a unidades SI

Combustibles líquidos

La eficiencia energética se expresa en términos de ahorro de combustible: [2]

  • distancia por vehículo por unidad de volumen de combustible; por ejemplo, km / lo millas por galón (EE.UU. o imperial) .
  • distancia por vehículo por unidad de masa de combustible; por ejemplo, km / kg. [11]
  • distancia por vehículo por unidad de energía; por ejemplo, millas por galón equivalente (mpg-e).

El consumo de energía (eficiencia recíproca) [3] se expresa en términos de consumo de combustible: [2]

  • volumen de combustible (o energía total) consumido por unidad de distancia por vehículo; por ejemplo, l / 100 km o MJ / 100 km.
  • volumen de combustible (o energía total) consumido por unidad de distancia por pasajero; por ejemplo, l / (100 pasajeros · km).
  • volumen de combustible (o energía total) consumido por unidad de distancia por unidad de masa de carga transportada; por ejemplo, l / 100 kg · km o MJ / t · km.

Electricidad

Consumo de electricidad:

  • energía eléctrica utilizada por vehículo por unidad de distancia; por ejemplo, kW · h / 100 km.

La producción de electricidad a partir de combustibles requiere mucha más energía primaria que la cantidad de electricidad producida.

Energía alimentaria

Consumo de energía:

  • calorías quemadas por el metabolismo del cuerpo por kilómetro; por ejemplo, Cal / km.
  • calorías quemadas por el metabolismo del cuerpo por milla; por ejemplo, Cal / millas. [12]

Resumen

En la siguiente tabla se presentan la eficiencia energética y el consumo de energía para diferentes tipos de vehículos terrestres de pasajeros y modos de transporte, así como las tasas de ocupación estándar. Las fuentes de estas cifras se encuentran en la sección correspondiente a cada vehículo, en el siguiente artículo. Las conversiones entre diferentes tipos de unidades son bien conocidas en la técnica.

Para la conversión entre unidades de energía en la siguiente tabla, 1 litro de gasolina equivale a 34,2 MJ , 1 kWh equivale a 3,6 MJ y 1 kilocaloría equivale a 4184 J. Para la tasa de ocupación de automóviles, el valor de 1,2 pasajeros por automóvil [13 ] fue considerado. No obstante, en Europa este valor aumenta ligeramente hasta 1,4. [14] Las fuentes de conversión entre unidades de medida aparecen solo en la primera fila.

Medios de transporte terrestre de pasajeros

  1. ^ El rango utilizado es el punto medio del rango operativo efectivo.

Medios de transporte terrestre

Caminando

Caminantes nórdicos

Una persona de 68 kg (150 lb) que camina a 4 km / h (2,5 mph) requiere aproximadamente 210 kilocalorías (880 kJ) de energía alimentaria por hora, lo que equivale a 4,55 km / MJ. [15] 1 galón estadounidense (3,8 L) de gasolina contiene aproximadamente 114 000 unidades térmicas británicas (120 MJ) [50] de energía, por lo que esto equivale aproximadamente a 360 millas por galón estadounidense (0,65 L / 100 km).

Velomóvil

Los Velomóviles (bicicletas reclinadas cerradas) tienen la mayor eficiencia energética de cualquier modo conocido de transporte personal debido a su pequeña área frontal y forma aerodinámica. A una velocidad de 50 km / h (31 mph), el fabricante de velomóviles WAW afirma que solo se necesitan 0,5 kW · h (1,8 MJ) de energía por cada 100 km para transportar al pasajero (= 18 J / m). Esto es alrededor de 15 (20%) de lo que se necesita para impulsar una bicicleta vertical estándar sin revestimiento aerodinámico a la misma velocidad, y 150 (2%) de lo que consume un automóvil eléctrico o de combustible fósil promedio (el La eficiencia del velomóvil corresponde a 4700 millas por galón estadounidense, 2000 km / L o 0.05 L / 100 km). [22] La energía real de los alimentos que utilizan los humanos es de 4 a 5 veces más.[20] Desafortunadamente, su ventaja de eficiencia energética sobre las bicicletas se reduce a medida que disminuye la velocidad y desaparece a unos 10 km / h, donde la potencia necesaria para velomóviles y bicicletas de triatlón es casi la misma. [51]

Bicicleta

Una bicicleta de paloma voladora china

Una bicicleta estándar, ligera y de velocidad moderada, es una de las formas de transporte más eficientes desde el punto de vista energético. En comparación con caminar, un ciclista de 64 kg (140 lb) que viaja a 16 km / h (10 mph) requiere aproximadamente la mitad de la energía alimentaria por unidad de distancia: 27 kcal / km, 3,1 kW⋅h (11 MJ) por 100 km, o 43 kcal / mi. [15] Esto convierte a aproximadamente 732 mpg -US (0,321 L / 100 km; 879 mpg -imp ). [23] Esto significa que una bicicleta utilizará entre 10 y 25 veces menos energía por distancia recorrida que un automóvil personal, según la fuente de combustible y el tamaño del automóvil. Esta cifra depende de la velocidad y la masa del ciclista: mayores velocidades dan mayor resistencia al aire.y los ciclistas más pesados ​​consumen más energía por unidad de distancia. Además, debido a que las bicicletas son muy livianas (generalmente entre 7 y 15 kg), esto significa que consumen cantidades muy bajas de materiales y energía para fabricarlas. En comparación con un automóvil que pesa 1500 kg o más, una bicicleta generalmente requiere de 100 a 200 veces menos energía para producirse que un automóvil. Además, las bicicletas requieren menos espacio tanto para estacionar como para operar y dañan menos las superficies de las carreteras, lo que agrega un factor de eficiencia de infraestructura.

Bicicleta motorizada

Una bicicleta motorizada permite que la energía humana y la asistencia de un 49 cm 3 (3,0 cu in) del motor, dando un rango de 160 a 200 mpg -US (1.5 a 1.2 L / 100 km; 190-240 mpg -imp ). [ cita requerida ] Las bicicletas eléctricas asistidas por pedales funcionan con tan solo 1.0 kW⋅h (3.6 MJ) por cada 100 km, [52] mientras mantienen velocidades superiores a 30 km / h (19 mph). [ cita requerida ] Estas cifras en el mejor de los casos se basan en un ser humano que hace el 70% del trabajo, con alrededor de 3,6 MJ (1,0 kW⋅h) por cada 100 km provenientes del motor. Esto hace que una bicicleta eléctrica sea uno de los vehículos motorizados más eficientes posibles, solo detrás de un velomóvil motorizado. y un monociclo eléctrico (EUC).

Patinete eléctrico

Patinetes eléctricos, parte de un sistema de uso compartido de scooters , en San José, California.

Los patinetes eléctricos, como los que se utilizan en los sistemas de uso compartido de patinetes como Bird o Lime , suelen tener un alcance máximo de menos de 30 km (19 mi) y una velocidad máxima de aproximadamente 15,5 mph (24,9 km / h). [26] Con la intención de encajar en un nicho de la última milla y circular en carriles para bicicletas, requieren poca habilidad por parte del ciclista. Debido a su peso ligero y motores pequeños, son extremadamente eficientes energéticamente con una eficiencia energética típica de 1,1 kW⋅h (4,0 MJ) por 100 km [53](1904 MPGe 810 km / L 0.124 L / 100 km), incluso más eficiente que las bicicletas y caminar. Sin embargo, como deben recargarse con frecuencia, a menudo se recogen durante la noche con vehículos de motor, negando un poco esta eficiencia. El ciclo de vida de los scooters eléctricos también es notablemente más corto que el de las bicicletas, y a menudo alcanza un número de años de un solo dígito.

Monociclo eléctrico

Una variante de monopatín eléctrico cruzado de monociclo eléctrico (EUC) llamada Onewheel Pint puede transportar a una persona de 50 kg a 21,5 km a una velocidad media de 20 km / h. La batería tiene 148 Wh. Sin tener en cuenta la energía perdida por calor en la etapa de carga, esto equivale a una eficiencia de 6.88Wh / km o 0.688kWh / 100km. [ cita requerida ] Además, con el frenado regenerativo como característica de diseño estándar, el terreno montañoso tendría menos impacto en un EUC en comparación con un vehículo con frenos de fricción como una bicicleta de empuje. Esto, combinado con la interacción de una sola rueda con el suelo, puede convertir al EUC en el vehículo conocido más eficiente a bajas velocidades (por debajo de 25 km / h), con el velomóvil adelantando la posición como más eficiente a velocidades más altas debido a su aerodinámica superior.

Poder humano

Para ser exhaustiva, una comparación también debe considerar los costos energéticos de producir, transportar y empaquetar el combustible (alimento o combustible fósil), la energía incurrida en la eliminación de los desechos de escape y los costos energéticos de la fabricación del vehículo. Esto último puede ser significativo dado que caminar requiere poco o ningún equipo especial, mientras que los automóviles, por ejemplo, requieren una gran cantidad de energía para producirse y tienen una vida útil relativamente corta. Además, cualquier comparación de vehículos eléctricos y vehículos de combustible líquido debe incluir el combustible consumido en la central eléctrica para generar la electricidad. En el Reino Unido, por ejemplo, la eficiencia del sistema de generación y distribución de electricidad es de alrededor de 0,40 [ cita requerida ] .

Automóviles

Bugatti Veyron

El automóvil es un vehículo ineficaz en comparación con otros modos de transporte. Esto se debe a que la relación entre la masa del vehículo y la masa de los pasajeros es mucho mayor en comparación con otros modos de transporte.

La eficiencia del combustible de los automóviles se expresa más comúnmente en términos del volumen de combustible consumido por cada cien kilómetros (l / 100 km), pero en algunos países (incluidos los Estados Unidos, el Reino Unido y la India) se expresa más comúnmente en términos de la distancia por volumen de combustible consumido (km / lo millas por galón ). Esto se complica por el diferente contenido energético de combustibles como la gasolina y el diésel. El Laboratorio Nacional de Oak Ridge (ORNL) afirma que el contenido energético de la gasolina sin plomo es de 115.000 unidades térmicas británicas (BTU) por galón estadounidense (32 MJ / l) en comparación con las 130.500 BTU por galón estadounidense (36,4 MJ / l) del diésel. [54]

Una segunda consideración importante son los costos energéticos de producir energía. Los biocombustibles, la electricidad y el hidrógeno , por ejemplo, tienen importantes aportes energéticos en su producción. La eficiencia de la producción de hidrógeno es del 50 al 70% cuando se produce a partir de gas natural y del 10 al 15% a partir de la electricidad. [ cita requerida ] La eficiencia de la producción de hidrógeno, así como la energía requerida para almacenar y transportar hidrógeno, deben combinarse con la eficiencia del vehículo para obtener una eficiencia neta. [55] Debido a esto, los automóviles de hidrógeno son uno de los medios de transporte de pasajeros menos eficientes, generalmente se debe invertir alrededor de 50 veces más energía en la producción de hidrógeno en comparación con la cantidad que se usa para mover el automóvil. [ cita requerida ]

Una tercera consideración a tener en cuenta al calcular la eficiencia energética de los automóviles es la tasa de ocupación del vehículo. Aunque el consumo por unidad de distancia por vehículo aumenta al aumentar el número de pasajeros, este aumento es leve en comparación con la reducción del consumo por unidad de distancia por pasajero. Esto significa que una mayor ocupación produce una mayor eficiencia energética por pasajero. La ocupación de automóviles varía según las regiones. Por ejemplo, la tasa de ocupación media estimada es de unos 1,3 pasajeros por coche en el área de la bahía de San Francisco [56], mientras que la media estimada en el Reino Unido en 2006 es de 1,58. [57]

En cuarto lugar, la energía necesaria para construir y mantener carreteras es una consideración importante, al igual que la energía devuelta por la energía invertida (EROEI). Entre estos dos factores, se debe agregar aproximadamente el 20% a la energía del combustible consumido, para contabilizar con precisión la energía total utilizada. [ cita requerida ]

Por último, los cálculos de eficiencia energética de los vehículos serían engañosos sin tener en cuenta el coste energético de producir el vehículo en sí. Por supuesto, este costo de energía inicial se puede depreciar durante la vida útil del vehículo para calcular una eficiencia energética promedio durante su vida útil. En otras palabras, los vehículos que requieren mucha energía para producirse y se utilizan durante períodos relativamente cortos requerirán mucha más energía durante su vida útil efectiva que los que no lo hacen y, por lo tanto, son mucho menos eficientes energéticamente de lo que podrían parecer. Los autos híbridos y eléctricos usan menos energía en su operación que los autos comparables que funcionan con petróleo, pero se usa más energía para fabricarlos, por lo que la diferencia general sería menos que aparente de inmediato. Compare, por ejemplo, caminar, que no requiere ningún equipo especial,y un automóvil, producido y enviado desde otro país, y fabricado con piezas fabricadas en todo el mundo a partir de materias primas y minerales extraídos y procesados ​​nuevamente en otros lugares, y utilizados durante un número limitado de años. Según la agencia francesa de energía y medio ambiente ADEME,[58]un automóvil promedio tiene un contenido energético incorporado de 20.800 kWh y un vehículo eléctrico promedio asciende a 34.700 kWh. El automóvil eléctrico requiere casi el doble de energía para producirse, principalmente debido a la gran cantidad de extracción y purificación necesarias para los metales de tierras raras y otros materiales utilizados en las baterías de iones de litio y en los motores de accionamiento eléctrico. Esto representa una parte significativa de la energía utilizada durante la vida útil del automóvil (en algunos casos, casi tanto como la energía que se usa a través del combustible que se consume, duplicando efectivamente el consumo de energía por distancia del automóvil), y no se puede ignorar cuando comparar automóviles con otros modos de transporte. Como estos son números promedio para los automóviles franceses y es probable que sean significativamente mayores en países más autocentrados como Estados Unidos y Canadá,donde los coches mucho más grandes y pesados ​​son más comunes.

Las prácticas de conducción y los vehículos pueden modificarse para mejorar su eficiencia energética en aproximadamente un 15%. [59] [60]

Sobre una base porcentual, si hay un ocupante en un automóvil, entre el 0,4 y el 0,6% de la energía total utilizada se utiliza para mover a la persona en el coche, mientras que el 99,4-99,6% (aproximadamente 165 a 250 veces más) se utiliza para mover el coche.

Ejemplo de cifras de consumo

Dos coches solares estadounidenses en Canadá
  • Los coches solares no utilizan combustible de suministro externo que no sea la luz solar, cargan las baterías por completo con paneles solares incorporados y, por lo general, utilizan menos de 3 kW · h por 100 millas (67 kJ / km o 1,86 kW · h / 100 km). Estos autos no están diseñados para uso de pasajeros o servicios públicos y no serían prácticos como tales debido a la velocidad, la carga útil y el diseño inherente. [27]
  • El GEM NER para cuatro pasajeros usa 169 Wh / mi (203 mpg-e; 10.5 kW⋅h / 100 km), [28] que equivale a 2.6 kW · h / 100 km por persona cuando está completamente ocupado, aunque a solo 24 mph ( 39 km / h).
  • El General Motors EV1 se calificó en una prueba con una eficiencia de carga de 373 Wh-AC / milla o 23 kWh / 100 km [61] aproximadamente equivalente a 2.6 L / 100 km (110 mpg -imp ; 90 mpg -US ) para el petróleo. -vehículos de combustible.
  • Chevrolet Volt en modo completamente eléctrico usa 36 kilovatios-hora por cada 100 millas (810 kJ / km; 96 mpg-e), lo que significa que puede acercarse o exceder la eficiencia energética de caminar si el automóvil está completamente ocupado con 4 o más pasajeros, aunque las emisiones relativas producidas pueden no seguir las mismas tendencias si se analizan los impactos ambientales.
  • El Daihatsu Charade turbodiésel de 993 cc (1987-1993) ganó el premio al vehículo más eficiente en combustible por dar la vuelta al Reino Unido con un consumo medio de 2,82 l / 100 km (100 mpg -imp ). Recientemente fue superado por el VW Lupo 3 L que consume alrededor de 2,77 l / 100 km (102 mpg -imp ). Ambos coches son raros de encontrar en el mercado popular. El Daihatsu tenía problemas importantes con el óxido y la seguridad estructural, lo que contribuye a su rareza y a la producción bastante corta.
  • El Volkswagen Polo 1.4 TDI Bluemotion y el SEAT Ibiza 1.4 TDI Ecomotion, ambos con una potencia nominal de 3.8 l / 100 km (74 mpg -imp ; 62 mpg -US ) (combinados) fueron los autos de petróleo más eficientes en combustible a la venta en el Reino Unido. al 22 de marzo de 2008. [62] [29] [31] [ necesita actualización ]
  • Honda Insight - logra 60 mpg -US (3,9 L / 100 km; 72 mpg -imp ) bajo condiciones del mundo real. [63]
  • Honda Civic Hybrid - regularmente promedio de alrededor de 45 mpg -US (5,2 L / 100 km; 54 mpg -imp ).
  • 2012 Cadillac CTS-V carro 6,2 L sobrealimentado, 14 mpg -US (17 L / 100 km; 17 mpg -imp ). [34]
  • 2012 Bugatti Veyron, 10 mpg -US (24 L / 100 km; 12 mpg -imp ). [34]
  • 2018 Honda Civic : 36 mpg -US (6,5 L / 100 km; 43 mpg -imp ) [64] t
  • 2017 Mitsubishi Mirage : 39 mpg -US (6,0 L / 100 km; 47 mpg -imp ) [65]
  • 2017 Hyundai Ioniq híbrido: 55 mpg -US (4,3 L / 100 km; 66 mpg -imp ) [66]
  • 2017 Toyota Prius: 56 mpg -US (4,2 L / 100 km; 67 mpg -imp ) (ajuste Eco) [36]
  • Nissan Leaf 2018: 30 kWh (110 MJ) / 100 mi (671 kJ / km) o 112 MPGe [35]
  • Hyundai Ioniq EV 2017: 25 kWh (90 MJ) / 100 mi (560 kJ / km) o 136 MPGe [67]
  • Modelo Tesla 2020 3:24 kWh (86,4 MJ) / 100 mi (540 kJ / km) o 141 MPGe [68]

Trenes

Capacidad de pasajeros de diferentes modos de transporte.png

Los trenes son, en general, uno de los medios de transporte más eficientes para mercancías y pasajeros . Una ventaja de eficiencia inherente es la baja fricción de las ruedas de acero sobre rieles de acero en comparación con los neumáticos de caucho sobre asfalto. La eficiencia varía significativamente con la carga de pasajeros y las pérdidas incurridas en la generación y suministro de electricidad (para sistemas electrificados), [69] [70] y, lo que es más importante, la entrega de extremo a extremo, donde las estaciones no son los destinos finales de origen de un viaje.

El consumo real depende de las pendientes, las velocidades máximas y los patrones de carga y parada. Los datos producidos para el proyecto europeo MEET (Metodologías para estimar las emisiones de contaminantes atmosféricos) ilustran los diferentes patrones de consumo en varias secciones de la vía. Los resultados muestran que el consumo de un tren de alta velocidad alemán ICE varió de alrededor de 19 a 33 kW /h / km (68-119 MJ / km; 31-53 kW⋅h / mi). Los datos también reflejan el peso del tren por pasajero. Por ejemplo, los trenes dúplex TGV de dos pisos usan materiales livianos, que mantienen bajas las cargas por eje y reducen el daño a las vías y también ahorran energía. [71]

El consumo de energía específico de los trenes en todo el mundo asciende a aproximadamente 150 kJ / pkm (kilojulio por pasajero kilómetro) y 150 kJ / tkm (kilojulio por tonelada kilómetro) (aproximadamente 4,2 kWh / 100 pkm y 4,2 kWh / 100 tkm) en términos de energía final. El transporte de pasajeros por sistemas ferroviarios requiere menos energía que en automóvil o avión (una séptima parte de la energía necesaria para mover a una persona en automóvil en un contexto urbano [44] ). Esta es la razón por la cual, aunque representaron el 9% de la actividad mundial de transporte de pasajeros (expresada en pkm) en 2015, los servicios de pasajeros por ferrocarril representaron solo el 1% de la demanda final de energía en el transporte de pasajeros. [72] [73]

Flete

Las estimaciones de consumo de energía para el transporte de mercancías por ferrocarril varían ampliamente y muchas son proporcionadas por partes interesadas. Algunos están tabulados a continuación.

Pasajero

Pérdidas por frenado

El Shinkansen de la serie N700 utiliza frenado regenerativo

Parar es una fuente considerable de ineficiencia. Los trenes eléctricos modernos como el Shinkansen (el tren bala ) utilizan el frenado regenerativo para devolver la corriente a la catenaria mientras frenan. Un estudio de Siemens indicó que el frenado regenerativo podría recuperar el 41,6% de la energía total consumida. Mejoras tecnológicas y operativas de las industrias ferroviaria de pasajeros (urbana e interurbana) e interurbana programada y todas las industrias de autobuses chárter: el INFORME FINAL establece que "las operaciones de pasajeros pueden disipar más de la mitad de su energía de tracción total en el frenado para paradas". y que "Estimamos que la energía de cabecera es del 35 por ciento (pero posiblemente podría llegar al 45 por ciento) de la energía total consumida por los ferrocarriles de cercanías".[87] Tener que acelerar y desacelerar un tren pesado de personas en cada parada es ineficaz a pesar del frenado regenerativo que puede recuperar típicamente alrededor del 20% de la energía desperdiciada en el frenado. [ cita requerida ] El peso es un factor determinante de las pérdidas de frenado.

Autobuses

El autobús de tránsito rápido de Metz utiliza un sistema de conducción híbrido diésel-eléctrico , desarrollado por el fabricante belga Van Hool . [88]
  • En julio de 2005, se declaró que la ocupación media de los autobuses en el Reino Unido era de 9 pasajeros por vehículo. [42]
  • La flota de 244 40 pies (12 m) 1982 New Flyer trolebuses en servicio local con BC Transit en Vancouver, Canadá, en 1994/95 utilizó 35,454,170 kWh para 12,966,285 vehículos km, o 9,84 MJ / vehículo km. Se desconoce el número exacto de pasajeros en trolebuses, pero con los 34 asientos ocupados, esto equivale a 0,32 MJ / pasajero-km. Es bastante común ver gente parada en los trolebuses de Vancouver. Este es un servicio con muchas paradas por kilómetro; parte de la razón de la eficiencia es el uso de frenado regenerativo.
  • Un servicio de cercanías en Santa Barbara, California , EE.UU., encontró promedio eficiencia bus diesel de 6,0 mpg -US (39 L / 100 km; 7,2 mpg -imp ) (utilizando MCI 102DL3 autobuses). Con los 55 asientos ocupados, esto equivale a 330 mpg para pasajeros; con 70% de llenado, 231 mpg para pasajeros. [41]
  • En 2011 la flota de 752 autobuses de la ciudad de Lisboa tenía una velocidad media de 14,4 km / hy una ocupación media de 20,1 pasajeros por vehículo. [89]
  • Los autobuses eléctricos a batería combinan la alta eficiencia de un trolebús con la flexibilidad de un autobús diésel. Los principales fabricantes incluyen BYD y Proterra.

Otro

  • El Crawler-Transporter de la NASA se utilizó para trasladar el transbordador espacial desde el almacenamiento hasta la plataforma de lanzamiento. Utiliza diesel y tiene una de las tasas de consumo de combustible más altas registradas, 150 galones estadounidenses por milla (350 l / km; 120 imp gal / mi). [90]

Medios de transporte aéreo

Aeronaves

Solar Impulse 2, un avión solar

Un determinante principal del consumo de energía en las aeronaves es la resistencia , a la que debe oponerse el empuje para que la aeronave avance.

  • El arrastre es proporcional a la sustentación requerida para el vuelo, [91] que es igual al peso de la aeronave. A medida que la resistencia inducida aumenta con el peso, la reducción de masa, con mejoras en la eficiencia del motor y reducciones en la resistencia aerodinámica , ha sido una fuente principal de ganancias de eficiencia en las aeronaves, con una regla de oro que es que una reducción de peso del 1% corresponde a alrededor de un Reducción del 0,75% en el consumo de combustible. [91]
  • La altitud de vuelo afecta la eficiencia del motor. La eficiencia del motor a reacción aumenta en altitud hasta la tropopausa , la temperatura mínima de la atmósfera; a temperaturas más bajas, la eficiencia de Carnot es mayor. [91] La eficiencia del motor a reacción también aumenta a altas velocidades, pero por encima de aproximadamente Mach 0,85, las pérdidas aerodinámicas del fuselaje aumentan más rápidamente.
  • Efectos de compresibilidad: comenzando a velocidades transónicas de alrededor de Mach 0,85, las ondas de choque forman una resistencia creciente.
  • Para el vuelo supersónico, es difícil lograr una relación de sustentación / arrastre superior a 5, y el consumo de combustible aumenta proporcionalmente.

Los aviones de pasajeros promediaron 4.8 L / 100 km por pasajero (1.4 MJ / pasajero-km) (49 pasajero-millas por galón) en 1998. [ cita requerida ] En promedio, el 20% de los asientos quedan desocupados. La eficiencia de los aviones a reacción está mejorando: entre 1960 y 2000 hubo una ganancia general de eficiencia de combustible del 55% (si se excluyera la ineficiente y limitada flota del DH Comet 4 y se considerara el Boeing 707 como el caso base). [94] La mayoría de las mejoras en la eficiencia se obtuvieron en la primera década, cuando las naves a reacción empezaron a tener un uso comercial generalizado. En comparación con los aviones de pasajeros con motor de pistón avanzado de la década de 1950, los aviones de pasajeros actuales son solo un poco más eficientes por pasajero-milla. [95]Entre 1971 y 1998, la mejora anual promedio de la flota por asiento-kilómetro disponible se estimó en un 2,4%. Concorde, el transporte supersónico logró aproximadamente 17 millas-pasajero por galón imperial; similar a un jet de negocios, pero mucho peor que un avión turboventilador subsónico. Airbus sitúa la tasa de consumo de combustible de su A380 en menos de 3 L / 100 km por pasajero (78 pasajero-millas por galón estadounidense). [96]

Air France Airbus A380-800

La masa de una aeronave se puede reducir utilizando materiales livianos como titanio , fibra de carbono y otros plásticos compuestos. Se pueden utilizar materiales caros, si la reducción de masa justifica el precio de los materiales a través de una mayor eficiencia de combustible. Las mejoras logradas en la eficiencia del combustible mediante la reducción de masa, reduce la cantidad de combustible que debe transportarse. Esto reduce aún más la masa de la aeronave y, por lo tanto, permite mayores ganancias en la eficiencia del combustible. Por ejemplo, el diseño del Airbus A380 incluye varios materiales ligeros.

Airbus ha presentado dispositivos de punta de ala (tiburones o aletas) que pueden lograr una reducción del 3,5 por ciento en el consumo de combustible. [97] [98] Hay dispositivos de punta de ala en el Airbus A380. Se ha dicho que las aletas Minix más desarrolladas ofrecen una reducción del 6 por ciento en el consumo de combustible. [99] Las aletas en la punta del ala de un avión suavizan el vórtice de la punta del ala (reduciendo el arrastre del ala del avión) y se pueden adaptar a cualquier avión. [99]

La NASA y Boeing están realizando pruebas en un avión de " ala combinada " de 230 kg . Este diseño permite una mayor eficiencia de combustible ya que toda la embarcación produce sustentación, no solo las alas. [100] El concepto de cuerpo de ala combinada (BWB) ofrece ventajas en cuanto a eficiencia estructural, aerodinámica y operativa sobre los diseños de fuselaje y ala más convencionales de la actualidad. Estas características se traducen en un mayor alcance, economía de combustible, confiabilidad y ahorros en el ciclo de vida, así como menores costos de fabricación. [101] [102] La NASA ha creado un concepto STOL de crucero eficiente (CESTOL).

El Instituto Fraunhofer de Ingeniería de Fabricación e Investigación de Materiales Aplicados (IFAM) ha investigado una piel de tiburón que imita la pintura que reduciría el arrastre a través de un efecto de riblet. [103] Las aeronaves son una de las principales aplicaciones potenciales de las nuevas tecnologías, como la espuma metálica de aluminio y la nanotecnología , como la pintura que imita la piel de tiburón.

Los sistemas de hélice , como los turbohélices y los ventiladores propulsores , son una tecnología más eficiente en el consumo de combustible que los aviones a reacción . Pero los turbohélices tienen una velocidad óptima por debajo de aproximadamente 450 mph (700 km / h). [104] Esta velocidad es menor que la que utilizan los aviones a reacción de las principales aerolíneas en la actualidad. Con el alto precio actual [ necesita actualización ] del combustible para aviones y el énfasis en la eficiencia del motor / fuselaje para reducir las emisiones, existe un renovado interés en el concepto de propfan para aviones de línea que podrían entrar en servicio más allá del Boeing 787 y Airbus A350 XWB. Por ejemplo, Airbus ha patentado diseños de aviones con dos ventiladores de propulsión contrarrotantes montados en la parte trasera.[105] La NASA ha llevado a cabo un Proyecto de Turbohélice Avanzado (ATP), donde investigaron un propfan de paso variable que producía menos ruido y alcanzaba altas velocidades.

Relacionado con la eficiencia del combustible está el impacto de las emisiones de la aviación en el clima .

Aviones pequeños

Dyn'Aéro MCR4S
  • Los planeadores a motor pueden alcanzar un consumo de combustible extremadamente bajo para vuelos de fondo, si existen corrientes de aire térmico favorables y vientos.
  • A 160 km / h, un Dieselis biplaza con motor diésel quema 6 litros de combustible por hora, 1,9 litros por cada 100 pasajeros-km. [106]
  • a 220 km / h, un cuatro plazas MCR-4S de 100 CV quema 20 litros de gasolina por hora, 2,2 litros por cada 100 pasajeros-km.
  • Bajo vuelo motorizado continuo a 225 km / h, un Pipistrel Sinus quema 11 litros de combustible por hora de vuelo. Con 2 personas a bordo, opera a 2,4 litros por cada 100 pasajeros-km.
  • El avión ultraligero Tecnam P92 Echo Classic a una velocidad de crucero de 185 km / h quema 17 litros de combustible por hora de vuelo, 4,6 litros por cada 100 pasajeros-km (2 personas). [107] Otros aviones ultraligeros modernos han aumentado su eficiencia; Tecnam P2002 Sierra RG a una velocidad de crucero de 237 km / h quema 17 litros de combustible por hora de vuelo, 3,6 litros por cada 100 pasajeros-km (2 personas). [108]
  • Los biplazas y cuatro plazas que vuelan a 250 km / h con motores de la vieja generación pueden quemar de 25 a 40 litros por hora de vuelo, de 3 a 5 litros por cada 100 pasajeros-km.
  • El Sikorsky S-76 C ++ twin helicóptero de turbina recibe alrededor de 1,65 mpg -US (143 L / 100 km; 1,98 mpg -imp ) a 140 nudos (260 kmh; 160 mph) y lleva a 12 durante aproximadamente 19,8 pasajeros-millas por galón (11,9 L por 100 pasajeros / km). [ cita requerida ]

Medios de transporte por agua

Barcos

Reina Isabel

Reina Isabel 2

Cunard declaró que el Queen Elizabeth 2 viajó 49.5 pies por galón imperial de diesel oil (3.32 m / L o 41.2 ft / US gal), y que tenía una capacidad de pasajeros de 1777. [109] Por lo tanto, transportando 1777 pasajeros podemos calcular una eficiencia de 16.7 millas por pasajero por galón imperial (16.9 l / 100 p · km o 13.9 p · mpg –US ).

Cruceros

MS  Oasis of the Seas tiene una capacidad de 6,296 pasajeros y una eficiencia de combustible de 14.4 millas por pasajero por galón estadounidense. Los cruceros de la clase Voyager tienen una capacidad de 3114 pasajeros y una eficiencia de combustible de 12,8 millas-pasajero por galón estadounidense. [110]

Emma Maersk

Emma Maersk utiliza un Wärtsilä-Sulzer RTA96-C , que consume 163 g / kW · hy 13.000 kg / h. Si transporta 13.000 contenedores, 1 kg de combustible transporta un contenedor durante una hora a una distancia de 45 km. El barco tarda 18 días de Tanjung (Singapur) a Rotterdam (Países Bajos), 11 de Tanjung a Suez y 7 de Suez a Rotterdam, [111] que son aproximadamente 430 horas, y tiene 80 MW, +30 MW. 18 días a una velocidad media de 25 nudos (46 km / h) dan una distancia total de 10.800 millas náuticas (20.000 km).

Suponiendo que la Emma Maersk consume diesel (a diferencia del fuel oil, que sería el combustible más preciso), entonces 1 kg de diesel = 1,202 litros = 0,317 galones estadounidenses. Esto corresponde a 46.525 kJ. Suponiendo un estándar de 14 toneladas por contenedor (por teu), esto produce 74 kJ por tonelada-km a una velocidad de 45 km / h (24 nudos).

Barcos

Un velero , al igual que un automóvil solar, puede moverse sin consumir combustible. Un barco de vela, como un bote, que utiliza solo energía eólica, no requiere energía de entrada en términos de combustible. Sin embargo, la tripulación requiere algo de energía manual para dirigir el barco y ajustar las velas utilizando líneas. Además, se necesitará energía para demandas distintas de la propulsión, como cocinar, calentar o iluminar. La eficiencia de combustible de una embarcación para uso individual depende en gran medida del tamaño de su motor, la velocidad a la que viaja y su desplazamiento. Con un solo pasajero, la eficiencia energética equivalente será menor que en un automóvil, tren o avión. [ cita requerida ]

Comparaciones de transporte internacional

EffizienzLeistungFahrzeuge.png

Transporte público europeo

Por lo general, se requiere que el tren y el autobús presten servicios rurales y fuera de las horas pico, que por su naturaleza tienen cargas más bajas que las rutas de autobuses urbanos y las líneas de trenes interurbanos. Además, debido a su emisión de billetes "walk on", es mucho más difícil hacer coincidir la demanda diaria y el número de pasajeros. Como consecuencia, el factor de ocupación global en los ferrocarriles del Reino Unido es del 35% o 90 personas por tren: [112]

Por el contrario, los servicios de las aerolíneas generalmente funcionan en redes punto a punto entre grandes centros de población y son de naturaleza "pre-reserva". Con la gestión del rendimiento , los factores de carga totales se pueden elevar a alrededor del 70-90%. Los operadores de trenes interurbanos han comenzado a utilizar técnicas similares, con cargas que alcanzan típicamente el 71% en general para los servicios de TGV en Francia y una cifra similar para los servicios de Virgin Rail Group del Reino Unido . [113]

En el caso de las emisiones, se debe tener en cuenta la fuente generadora de electricidad. [114] [115] [116]

Transporte de pasajeros de EE. UU.

El Libro de datos de energía del transporte de EE. UU. Establece las siguientes cifras para el transporte de pasajeros en 2018. Se basan en el consumo real de energía, independientemente de las tasas de ocupación que hubiera. Para los modos que utilizan electricidad, se incluyen las pérdidas durante la generación y distribución. Los valores no son directamente comparables debido a diferencias en los tipos de servicios, rutas, etc. [117]

Transporte de mercancías de EE. UU.

El libro de energía del transporte de los Estados Unidos establece las siguientes cifras para el transporte de mercancías en 2010: [86] [118] [119] [120]

De 1960 a 2010, la eficiencia del transporte aéreo de mercancías ha aumentado un 75%, principalmente debido a los motores a reacción más eficientes. [121]

1 gal -US (3,785 l, 0,833 gal -imp ) de combustible puede mover una tonelada de carga 857 kilometros o 462 millas náuticas por barcaza, ó 337 km (209 millas) por ferrocarril, ó 98 km (61 millas) por camión. [122]

Comparar:

  • Transbordador espacial utilizado para transportar carga al otro lado de la Tierra (ver arriba): 40 megajulios por tonelada-kilómetro.
  • Energía neta para el levantamiento: 10 megajulios por tonelada-kilómetro.

Transporte canadiense

La Oficina de Eficiencia Energética de Natural Resources Canada publica estadísticas anuales sobre la eficiencia de toda la flota canadiense. Para los investigadores, estas estimaciones de consumo de combustible son más realistas que las clasificaciones de consumo de combustible de los vehículos nuevos, ya que representan las condiciones de conducción del mundo real, incluido el clima y el tráfico extremos. El informe anual se denomina Análisis de tendencias de eficiencia energética. Hay docenas de tablas que ilustran las tendencias en el consumo de energía expresado en energía por pasajero km (pasajeros) o energía por tonelada km (carga). [123]

Calculadora ambiental francesa

La calculadora medioambiental de la agencia francesa de medio ambiente y energía (ADEME) publicada en 2007 con datos de 2005 [124] permite comparar los diferentes medios de transporte en cuanto a las emisiones de CO 2 (en términos de dióxido de carbono equivalente ) así como a la consumo de energía primaria . En el caso de un vehículo eléctrico, la ADEME asume que 2,58  tep como energía primaria son necesarios para producir una tep de electricidad como energía final en Francia (ver Energía incorporada: En el campo de la energía ).

Esta herramienta informática ideada por ADEME muestra la importancia del transporte público desde el punto de vista medioambiental. Destaca el consumo de energía primaria así como las emisiones de CO 2 debidas al transporte. Debido al impacto ambiental relativamente bajo de los desechos radiactivos , en comparación con el de las emisiones de la combustión de combustibles fósiles, este no es un factor en la herramienta. Además, el transporte intermodal de pasajeros es probablemente la clave del transporte sostenible , al permitir que las personas utilicen medios de transporte menos contaminantes.

Costos ambientales alemanes

Deutsche Bahn calcula el consumo de energía de sus distintos medios de transporte. [125]

Ver también

  • Acuerdo ACEA
  • Vehículo de combustible alternativo
  • Consumo de combustible específico del freno
  • Ahorro de combustible promedio corporativo (CAFE)
  • Estándar de emisión
  • Economía de combustible en automóviles
  • Sistemas de gestión de combustible
  • Devorador de gasolina
  • Equivalente de galones de gasolina
  • Evaluación del ciclo de vida
  • Gestión de combustible marino
  • Consumo de combustible específico del empuje
  • Métricas vehiculares
  • Transporte
  • Récord de velocidad

Notas al pie

  1. ^ "Eficiencia" . Consultado el 18 de septiembre de 2016 .
  2. ^ a b c d Evaluación de tecnologías de ahorro de combustible para vehículos ligeros . Prensa de las Academias Nacionales. 2011. doi : 10.17226 / 12924 . ISBN 978-0-309-15607-3. Consultado el 18 de septiembre de 2016 .
  3. ^ a b "Glosario de términos relacionados con la energía" . Departamento de Energía de Estados Unidos . Consultado el 20 de septiembre de 2016 .
  4. ^ "Millas por galón de pasajeros de ferrocarril de Estados Unidos" . Archivado desde el original el 15 de marzo de 2007 . Consultado el 2 de mayo de 2007 .
  5. ^ "Cálculos de ejemplo (examen del estado de Colorado)" . Archivado desde el original el 10 de septiembre de 2006 . Consultado el 2 de mayo de 2007 .
  6. ^ "Ocupación de vehículos por milla de vehículo por propósito de viaje diario" . Consultado el 2 de mayo de 2007 .
  7. ^ "Ocupación del vehículo por milla de vehículo por hora del día y estado del fin de semana" . Consultado el 2 de mayo de 2007 .
  8. ^ a b c "Contenido energético de los combustibles (en julios)" (PDF) .
  9. ^ "Calorías - Conversión de unidades de julios" . unidadesconversion.com.ar . Consultado el 24 de junio de 2017 .
  10. ^ "Unidades de energía" . aps.org . Consultado el 24 de junio de 2017 .
  11. ^ Eficiencia del avión, Fédération Aéronautique Internationale , "FAI - Federación mundial de deportes aéreos"
  12. ^ "Calculadora de calorías quemadas" . Mundo del corredor . El 5 de agosto de 2016 . Consultado el 23 de junio de 2017 .
  13. ^ a b c d e f g h i j k l m n o p "Ocupación promedio de vehículos por modo y propósito" . nhts.ornl.gov . Consultado el 8 de junio de 2018 .
  14. ^ "Tasas de ocupación de vehículos de pasajeros" . Agencia Europea de Medio Ambiente . Consultado el 8 de junio de 2018 .
  15. ^ a b c d Mackenzie, Brian. "Gasto energético para caminar y correr" .
  16. ^ "Convertir km / MJ en m / J - Wolfram | Alpha" . wolframalpha.com . Consultado el 17 de junio de 2018 .
  17. ^ "Convertir kWh / 100 km a kilocalorías por km - Wolfram Alpha" . wolframalpha.com . Consultado el 17 de junio de 2018 .
  18. ^ "Convertir kWh / 100 km a MJ / 100 km - Wolfram | Alpha" . wolframalpha.com . Consultado el 17 de junio de 2018 .
  19. ^ "Convertir kWh / 100 km a J / m - Wolfram | Alpha" . wolframalpha.com . Consultado el 17 de junio de 2018 .
  20. ^ a b c "Cómo convertir vatios en calorías quemadas durante el ciclismo - Gear & Grit" . Gear & Grit . 6 de enero de 2017 . Consultado el 27 de noviembre de 2018 .
  21. ^ "El velomóvil: ¿bicicleta de alta tecnología o coche de baja tecnología?" .
  22. ^ a b "Waw :: un coche deportivo práctico :: - mobilitylab.be" .
  23. ^ a b "Cálculo de la conversión de calorías dietéticas por milla a millas por galón de gasolina, utilizando la densidad energética de la gasolina enumerada por Wolfram Alpha" . 2011 . Consultado el 19 de julio de 2011 .
  24. ^ "Un estudio sobre la eficiencia energética de la bicicleta eléctrica" . ResearchGate .
  25. ^ "Bicicletas eléctricas: estudio y análisis de eficiencia energética" (PDF) . Consultado el 23 de noviembre de 2020 .
  26. ^ a b "Mi scooter eléctrico (M365)" . Xiaomi . Consultado el 19 de septiembre de 2018 . Energía requerida para una sola carga completa (0.335kWh) ÷ kilometraje típico (30 km)
  27. ^ a b "MIT presenta coche de carreras solar de 90 MPH" . Cableado . 27 de febrero de 2009.
  28. ^ a b c "Oficina de tecnologías de vehículos - Departamento de energía" (PDF) .
  29. ^ a b "Detalles del vehículo para Polo 3/5 puertas (desde el 6 de noviembre a la semana 45>) 1.4 TDI (80PS) (sin A / C) con DPF BLUEMOTION M5" . Agencia de Certificación de Vehículos del Reino Unido. Archivado desde el original el 10 de febrero de 2009 . Consultado el 22 de marzo de 2008 .
  30. ^ a b "Factores de conversión relacionados con la energía, página 21" (PDF) .
  31. ^ a b "Detalles del vehículo para Ibiza (desde 6 NOV Wk 45>) 1.4 TDI 80PS Ecomotion M5" . Agencia de Certificación de Vehículos del Reino Unido. Archivado desde el original el 10 de febrero de 2009 . Consultado el 22 de marzo de 2008 .
  32. ^ "Consumo medio de combustible Spritmonitor.de" . Consultado el 24 de noviembre de 2020 .
  33. ^ "Consumo medio de combustible Spritmonitor.de" . Consultado el 23 de noviembre de 2020 .
  34. ^ a b c d "2016 mejores y peores vehículos de economía de combustible" .
  35. ^ a b "2018 Nissan Leaf" . EPA . Consultado el 23 de mayo de 2018 .
  36. ^ a b "2017 Toyota Prius Eco" . EPA . Consultado el 23 de mayo de 2018 .
  37. ^ "¿Millas por kwh? | Tesla" . foros.tesla.com . Consultado el 8 de junio de 2018 .
  38. ^ "2020 Tesla modelo 3" . EPA . Consultado el 23 de noviembre de 2020 .
  39. ^ Steve Fambro , CEO de Aptera, consultado el 27 de junio de 2021
  40. ^ "Coche eléctrico que no necesita recarga: ¡Aptera EV reclama una autonomía total de 1.600 km! Lanzamiento en 2021" . El Financial Express . 7 de diciembre de 2020 . Consultado el 27 de junio de 2021 .
  41. ^ a b "Demostración de motores Caterpillar C-10 Duel-Fuel en autobuses de cercanías MCI 102DL3" (PDF) . Laboratorio Nacional de Energías Renovables. Enero de 2000 . Consultado el 5 de septiembre de 2018 .
  42. ^ a b c "Transporte de pasajeros (consumo de combustible)" . Hansard . Cámara de los Comunes del Reino Unido. 20 de julio de 2005 . Consultado el 25 de marzo de 2008 .
  43. ^ "CATALIZADOR: ESPECIFICACIONES DE RENDIMIENTO DEL BUS DE 40 PIES" (PDF) . Proterra, Inc. Junio ​​de 2019 . Consultado el 17 de abril de 2020 .
  44. ^ a b "Eficiencia energética - Contribución de los sistemas ferroviarios urbanos" (PDF) . Union internationale des transports publics . Consultado el 12 de junio de 2018 .
  45. ^ a b Informe anual de JR East 2017 , Informe anual de JR-East 2017
  46. ^ Relatório & Contas da CP ; página 16; 2012
  47. ^ a b "Eficiência energética: carro ou comboio?" .
  48. ^ "Tasas de ocupación" . Agencia Europea de Medio Ambiente . Consultado el 19 de junio de 2018 .
  49. ^ a b "Tasas de ocupación de la Agencia Europea de Medio Ambiente, página 3]" (PDF) . europa.eu . Archivado desde el original (PDF) el 13 de junio de 2007 . Consultado el 4 de marzo de 2007 .
  50. ^ EPA (2007). "Apéndice B, Libro de datos de energía del transporte" . Consultado el 16 de noviembre de 2010 .
  51. ^ "Calculadora de potencia vs velocidad" .
  52. ^ Lemire-Elmore, Justin (13 de abril de 2004). "El costo energético de las bicicletas eléctricas y de propulsión humana" (PDF) . ebikes.ca .
  53. ^ https://www.mi.com/global/mi-electric-scooter/specs/
  54. ^ "Laboratorio Nacional de Oak Ridge (ORNL)" . Archivado desde el original el 27 de septiembre de 2011.
  55. ^ "Oficina de tecnologías de vehículos - Departamento de energía" (PDF) .
  56. ^ Mapas y datos archivados el 12 de junio de 2007 en Wayback Machine - Comisión de transporte metropolitano para el área de la bahía de San Francisco de nueve condados, California
  57. ^ "Tendencias del transporte: edición actual" . Departamento de Transporte del Reino Unido . 8 de enero de 2008. Archivado desde el original el 22 de abril de 2008 . Consultado el 23 de marzo de 2008 .
  58. ^ (fr)Sitio web de evaluación del ciclo de vida www.ademe.fr ver página 9
  59. ^ Beusen; et al. (2009). "Uso de dispositivos de registro a bordo para estudiar el impacto a largo plazo de un curso de conducción ecológica" . Transportation Research D . 14 (7): 514–520. doi : 10.1016 / j.trd.2009.05.009 .
  60. ^ "¿Los límites de velocidad más bajos en las autopistas reducen el consumo de combustible y las emisiones contaminantes?" . Consultado el 12 de agosto de 2013 .
  61. ^ "Oficina de tecnologías de vehículos - Departamento de energía" (PDF) .
  62. ^ "Mejor en CO2rankings " . Departamento de Transporte del Reino Unido . Archivado desde el original el 12 de marzo de 2008. Consultado el 22 de marzo de 2008 .
  63. ^ Jerry Garrett (27 de agosto de 2006). "El antiguo y futuro rey del kilometraje" . The New York Times .
  64. ^ "2017 Honda Civic 4DR" . EPA . Consultado el 24 de mayo de 2018 .
  65. ^ "Espejismo de Mitsubishi 2017" . EPA . Consultado el 24 de mayo de 2018 .
  66. ^ "2017 Hyundai Ioniq" . EPA . Consultado el 23 de mayo de 2018 .
  67. ^ "2017 Hyundai Ioniq eléctrico" . EPA . Consultado el 23 de mayo de 2018 .
  68. ^ "2020 Tesla Model 3 Standard Range Plus" . www.fueleconomy.gov . Consultado el 23 de noviembre de 2020 .
  69. ^ "Eficiencia de combustible de los viajes en el siglo XX: apéndice-notas" . Archivado desde el original el 7 de junio de 2004.
  70. ^ Eficiencia de combustible de los viajes en el siglo XX
  71. ^ "Comisión de transporte integrado, aire de corto recorrido v tren de alta velocidad" . Archivado desde el original el 26 de abril de 2007.
  72. ^ Manual ferroviario: consumo de energía y CO2 sitio web de emisiones de la Unión Internacional de Ferrocarriles (UIC, con sede en París ); ver figura 15 en la página 27, y valores en la página 86. Este documento es el resultado de un trabajo conjunto entre la UIC y la Agencia Internacional de Energía (IEA, con sede en París )
  73. ^ Sitio web de seguimiento del progreso de la energía limpia iea.org
  74. ^ "Rail News agosto de 2016 - para profesionales de carrera ferroviaria de la revista Progressive Railroading" .
  75. ^ "El impacto económico de los ferrocarriles de carga de Estados Unidos" (PDF) . Asociación de Ferrocarriles Estadounidenses . Julio de 2019. p. 2.
  76. ^ "Carga por ferrocarril" (PDF) . freightonrail.org.uk .
  77. ^ " "复兴 号 "上 的 黑 科技: 往返 一趟 京沪 省电 5000 度" . news.sina.com.cn . 28 de septiembre de 2017 . Consultado el 14 de mayo de 2018 .
  78. ^ Objetivos y resultados ambientales ,Informe de sostenibilidad de JR-East 2005
  79. ^ JR East Group CSR 2017 ,Informe de sostenibilidad de JR-East 2017
  80. ^ TGV Duplex asumiendo 3 paradas intermedias entre París y Lyon .
  81. ^ Estimación de emisiones del tráfico ferroviario Archivado el 6 de diciembre de 2006 en Wayback Machine , página 74
  82. ^ Colorado Railcar DMU de dospisos quetransporta dos vagones Bombardier de dos niveles
  83. ^ Vagón de Colorado: "DMU se desempeña perfectamente en la prueba de servicio Tri-Rail" Archivado el 19 de marzo de 2007 en la Wayback Machine.
  84. ^ Tráfico de datos y cifras de SBB Archivado el 16 de mayo de 2012 en la Wayback Machine.
  85. ^ Combino - Pruebas de vehículos de tren ligero de piso bajo, ensayos y resultados tangibles
  86. ↑ a b Davis, Stacy C .; Susan W. Diegel; Robert G. Boundy (2011). Libro de datos de energía en el transporte: Edición 30 . Departamento de Energía de Estados Unidos. págs. Tabla 2.14. ORNL-6986 (Edición 30 de ORNL-5198) . Consultado el 22 de febrero de 2012 .
  87. ^ Informe final de autobuses y trenes [ enlace muerto ]
  88. ^ "Van Hool presenta el ExquiCity Design Mettis" . Archivado desde el original el 5 de junio de 2013 . Consultado el 5 de junio de 2012 .
  89. ^ Seara.com. "Indicadores de Atividade" .
  90. ^ "Sistema transportador de orugas" .
  91. ↑ a b c Barney L. Capehart (2007). Enciclopedia de Ingeniería y Tecnología Energética , Volumen 1. CRC Press. ISBN 0-8493-3653-8 , ISBN 978-0-8493-3653-9 .  
  92. ^ "Planta motriz". concordesst.com . Consultado el 2 de diciembre de 2009.
  93. ^ "Especificaciones técnicas: Boeing 747-400" . Boeing . Consultado el 11 de enero de 2010 .
  94. ^ "Laboratorio aeroespacial nacional]" (PDF) . transportenvironment.org .
  95. ^ Peeters PM, Middel J., Hoolhorst A. (2005). Eficiencia de combustible de aviones comerciales Una descripción general de las tendencias históricas y futuras . Laboratorio Aeroespacial Nacional, Países Bajos.
  96. ^ "El A380: el futuro de volar" . Aerobús. Archivado desde el original el 14 de diciembre de 2007 . Consultado el 22 de marzo de 2008 .
  97. ^ Bradley, Grant (17 de noviembre de 2009). " Las alas de 'aleta de tiburón' dan a los jefes de aerolíneas algo por lo que sonreír" . NZ Herald - vía New Zealand Herald.
  98. ^ "Aletas de tiburón de avión A320 pequeñas aletas completaron con éxito la primera prueba de vuelo" . Archivado desde el original el 11 de diciembre de 2012 . Consultado el 10 de septiembre de 2012 .
  99. ^ a b "El dispositivo de punta de ala Minix promete un aumento del 6% en eficiencia de combustible para aviones" .
  100. ^ Artículo de Ecogeek Archivado el 14 de julio de 2014 en Wayback Machine.
  101. ^ "Boeing comenzará las pruebas en tierra del concepto de cuerpo de ala combinada X-48B". Archivado el 19 de agosto de 2012 en Wayback Machine Boeing , el 27 de octubre de 2006. Consultado el 10 de abril de 2012.
  102. Lorenz III, Phillip. "Las pruebas AEDC acercan al vuelo los aviones de alas mixtas únicas". Archivado el 14 de julio de 2014 en Wayback Machine AEDC, US Air Force , 3 de julio de 2007. Consultado el 10 de abril de 2012.
  103. ^ Mahony, Melissa. "Un revestimiento de piel de tiburón para barcos, aviones y palas - ZDNet" .
  104. ^ Spakovszky, Zoltan (2009). "Lección de Propulsión Unificada 1" . Notas de conferencias de ingeniería unificada . MIT . Consultado el 3 de abril de 2009 .
  105. ^ Solicitud estadounidense 2009020643 , Airbus & Christophe Cros, "Aeronaves con impacto ambiental reducido", publicada el 22 de enero de 2009 
  106. ^ Contacto, Foro de noticias sobre aviones experimentales y centrales eléctricas para diseñadores y constructores, número 55, marzo-abril de 2000
  107. ^ "Tecnam P92 Echo Classic" . Tecnam costruzioni aeronautiche srl Archivado desde el original el 29 de mayo de 2012 . Consultado el 22 de mayo de 2012 .
  108. ^ "Tecnam P2002 Sierra De Luxe" . Tecnam costruzioni aeronautiche srl Archivado desde el original el 8 de junio de 2012 . Consultado el 22 de mayo de 2012 .
  109. ^ "Reina Isabel 2: información técnica" (PDF) . Línea Cunard. Archivado desde el original (PDF) el 18 de marzo de 2009 . Consultado el 31 de marzo de 2008 .
  110. ^ "Kilometraje de gas de crucero" . 27 de diciembre de 2010.
  111. ^ Emma Mærsk horarios Mærsk , 5 de diciembre de 2011.
  112. ^ "ATOC" .
  113. ^ "Entrega de un ferrocarril sostenible - Publicaciones - GOV.UK" . Archivado desde el original el 5 de septiembre de 2007 . Consultado el 25 de julio de 2007 .
  114. ^ "Declaración de emisiones y energía" (PDF) .
  115. ^ Directrices de Defra 2008 para los factores de conversión de GEI de Defra Archivado el 5 de enero de 2012 en Wayback Machine
  116. ^ "Kilogramos de CO2 por kilómetro de pasajero para diferentes modos de transporte dentro del Reino Unido]" (PDF) . aef.org.uk .
  117. ^ Davis, Stacy C .; Robert G. Boundy (2021). Libro de datos de energía del transporte: Edición 39 . Departamento de Energía de Estados Unidos. pag. C – 10. ORNL / TM-2020/1770 (Edición 39 de ORNL-5198) . Consultado el 27 de julio de 2021 .
  118. ^ Protección del medio ambiente de Estados Unidos, 2006 Archivado el 12 de febrero de 2009 en la Wayback Machine.
  119. ^ Eficiencia Energética - sector Transporte archivado 22 de septiembre de 2008 en la Wayback Machine (del Departamento de Energía de Estados Unidos 's Administración de Información de Energía )
  120. ^ Tabla de energía 2.15
  121. ^ "Tendencias en la eficiencia del combustible, aviones de pasajeros seleccionados" .
  122. ^ Rodrigue, Dr. Jean-Paul (7 de diciembre de 2017). "Transporte y Energía" .
  123. ^ "Datos de 2010" . Oee.rncan.gc.ca . Consultado el 19 de junio de 2018 .
  124. ^ (fr) Calculadora ambiental ADEME Archivado el 20 de julio de 2011 en Wayback Machine que informa sobre lasemisiones deCO 2 y elconsumo de energía primaria
  125. ^ "Aumento de la eficiencia energética | Deutsche Bahn AG" . ib.deutschebahn.com . Consultado el 8 de junio de 2019 .

Enlaces externos

  • Estudio ECCM para viajes por ferrocarril, carretera y aire entre las principales ciudades del Reino Unido
  • Informe resumido de tracción 2007– Prof. Roger Kemp
  • Libro de datos de energía de transporte (EE. UU.)
  • Clasificaciones de consumo de combustible
  • Infografía sobre eficiencia energética en el transporte