Economía de hidrógeno


De Wikipedia, la enciclopedia libre
  (Redirigido desde Hydrogen Economy )
Saltar a navegación Saltar a búsqueda

La economía del hidrógeno es un futuro previsto en el que el hidrógeno se utiliza como combustible para el calor [1] y los vehículos de hidrógeno , [2] [3] [4] para el almacenamiento de energía y para el transporte de energía a larga distancia . [5] Para eliminar gradualmente los combustibles fósiles y limitar el calentamiento global , el hidrógeno se puede crear a partir del agua utilizando fuentes de renovación intermitentes como el viento y el solar, y su combustión solo libera vapor de agua a la atmósfera. [6] [7]

El hidrógeno es un combustible poderoso y un componente frecuente en el combustible para cohetes , pero numerosos desafíos técnicos impiden la creación de una economía de hidrógeno a gran escala. Estos incluyen la dificultad de desarrollar equipos de almacenamiento, tuberías y motores a largo plazo; una relativa falta de tecnología de motores estándar que actualmente pueda funcionar de forma segura con hidrógeno; preocupaciones de seguridad debido a la alta reactividad del combustible de hidrógeno con el oxígeno ambiental en el aire; el gasto de producirlo por electrólisis; y falta de tecnología fotoquímica eficiente de división de agua . El hidrógeno también puede ser el combustible de una pila de combustible., que produce electricidad con alta eficiencia en un proceso inverso a la electrólisis del agua . No obstante, la economía del hidrógeno se está desarrollando lentamente como una pequeña parte de la economía de bajas emisiones de carbono . [8]

A partir de 2019 , el hidrógeno se utiliza principalmente como materia prima industrial, principalmente para la producción de amoníaco y metanol , y en la refinación de petróleo. Aunque inicialmente se pensó que el gas hidrógeno no se producía de forma natural en depósitos convenientes, ahora se ha demostrado que no es así; Actualmente se está explotando un sistema de hidrógeno en la región de Bourakebougou, Malí, que produce electricidad para las aldeas circundantes. [9] En los últimos años se han realizado más descubrimientos de hidrógeno natural en entornos geológicos terrestres y continentales [10], lo que abre el camino al nuevo campo del hidrógeno natural o nativo, lo que respalda los esfuerzos de transición energética. [11] [12] A partir de 2019, casi la totalidad (95%) de los 70 millones de toneladas de hidrógeno del mundo que se consumen anualmente en el procesamiento industrial [13] se produce mediante reformado de metano con vapor (SMR), que también libera dióxido de carbono, un gas de efecto invernadero. [14]

Una posible alternativa menos contaminante es la pirólisis de metano de tecnología más nueva , [15] aunque el SMR con captura de carbono también tiene emisiones de carbono mucho más reducidas. [16] [17] Pequeñas cantidades de hidrógeno (5%) se producen mediante la producción dedicada de hidrógeno a partir de agua , generalmente como un subproducto del proceso de generación de cloro a partir del agua de mar . A partir de 2018, no hay suficiente electricidad limpia y barata (renovable y nuclear) para que este hidrógeno se convierta en una parte significativa de la economía de bajas emisiones de carbono, y el dióxido de carbono es un subproducto del proceso SMR, [18] pero puede ser capturado y almacenado .

Como alternativa más rentable a la economía del hidrógeno , se analiza principalmente la economía del metanol . [19] [20] [21]

Razón fundamental

Elementos de la economía del hidrógeno

En la economía actual de los hidrocarburos , la calefacción se alimenta principalmente con gas natural y el transporte con petróleo . La quema de combustibles de hidrocarburos emite dióxido de carbono y otros contaminantes. La demanda de energía está aumentando, particularmente en China , India y otros países en desarrollo. El hidrógeno puede ser una fuente de energía ambientalmente más limpia para los usuarios finales, sin liberación de contaminantes como partículas o dióxido de carbono. [22]

El hidrógeno tiene una alta densidad energética por peso, pero tiene una baja densidad energética por volumen . Incluso cuando está altamente comprimido, almacenado en sólidos o licuado , la densidad de energía en volumen es solo 1/4 de la de la gasolina, aunque la densidad de energía en peso es aproximadamente tres veces mayor que la de la gasolina o el gas natural. El hidrógeno puede ayudar a descarbonizar el transporte de larga distancia, los productos químicos y el hierro y el acero [5] y tiene el potencial de transportar energía renovable a larga distancia y almacenarla a largo plazo, por ejemplo, a partir de energía eólica o solar. [23]

Historia

El término economía del hidrógeno fue acuñado por John Bockris durante una charla que dio en 1970 en el Centro Técnico de General Motors (GM). [24] El concepto fue propuesto anteriormente por el genetista JBS Haldane . [25]

La Universidad de Michigan propuso una economía del hidrógeno para resolver algunos de los efectos negativos del uso de combustibles de hidrocarburos donde el carbono se libera a la atmósfera (como dióxido de carbono, monóxido de carbono, hidrocarburos no quemados, etc.). El interés moderno en la economía del hidrógeno generalmente se remonta a un informe técnico de 1970 de Lawrence W. Jones de la Universidad de Michigan. [26]

Un aumento en la atención por el concepto durante la década de 2000 fue descrito repetidamente como exageración por algunos críticos y defensores de las tecnologías alternativas. [27] [28] [29] El interés en el portador de energía resurgió en la década de 2010, en particular con la formación del Consejo del Hidrógeno en 2017. Varios fabricantes lanzaron comercialmente automóviles con pilas de combustible de hidrógeno, con fabricantes como Toyota y grupos industriales en China que planifican para aumentar el número de automóviles a cientos de miles durante la próxima década. [30] [31]

Mercado actual del hidrógeno

Cronología

La producción de hidrógeno es una industria grande y en crecimiento: a partir de 2019, aproximadamente 70 millones de toneladas de producción dedicada por año, mayor que el suministro de energía primaria de Alemania. [32]

A partir de 2019, la producción de fertilizantes y el refinado de aceite son los principales usos. [33] Aproximadamente la mitad [ cita requerida ] se usa en el proceso de Haber para producir amoníaco (NH 3 ), que luego se usa directa o indirectamente como fertilizante . [34] Debido a que tanto la población mundial como la agricultura intensiva utilizada para sustentarla están creciendo, la demanda de amoníaco está creciendo. El amoníaco se puede utilizar como un método indirecto más seguro y fácil de transportar hidrógeno. El amoníaco transportado se puede volver a convertir en hidrógeno en el bowser mediante una tecnología de membrana. [35]

La otra mitad [ cita requerida ] de la producción actual de hidrógeno se utiliza para convertir fuentes de petróleo pesado en fracciones más ligeras adecuadas para su uso como combustibles. Este último proceso se conoce como hidrocraqueo . El hidrocraqueo representa un área de crecimiento aún mayor, ya que el aumento de los precios del petróleo alienta a las compañías petroleras a extraer material de origen más pobre, como arenas bituminosas y pizarra bituminosa . Las economías de escala inherentes al refino de petróleo y la fabricación de fertilizantes a gran escala hacen posible la producción in situ y el uso "cautivo". También se fabrican cantidades más pequeñas de hidrógeno "comercial" y se entregan a los usuarios finales.

A partir de 2019, casi toda la producción de hidrógeno proviene de combustibles fósiles y emite 830 millones de toneladas de dióxido de carbono por año. [32] La distribución de la producción refleja los efectos de las limitaciones termodinámicas en las opciones económicas: de los cuatro métodos para obtener hidrógeno, la combustión parcial de gas natural en una central eléctrica NGCC (ciclo combinado de gas natural) ofrece la vía química más eficiente y la mayor Extracción de energía calorífica utilizable. [ cita requerida ]

El gran mercado y el fuerte aumento de los precios de los combustibles fósiles también han estimulado un gran interés en medios alternativos y más baratos de producción de hidrógeno. [36] [37] A partir de 2002, la mayor parte del hidrógeno se produce en el sitio y el costo es de aproximadamente $ 0,70 / kg y, si no se produce en el sitio, el costo del hidrógeno líquido es de aproximadamente $ 2,20 / kg a $ 3,08 / kg. [38] [ necesita actualización ]

Producción, almacenamiento, infraestructura

A partir de 2002 , el hidrógeno se produce principalmente (> 90%) a partir de fuentes fósiles. [39] [se necesita una mejor fuente ]

Códigos de color

A menudo se hace referencia al hidrógeno con varios colores para indicar su origen. Como se muestra a continuación, algunas fuentes de producción tienen más de una etiqueta con las más comunes en primer lugar. Aunque el uso de códigos de color no está estandarizado, tampoco es ambiguo. [ cita requerida ]

Métodos de producción

Se descubrió hidrógeno molecular en el pozo Kola Superdeep . No está claro cuánto hidrógeno molecular está disponible en los reservorios naturales, pero al menos una empresa [45] se especializa en la perforación de pozos para extraer hidrógeno. La mayor parte del hidrógeno de la litosfera está unido al oxígeno del agua. La fabricación de hidrógeno elemental requiere el consumo de un portador de hidrógeno, como un combustible fósil o agua. El ex portador consume el recurso fósil y en el proceso de reformado de metano con vapor (SMR) produce dióxido de carbono de gas de efecto invernadero. Sin embargo, en el proceso de pirólisis de metano más reciente no se produce dióxido de carbono como gas de efecto invernadero. Por lo general, estos procesos no requieren más entrada de energía más allá del combustible fósil.

Ilustrando las entradas y salidas del reformado con vapor de gas natural, un proceso para producir hidrógeno. A partir de 2020 , el paso de secuestro de carbono no está en uso comercial.

El agua en descomposición , este último portador, requiere un aporte eléctrico o de calor, generado a partir de alguna fuente de energía primaria (combustible fósil, energía nuclear o una energía renovable ). El hidrógeno también se puede producir refinando el efluente de fuentes geotérmicas en la litosfera . [ Cita requerida ] hidrógeno producido por las fuentes de energía de emisión cero, como la electrólisis del agua utilizando la energía eólica, energía solar , energía nuclear , la energía hidroeléctrica , la energía de onda o energía de las mareas se conoce como hidrógeno verde. [46]Cuando se deriva de gas natural mediante pirólisis de metano con cero emisiones de efecto invernadero, se lo conoce como hidrógeno turquesa. [47] Cuando los combustibles fósiles se obtienen con emisiones de gases de efecto invernadero, generalmente se denominan hidrógeno gris. si se captura la mayor parte de la emisión de dióxido de carbono, se denomina hidrógeno azul. [48] El hidrógeno producido a partir del carbón puede denominarse hidrógeno marrón. [49]

Métodos de producción actuales

Reformado con vapor: gris o azul

El hidrógeno se produce industrialmente a partir del reformado con vapor (SMR), que utiliza gas natural. [50] El contenido energético del hidrógeno producido es menor que el contenido energético del combustible original, y parte del mismo se pierde como exceso de calor durante la producción. El reformado con vapor emite dióxido de carbono, un gas de efecto invernadero.

Pirolisis de metano - turquesa

Ilustrando las entradas y salidas de la pirólisis de metano, un proceso para producir hidrógeno

La pirólisis de metano (gas natural) con un proceso de un solo paso [51] burbujear metano a través de un catalizador de metal fundido es un enfoque "sin gas de efecto invernadero" para producir hidrógeno que se perfeccionó en 2017 y ahora se está probando a escala. [17] [47] El proceso se realiza a altas temperaturas (1065 ° C). [16] [52] [53] [54] La producción de 1 kg de hidrógeno requiere aproximadamente 5 kWh de electricidad para el proceso de calor.

CH
4
(g) → C (s) + 2 H
2
(g) ΔH ° = 74 kJ / mol

El carbono sólido de calidad industrial se puede vender como materia prima para la fabricación o en vertederos (sin contaminación).

Electrólisis del agua: verde o violeta.

Ilustrando las entradas y salidas de la electrólisis simple de la producción de agua de hidrógeno.

El hidrógeno se puede producir mediante electrólisis de alta presión , electrólisis de agua a baja presión o una variedad de otros procesos electroquímicos emergentes, como la electrólisis a alta temperatura o la electrólisis asistida por carbono. [55] Sin embargo, los mejores procesos actuales para la electrólisis del agua tienen una eficiencia eléctrica efectiva de 70-80%, [56] [57] [58] de modo que producir 1 kg de hidrógeno (que tiene una energía específica de 143 MJ / kg o aproximadamente 40 kWh / kg) requiere de 50 a 55 kWh de electricidad.

En algunas partes del mundo, el reformado de metano con vapor está entre $ 1 y 3 / kg en promedio, excluyendo el costo de presurización del gas hidrógeno. Esto hace que la producción de hidrógeno a través de la electrólisis sea competitiva en muchas regiones ya, como señalan Nel Hydrogen [59] y otros, incluido un artículo de la AIE [60] que examina las condiciones que podrían conducir a una ventaja competitiva para la electrólisis.

Una pequeña parte (2% en 2019 [61] ) se produce mediante electrólisis utilizando electricidad y agua, consumiendo aproximadamente de 50 a 55 kilovatios-hora de electricidad por kilogramo de hidrógeno producido. [62]

Proceso de Kværner

El proceso Kværner o proceso Kvaerner de negro de carbono e hidrógeno (CB&H) [39] es un método, desarrollado en la década de 1980 por una empresa noruega del mismo nombre , para la producción de hidrógeno a partir de hidrocarburos (C n H m ), como el metano. , gas natural y biogás . De la energía disponible de la alimentación, aproximadamente el 48% está contenido en el hidrógeno, el 40% está contenido en carbón activado y el 10% en vapor sobrecalentado. [63]

Métodos de producción experimentales

Producción biológica

La producción de hidrógeno fermentativo es la conversión fermentativa de sustrato orgánico en biohidrógeno manifestada por un grupo diverso de bacterias utilizando sistemas de múltiples enzimas que involucran tres pasos similares a la conversión anaeróbica . Las reacciones de fermentación oscura no requieren energía luminosa, por lo que son capaces de producir constantemente hidrógeno a partir de compuestos orgánicos durante el día y la noche. La fotofermentación se diferencia de la fermentación oscura porque solo se produce en presencia de luz . Por ejemplo, foto-fermentación con Rhodobacter sphaeroidesSe puede emplear SH2C para convertir ácidos grasos de pequeño peso molecular en hidrógeno. [64] La electrohidrogénesis se utiliza en pilas de combustible microbianas en las que el hidrógeno se produce a partir de materia orgánica (p. Ej., De aguas residuales o materia sólida [65] ) mientras se aplica 0,2 - 0,8 V.

El hidrógeno biológico se puede producir en un biorreactor de algas . A finales de la década de 1990, se descubrió que si las algas se ven privadas de azufre , pasarán de la producción de oxígeno , es decir, la fotosíntesis normal , a la producción de hidrógeno. [66]

El hidrógeno biológico se puede producir en biorreactores que utilizan materias primas distintas de las algas, siendo la materia prima más común las corrientes de desechos. El proceso involucra bacterias que se alimentan de hidrocarburos y excretan hidrógeno y CO 2 . El CO 2 se puede secuestrar con éxito mediante varios métodos, dejando gas hidrógeno. En 2006-2007, NanoLogix demostró por primera vez un prototipo de biorreactor de hidrógeno utilizando desechos como materia prima en la fábrica de jugo de uva de Welch en el noreste de Pensilvania (EE. UU.). [67]

Electrólisis biocatalizada

Además de la electrólisis regular, la electrólisis con microbios es otra posibilidad. Con la electrólisis biocatalizada, el hidrógeno se genera después de pasar a través de la celda de combustible microbiana y se puede utilizar una variedad de plantas acuáticas . Entre ellos se incluyen la hierba dulce de caña , la hierba verde , el arroz, los tomates, los altramuces y las algas [68].

Electrólisis de alta presión

La electrólisis de alta presión es la electrólisis del agua por descomposición del agua (H 2 O) en oxígeno (O 2 ) e hidrógeno gaseoso (H 2 ) mediante el paso de una corriente eléctrica a través del agua. La diferencia con un electrolizador estándar es la salida de hidrógeno comprimido alrededor de 120-200 bar (1740-2900 psi , 12-20 MPa ). [69] Presurizando el hidrógeno en el electrolizador, mediante un proceso conocido como compresión química, se elimina la necesidad de un compresor de hidrógeno externo , [70]el consumo medio de energía para la compresión interna es de alrededor del 3%. [71] La planta de producción de hidrógeno más grande de Europa (1 400 000 kg / a, electrólisis de agua a alta presión, tecnología alcalina) está funcionando en Kokkola, Finlandia. [72]

Electrólisis de alta temperatura

El hidrógeno se puede generar a partir de la energía suministrada en forma de calor y electricidad a través de la electrólisis de alta temperatura (HTE). Debido a que parte de la energía en HTE se suministra en forma de calor, se debe convertir menos energía dos veces (de calor a electricidad y luego a forma química) y, por lo tanto, se requiere potencialmente mucha menos energía por kilogramo de hidrógeno producido.

Si bien la electricidad generada por energía nuclear podría usarse para la electrólisis, el calor nuclear se puede aplicar directamente para separar el hidrógeno del agua. Los reactores nucleares refrigerados por gas de alta temperatura (950–1000 ° C) tienen el potencial de separar el hidrógeno del agua por medios termoquímicos utilizando calor nuclear. La investigación de reactores nucleares de alta temperatura puede eventualmente conducir a un suministro de hidrógeno que sea competitivo en costos con el reformado con vapor de gas natural. General Atomics predice que el hidrógeno producido en un reactor refrigerado por gas de alta temperatura (HTGR) costaría $ 1.53 / kg. En 2003, el reformado con vapor de gas natural produjo hidrógeno a $ 1,40 / kg. En los precios del gas natural de 2005, el hidrógeno cuesta $ 2,70 / kg.

La electrólisis a alta temperatura se ha demostrado en un laboratorio, a 108  MJ (térmica) por kilogramo de hidrógeno producido, [73] pero no a escala comercial. Además, se trata de hidrógeno de grado "comercial" de menor calidad, inadecuado para su uso en pilas de combustible. [74]

División de agua fotoelectroquímica

El uso de electricidad producida por sistemas fotovoltaicos ofrece la forma más limpia de producir hidrógeno. El agua se descompone en hidrógeno y oxígeno por electrólisis, un proceso de célula fotoelectroquímica (PEC) que también se denomina fotosíntesis artificial . [75] William Ayers, de Energy Conversion Devices, demostró y patentó el primer sistema fotoelectroquímico multifuncional de alta eficiencia para la división directa del agua en 1983. [76]Este grupo demostró la división directa del agua, ahora denominada "hoja artificial" o "división solar inalámbrica del agua" con una lámina multifunción de silicio amorfo de película delgada de bajo costo sumergida directamente en agua. El hidrógeno se desprendió en la superficie frontal de silicio amorfo decorada con varios catalizadores, mientras que el oxígeno se desprendió del sustrato metálico posterior. Una membrana de Nafion por encima de la celda multifuncional proporcionó un camino para el transporte de iones. Su patente también enumera una variedad de otros materiales semiconductores de múltiples funciones para la división directa del agua, además del silicio amorfo y las aleaciones de silicio y germanio. Continúan las investigaciones para desarrollar células de unión múltiple de alta eficienciatecnología en las universidades y la industria fotovoltaica. Si este proceso es asistido por fotocatalizadores suspendidos directamente en agua en lugar de usar un sistema fotovoltaico y electrolítico, la reacción es en un solo paso, lo que puede mejorar la eficiencia. [77] [78]

Producción fotoelectrocatalítica

Un método estudiado por Thomas Nann y su equipo en la Universidad de East Anglia consiste en un electrodo de oro cubierto de capas de nanopartículas de fosfuro de indio (InP). Introdujeron un complejo de hierro-azufre en la disposición en capas, que cuando se sumergió en agua e irradió con luz bajo una pequeña corriente eléctrica, produjo hidrógeno con una eficiencia del 60%. [79]

En 2015, se informó que Panasonic Corp. ha desarrollado un fotocatalizador basado en nitruro de niobio que puede absorber el 57% de la luz solar para favorecer la descomposición del agua para producir gas hidrógeno. [80] La empresa tiene previsto lograr la aplicación comercial "lo antes posible", no antes de 2020.

Termosolar de concentración

Se requieren temperaturas muy altas para disociar el agua en hidrógeno y oxígeno. Se requiere un catalizador para que el proceso funcione a temperaturas factibles. El calentamiento del agua se puede lograr mediante el uso de energía solar de concentración de agua . Hydrosol-2 es una planta piloto de 100 kilovatios en la Plataforma Solar de Almería en España que utiliza la luz solar para obtener los 800 a 1200 ° C necesarios para calentar el agua. Hydrosol II está en funcionamiento desde 2008. El diseño de esta planta piloto de 100 kilovatios se basa en un concepto modular. Como resultado, es posible que esta tecnología se pueda escalar fácilmente al rango de megavatios multiplicando las unidades de reactor disponibles y conectando la planta a un helióstato.campos (campos de espejos de seguimiento solar) de un tamaño adecuado. [81]

Producción termoquímica

Hay más de 352 [82] ciclos termoquímicos que pueden ser utilizados para la disociación del agua , [83] alrededor de una docena de estos ciclos, tales como el ciclo de óxido de hierro , cerio (IV) óxido de cerio (III) ciclo de óxido , zinc zinc el ciclo del óxido , el ciclo del azufre-yodo , el ciclo del cobre-cloro y el ciclo híbrido del azufre , el ciclo del óxido de aluminio y el aluminio , están bajo investigación y en fase de prueba para producir hidrógeno y oxígeno a partir del agua y el calor sin usar electricidad. [84] Estos procesos pueden ser más eficientes que la electrólisis a alta temperatura, típica en el rango de 35% a 49%Eficiencia LHV . La producción termoquímica de hidrógeno utilizando energía química del carbón o del gas natural generalmente no se considera, porque la ruta química directa es más eficiente.

Ninguno de los procesos de producción de hidrógeno termoquímico se ha demostrado a niveles de producción, aunque varios se han demostrado en laboratorios.

Plásticos para microondas

Se ha logrado una recuperación del 97% de hidrógeno mediante el microondas de plásticos durante unos segundos que se han molido y mezclado con óxido de hierro y óxido de aluminio . [85]

Hidrógeno como subproducto de otros procesos químicos.

La producción industrial de cloro y sosa cáustica por electrólisis genera una cantidad considerable de hidrógeno como subproducto. En el puerto de Amberes, una planta de energía de pila de combustible de demostración de 1 MW funciona con dicho subproducto. Esta unidad ha estado operativa desde finales de 2011. [86] El exceso de hidrógeno a menudo se gestiona con un análisis de pellizco de hidrógeno .

El gas generado por los hornos de coque en la producción de acero es similar al gas de síntesis con un 60% de hidrógeno en volumen. [87] El hidrógeno se puede extraer del gas del horno de coque de forma económica. [88]

Almacenamiento

Aunque el hidrógeno molecular tiene una densidad de energía muy alta en términos de masa, en parte debido a su bajo peso molecular , como gas en condiciones ambientales tiene una densidad de energía en volumen muy baja. Si se va a utilizar como combustible almacenado a bordo del vehículo, el gas hidrógeno puro debe almacenarse en una forma densa en energía para proporcionar suficiente autonomía de conducción.

Gas hidrógeno presurizado

El aumento de la presión del gas mejora la densidad de energía por volumen, lo que hace que los tanques de contenedores sean más pequeños. El material estándar para contener hidrógeno presurizado en remolques tubulares es el acero (no hay problema de fragilización por hidrógeno con el gas hidrógeno). Los tanques fabricados con plástico de refuerzo de fibra de vidrio y carbono, como los instalados en los camiones Toyota Marai y Kenworth, deben cumplir con las normas de seguridad. Pocos materiales son adecuados para tanques, ya que el hidrógeno, al ser una molécula pequeña, tiende a difundirse a través de muchos materiales poliméricos. El almacenamiento de hidrógeno a bordo más común en los vehículos 2020 de hoy es el hidrógeno a una presión de 700 bar = 70 MPa. El costo energético de comprimir hidrógeno a esta presión es significativo.

Los gasoductos presurizados siempre están hechos de acero y operan a presiones mucho más bajas que los remolques tubulares.

Hidrógeno líquido

Alternativamente, se puede usar hidrógeno líquido de densidad de energía volumétrica más alta o hidrógeno granulado . Sin embargo, el hidrógeno líquido es criogénico y hierve a 20,268 K (–252,882 ° C o –423,188 ° F). El almacenamiento criogénico reduce el peso pero requiere grandes energías de licuación . El proceso de licuefacción, que incluye pasos de presurización y enfriamiento, consume mucha energía. [89] El hidrógeno licuado tiene una densidad de energía menor en volumen que la gasolina en aproximadamente un factor de cuatro, debido a la baja densidad del hidrógeno líquido; en realidad, hay más hidrógeno en un litro de gasolina (116 gramos) que en un litro. de hidrógeno líquido puro (71 gramos). Los tanques de almacenamiento de hidrógeno líquido también deben estar bien aislados para minimizar la ebullición.

Japón tiene una instalación de almacenamiento de hidrógeno líquido (LH2) en una terminal en Kobe, y se espera que reciba el primer envío de hidrógeno líquido a través de un transportador de LH2 en 2020. [90] El hidrógeno se licúa reduciendo su temperatura a -253 ° C, similar a gas natural licuado (GNL) que se almacena a -162 ° C. Se puede lograr una pérdida potencial de eficiencia del 12,79%, o 4,26 kWh / kg de 33,3 kWh / kg. [91]

Portadores de hidrógeno orgánico líquido (LOHC)

Almacenamiento como hidruro

A diferencia del almacenamiento de hidrógeno molecular, el hidrógeno se puede almacenar como un hidruro químico o en algún otro compuesto que contenga hidrógeno. El hidrógeno gaseoso reacciona con algunos otros materiales para producir el material de almacenamiento de hidrógeno, que se puede transportar con relativa facilidad. En el punto de uso, se puede hacer que el material de almacenamiento de hidrógeno se descomponga, produciendo gas hidrógeno. Además de los problemas de densidad de masa y volumen asociados con el almacenamiento de hidrógeno molecular, las barreras actuales a los esquemas prácticos de almacenamiento se derivan de las condiciones de alta presión y temperatura necesarias para la formación de hidruros y la liberación de hidrógeno. Para muchos sistemas potenciales cinética de hidruración y deshidratacióny la gestión del calor también son problemas que deben superarse. La empresa francesa McPhy Energy está desarrollando el primer producto industrial, basado en hidrato de magnesio, ya vendido a algunos clientes importantes como Iwatani y ENEL. [ cita requerida ] Las tecnologías emergentes de almacenamiento de hidruro de hidrógeno han logrado un volumen comprimido de menos de 1/500.

Adsorción

Un tercer enfoque consiste en adsorber hidrógeno molecular en la superficie de un material de almacenamiento sólido. A diferencia de los hidruros mencionados anteriormente, el hidrógeno no se disocia / recombina al cargar / descargar el sistema de almacenamiento y, por lo tanto, no sufre las limitaciones cinéticas de muchos sistemas de almacenamiento de hidruros. Se pueden lograr densidades de hidrógeno similares a las del hidrógeno licuado con materiales adsorbentes apropiados. Algunos adsorbentes sugeridos incluyen carbón activado , carbonos nanoestructurados (incluidos los CNT ), MOF e hidrato de clatrato de hidrógeno .

Almacenamiento de hidrógeno subterráneo

'Tecnologías de almacenamiento disponibles, su capacidad y tiempo de descarga'. DOCUMENTO DE TRABAJO DEL PERSONAL DE LA COMISIÓN Almacenamiento de energía: el papel de la electricidad

El almacenamiento subterráneo de hidrógeno es la práctica del almacenamiento de hidrógeno en cavernas , domos de sal y campos de petróleo y gas agotados. ICI ha almacenado grandes cantidades de hidrógeno gaseoso en cavernas durante muchos años sin ninguna dificultad. [92] El almacenamiento subterráneo de grandes cantidades de hidrógeno líquido puede funcionar como almacenamiento de energía en la red . La eficiencia de ida y vuelta es de aproximadamente el 40% (frente al 75-80% de la hidroeléctrica de bombeo (PHES) ), y el costo es ligeramente superior al de la hidroeléctrica de bombeo. [93]Otro estudio al que se hace referencia en un documento de trabajo del personal europeo descubrió que para el almacenamiento a gran escala, la opción más barata es el hidrógeno a 140 € / MWh por 2.000 horas de almacenamiento utilizando un electrolizador, almacenamiento en cavernas de sal y planta de energía de ciclo combinado. [94] El proyecto europeo Hyunder [95] indicó en 2013 que para el almacenamiento de energía eólica y solar se necesitan 85 cavernas adicionales, ya que no pueden ser cubiertas por los sistemas PHES y CAES . [96]Un estudio de caso alemán sobre el almacenamiento de hidrógeno en cavernas de sal encontró que si el excedente de energía alemán (7% de la generación renovable variable total para 2025 y 20% para 2050) se convirtiera en hidrógeno y se almacenara bajo tierra, estas cantidades requerirían unas 15 cavernas. de 500.000 metros cúbicos cada una para 2025 y unas 60 cavernas para 2050, lo que corresponde a aproximadamente un tercio del número de cavernas de gas que se operan actualmente en Alemania. [97] En los EE. UU., Sandia Labs está investigando el almacenamiento de hidrógeno en campos de gas y petróleo agotados, que podrían absorber fácilmente grandes cantidades de hidrógeno producido de forma renovable, ya que existen unos 2,7 millones de pozos agotados. [98]

Poder a gas

Power to gas es una tecnología que convierte la energía eléctrica en un combustible gaseoso . Hay 2 métodos, el primero es utilizar la electricidad para dividir el agua e inyectar el hidrógeno resultante en la red de gas natural. El segundo método (menos eficiente) se usa para convertir dióxido de carbono y agua en metano (ver gas natural ) usando electrólisis y la reacción de Sabatier . El exceso de potencia o la potencia de pico generada por generadores eólicos o paneles solares se utiliza para equilibrar la carga en la red de energía. Utilizando el sistema de gas natural existente para hidrógeno El fabricante de pilas de combustible Hydrogenics y el distribuidor de gas natural Enbridge se han asociado para desarrollar unenergía al sistema de gas en Canadá. [99]

Almacenamiento de tuberías

Puede utilizarse una red de gas natural para el almacenamiento de hidrógeno. Antes de cambiar al gas natural, las redes de gas del Reino Unido y Alemania se operaban utilizando Towngas , que en su mayor parte consistían en hidrógeno. La capacidad de almacenamiento de la red de gas natural alemana es de más de 200.000 GWh, suficiente para varios meses de necesidades energéticas. En comparación, la capacidad de todas las centrales eléctricas de almacenamiento por bombeo alemanas asciende a sólo unos 40 GW · h. De manera similar, el almacenamiento por bombeo del Reino Unido es mucho menor que la red de gas. El transporte de energía a través de una red de gas se realiza con mucha menos pérdida (<0,1%) que en una red eléctrica (8%). NaturalHy estudió el uso de los gasoductos de gas natural existentes para el hidrógeno. [100]Ad van Wijk, profesor de Future Energy Systems TU Delft, también analiza la posibilidad de producir electricidad en zonas o países con mucha luz solar (Sahara, Chile, México, Namibia, Australia, Nueva Zelanda, ...) y transportarla (vía barco, oleoducto, ...) a los Países Bajos. Visto económicamente, sigue siendo más barato que producirlo localmente en los Países Bajos. También menciona que la capacidad de transporte de energía de las líneas de gas es muy superior a la de las líneas eléctricas que llegan a viviendas particulares (en Holanda) -30 kW vs 3 kW-. [101] [102]

Infraestructura

Planta de hidrógeno Praxair

La infraestructura de hidrógeno consistiría principalmente en transporte industrial por tuberías de hidrógeno y estaciones de servicio equipadas con hidrógeno como las que se encuentran en una autopista de hidrógeno . Estaciones de hidrógeno que no se encuentra cerca de una tubería de hidrógeno obtendría alimentación a través de tanques de hidrógeno, remolques tubo hidrógeno comprimido , remolques de hidrógeno líquido , camiones cisterna de hidrógeno líquido o la producción in situ dedicado.

Actualmente existen más de 700 millas de oleoductos de hidrógeno en los Estados Unidos. Aunque son caras, las tuberías son la forma más barata de mover hidrógeno a largas distancias. La tubería de gas hidrógeno es una rutina en las grandes refinerías de petróleo, porque el hidrógeno se usa para hidrocraquear combustibles a partir del petróleo crudo.

En teoría, las tuberías de hidrógeno se pueden evitar en sistemas distribuidos de producción de hidrógeno, donde el hidrógeno se produce de manera rutinaria en el sitio utilizando generadores de tamaño mediano o pequeño que producirían suficiente hidrógeno para uso personal o quizás para un vecindario. Al final, una combinación de opciones para la distribución de gas hidrógeno puede tener éxito. [ cita requerida ]

La fragilización por hidrógeno no es un problema para los gasoductos de hidrógeno. La fragilización por hidrógeno solo ocurre con hidrógeno "difusible", es decir, átomos o iones. El gas de hidrógeno, sin embargo, es molecular (H 2 ), y hay una muy significativa barrera de energía a la división en átomos. [103]

La IEA recomienda que los puertos industriales existentes se utilicen para la producción y las tuberías de gas natural existentes para el transporte: también la cooperación internacional y el envío. [104]

Corea del Sur y Japón , [105] que a partir de 2019 carecen de interconectores eléctricos internacionales , están invirtiendo en la economía del hidrógeno. [106] En marzo de 2020, se inauguró una planta de producción en Namie , prefectura de Fukushima , que se dice que es la más grande del mundo. [107]

Una compensación clave: producción centralizada versus distribuida

En una futura economía de hidrógeno completa, las fuentes de energía primaria y la materia prima se utilizarían para producir gas hidrógeno como energía almacenada para su uso en varios sectores de la economía. La producción de hidrógeno a partir de fuentes de energía primaria distintas del carbón y el petróleo daría lugar a una menor producción de los gases de efecto invernadero característicos de la combustión de recursos energéticos fósiles de carbón y petróleo. La importancia de la pirólisis de gas natural con metano no contaminante se está convirtiendo en un método reconocido para utilizar la inversión actual en infraestructura de gas natural para producir hidrógeno y no gas de efecto invernadero.

Una característica clave de la economía del hidrógeno sería que en las aplicaciones móviles (principalmente el transporte de vehículos) la generación y el uso de energía podrían desacoplarse. La fuente de energía primaria ya no necesitaría viajar con el vehículo, como lo hace actualmente con los combustibles de hidrocarburos. En lugar de que los tubos de escape generen emisiones dispersas, la energía (y la contaminación) podría generarse a partir de fuentes puntuales, como instalaciones centralizadas a gran escala con una eficiencia mejorada. Esto permitiría la posibilidad de tecnologías como el secuestro de carbono , que de otro modo serían imposibles para las aplicaciones móviles. Alternativamente, se podrían utilizar esquemas de generación de energía distribuida (como fuentes de energía renovable a pequeña escala), posiblemente asociados con estaciones de hidrógeno .

Aparte de la generación de energía, la producción de hidrógeno podría centralizarse, distribuirse o una mezcla de ambos. Si bien la generación de hidrógeno en plantas de energía primaria centralizadas promete una mayor eficiencia de producción de hidrógeno, dificultades en el transporte de hidrógeno de gran volumen y largo alcance (debido a factores como el daño del hidrógenoy la facilidad de difusión del hidrógeno a través de materiales sólidos) hace que la distribución de energía eléctrica sea atractiva dentro de una economía de hidrógeno. En tal escenario, las pequeñas plantas regionales o incluso las estaciones de servicio locales podrían generar hidrógeno utilizando la energía proporcionada a través de la red de distribución eléctrica o la pirólisis de metano de gas natural. Si bien es probable que la eficiencia de la generación de hidrógeno sea menor que la de la generación centralizada de hidrógeno, las pérdidas en el transporte de hidrógeno podrían hacer que dicho esquema sea más eficiente en términos de la energía primaria utilizada por kilogramo de hidrógeno entregado al usuario final.

El equilibrio adecuado entre la distribución de hidrógeno, la distribución eléctrica a larga distancia y la pirólisis de gas natural convertida en destino es una de las principales preguntas que surge sobre la economía del hidrógeno.

Una vez más, los dilemas de las fuentes de producción y el transporte de hidrógeno ahora se pueden superar mediante la generación de hidrógeno en el sitio (hogar, empresa o estación de combustible) a partir de fuentes renovables fuera de la red. [1] .

Electrólisis distribuida

La electrólisis distribuida evitaría los problemas de distribución de hidrógeno distribuyendo electricidad en su lugar. Utilizaría las redes eléctricas existentes para transportar electricidad a pequeños electrolizadores en el lugar ubicados en las estaciones de servicio. Sin embargo, tener en cuenta la energía utilizada para producir la electricidad y las pérdidas de transmisión reduciría la eficiencia general.

Usos

Para calentar y cocinar en lugar de gas natural

El hidrógeno puede reemplazar parte o la totalidad del gas natural en las redes de gas. [108] A partir de 2020, el máximo en una cuadrícula es del 20%. [109]

Pilas de combustible como alternativa a las baterías eléctricas y de combustión interna

Una de las principales ofertas de una economía de hidrógeno es que el combustible puede reemplazar el combustible fósil quemado en motores de combustión interna y turbinas como la forma principal de convertir la energía química en energía cinética o eléctrica, eliminando así las emisiones de gases de efecto invernadero y la contaminación de ese motor. Ad van Wijk, profesor de Future Energy Systems TU Delft también menciona que el hidrógeno es mejor para vehículos más grandes, como camiones, autobuses y barcos, que las baterías eléctricas. [110] Esto se debe a que una batería de 1 kg, a partir de 2019 , puede almacenar 0,1 kWh de energía, mientras que 1 kg de hidrógeno tiene una capacidad utilizable de 33 kWh. [111]

Aunque el hidrógeno se puede utilizar en motores de combustión interna convencionales, las pilas de combustible, al ser electroquímicas , tienen una ventaja de eficiencia teórica sobre los motores térmicos. Las pilas de combustible son más caras de producir que los motores de combustión interna habituales.

Algunos tipos de pilas de combustible funcionan con combustibles de hidrocarburos, [112] mientras que todas pueden funcionar con hidrógeno puro. En el caso de que las celdas de combustible se vuelvan competitivas en precio con los motores de combustión interna y las turbinas, las grandes centrales eléctricas de gas podrían adoptar esta tecnología.

El gas hidrógeno debe distinguirse como "de grado técnico" (cinco nueves puro, 99,999%) producido por pirólisis o electrólisis de metano, que es adecuado para aplicaciones como pilas de combustible, y "grado comercial", que tiene carbono y azufre. que contienen impurezas, pero que pueden producirse mediante el proceso de reformación al vapor, ligeramente más económico, que libera dióxido de carbono, gas de efecto invernadero. Las pilas de combustible requieren hidrógeno de alta pureza porque las impurezas degradarían rápidamente la vida útil de la pila de pilas de combustible.

Gran parte del interés en el concepto de economía del hidrógeno se centra en el uso de pilas de combustible para propulsar vehículos de hidrógeno , en particular camiones grandes. Las pilas de combustible de hidrógeno tienen una relación potencia / peso baja . [113] Las pilas de combustible son más eficientes que los motores de combustión interna. Si se introduce un método práctico de almacenamiento de hidrógeno y las pilas de combustible se vuelven más baratas, pueden ser económicamente viables para alimentar vehículos híbridos de pila / batería de combustible, o vehículos impulsados ​​exclusivamente por pilas de combustible. La combinación de la pila de combustible y el motor eléctrico es 2-3 veces más eficiente que un motor de combustión interna. [114]Los costos de capital de las celdas de combustible se han reducido significativamente en los últimos años, con un costo modelado de $ 50 / kW citado por el Departamento de Energía. [115]

Un video de 2019 de Real Engineering señaló que el uso de hidrógeno como combustible para automóviles, en la práctica, no ayuda a reducir las emisiones de carbono del transporte. El 95% del hidrógeno que todavía se produce a partir de combustibles fósiles libera dióxido de carbono, y producir hidrógeno a partir del agua es un proceso que consume energía. El almacenamiento de hidrógeno requiere más energía, ya sea para enfriarlo al estado líquido o para ponerlo en tanques a alta presión, y entregar el hidrógeno a las estaciones de servicio requiere más energía y puede liberar más carbono. El hidrógeno necesario para mover un vehículo de pila de combustible un kilómetro cuesta aproximadamente 8 veces más que la electricidad necesaria para mover un vehículo eléctrico de batería la misma distancia. [116]También en 2019, Katsushi Inoue, presidente de Honda Europa, declaró: "Nuestro enfoque ahora está en los vehículos híbridos y eléctricos. Tal vez vendrán autos con celda de combustible de hidrógeno, pero esa es una tecnología para la próxima era". [117] Una evaluación de 2020 concluyó que los vehículos de hidrógeno todavía tienen solo un 38% de eficiencia, mientras que los vehículos eléctricos con batería tienen una eficiencia del 80%. [118] [119]

Otras tecnologías de pilas de combustible basadas en el intercambio de iones metálicos (por ejemplo , pilas de combustible de zinc-aire ) suelen ser más eficientes en la conversión de energía que las pilas de combustible de hidrógeno, pero el uso generalizado de cualquier energía eléctrica → energía química → sistemas de energía eléctrica requeriría la producción de electricidad.

Utilizar como combustible de transporte y eficiencia del sistema

Se puede aplicar una contabilidad de la energía utilizada durante un proceso termodinámico, conocido como balance energético, a los combustibles para automóviles. Con el de hoy [ ¿cuándo? ] , la fabricación de hidrógeno mediante pirólisis de metano o reformado con vapor se puede lograr con una eficiencia térmica del 75 al 80 por ciento. [ cita requerida ] Se requerirá energía adicional para licuar o comprimir el hidrógeno y transportarlo a la estación de servicio a través de un camión o tubería. La energía que debe utilizarse por kilogramo para producir, transportar y entregar hidrógeno (es decir, su uso de energía del pozo al tanque) es de aproximadamente 50  MJutilizando tecnología disponible en 2004. Restando esta energía de la entalpía de un kilogramo de hidrógeno, que es 141 MJ, y dividiendo por la entalpía, se obtiene una eficiencia energética térmica de aproximadamente 60%. [120] En comparación, la gasolina requiere menos energía, por galón, en la refinería, y se requiere comparativamente poca energía para transportarla y almacenarla debido a su alta densidad de energía por galón a temperatura ambiente. De pozo a tanque, la cadena de suministro de gasolina tiene una eficiencia aproximada del 80% (Wang, 2002). Otro método basado en rejilla de suministrar hidrógeno sería utilizar eléctricapara ejecutar electrolizadores. Aproximadamente el 6% de la electricidad se pierde durante la transmisión a lo largo de las líneas eléctricas, y el proceso de convertir el combustible fósil en electricidad en primer lugar es aproximadamente un 33% eficiente. [121] [122] Por lo tanto, si la eficiencia es el factor determinante clave, sería poco probable que los vehículos de hidrógeno se alimentaran con dicho método y, de hecho, visto de esta manera, los vehículos eléctricos parecerían ser una mejor opción, excepto para camiones grandes donde el peso de las baterías son menos eficientes. Sin embargo, como se señaló anteriormente, el hidrógeno se puede producir a partir de una serie de materias primas, de manera centralizada o distribuida, mediante pirólisis de metano con contaminación cero, y estas proporcionan vías más eficientes para producir y distribuir el combustible.

En 2006, un estudio de la eficiencia del pozo a las ruedas de los vehículos de hidrógeno en comparación con otros vehículos del sistema energético noruego indica que los vehículos de celda de combustible de hidrógeno (FCV) tienden a ser aproximadamente un tercio más eficientes que los vehículos eléctricos cuando se utiliza la electrólisis, con Los motores de combustión interna de hidrógeno (ICE) son apenas una sexta parte de la eficiencia. Incluso en el caso de que las celdas de combustible de hidrógeno obtengan su hidrógeno de la reforma del gas natural en lugar de la electrólisis, y los vehículos eléctricos obtienen su energía de una planta de energía de gas natural, los vehículos eléctricos aún salen adelante del 35% al ​​25% (y solo el 13% para un H 2 HIELO). Esto se compara con el 14% de un ICE de gasolina, el 27% de un ICE híbrido de gasolina y el 17% de un ICE diésel, también sobre la base del pozo a las ruedas. [123]

En 2007, el hidrógeno fue calificado como uno de los sustitutos menos eficientes y más costosos de la gasolina (gasolina) en términos de reducción de gases de efecto invernadero; otras tecnologías pueden ser menos costosas y de implementación más rápida. [124] [125] Un estudio exhaustivo de 2010 sobre el hidrógeno en aplicaciones de transporte ha descubierto que "existen importantes obstáculos en el camino para lograr la visión de la economía del hidrógeno; el camino no será simple ni directo". [126] Aunque Ford Motor Company y la francesa Renault-Nissan cancelaron sus actividades de investigación y desarrollo de vehículos de hidrógeno en 2008 y 2009, respectivamente, [127] [128]firmaron una carta de intención de 2009 con los otros fabricantes y Now GMBH en septiembre de 2009 apoyando la introducción comercial de FCV para 2015. [129] Un estudio de The Carbon Trust para el Departamento de Energía y Cambio Climático del Reino Unido sugiere que las tecnologías de hidrógeno tienen la potencial para ofrecer transporte en el Reino Unido con emisiones cercanas a cero al tiempo que se reduce la dependencia del petróleo importado y se restringe la generación renovable. Sin embargo, las tecnologías enfrentan desafíos muy difíciles, en términos de costo, desempeño y políticas. [130] Se dice que un motor de combustión interna de ciclo Otto que funciona con hidrógeno tiene una eficiencia máxima de aproximadamente un 38%, un 8% más que un motor de combustión interna de gasolina.[131] [132]

A corto plazo, se ha propuesto el hidrógeno como método para reducir los nocivos gases de escape de diesel . [133]

La seguridad

El hidrógeno tiene una de las gamas más amplias de mezcla de explosivos / ignición con aire de todos los gases, con pocas excepciones, como acetileno , silano y óxido de etileno . Esto significa que cualquiera que sea la proporción de mezcla entre aire e hidrógeno, cuando se enciende en un espacio cerrado, una fuga de hidrógeno probablemente provocará una explosión, no una mera llama. Esto hace que el uso de hidrógeno sea particularmente peligroso en áreas cerradas como túneles o estacionamientos subterráneos. [134] Las llamas de hidrógeno y oxígeno puro arden en la gama de colores ultravioleta y son casi invisibles a simple vista, por lo que un detector de llamases necesario para detectar si se está quemando una fuga de hidrógeno. Al igual que el gas natural, el hidrógeno es inodoro y las fugas no se pueden detectar con el olfato. Esta es la razón por la que se inyecta un químico oloroso en el gas natural para producir el olor a huevo podrido.

Los códigos y estándares de hidrógeno son códigos y estándares para vehículos con pilas de combustible de hidrógeno , aplicaciones de pilas de combustible estacionarias y aplicaciones de pilas de combustible portátiles . Existen códigos y estándares para el manejo y almacenamiento seguro de hidrógeno, por ejemplo, el estándar para la instalación de sistemas de energía de celda de combustible estacionaria de la Asociación Nacional de Protección contra Incendios .

Los códigos y estándares se han identificado repetidamente como una barrera institucional importante para el despliegue de tecnologías de hidrógeno y el desarrollo de una economía del hidrógeno. A partir de 2019 se necesitan estándares internacionales para el transporte, almacenamiento y trazabilidad del impacto ambiental. [5]

Una de las medidas en la hoja de ruta es implementar estándares de seguridad más altos, como la detección temprana de fugas con sensores de hidrógeno . [135] [ necesita actualización ] El Programa Canadiense de Seguridad del Hidrógeno concluyó que el abastecimiento de hidrógeno es tan seguro o más seguro que el abastecimiento de combustible con gas natural comprimido (GNC). [136] La Comisión Europea ha financiado el primer programa de educación superior del mundo en ingeniería de seguridad del hidrógeno en la Universidad de Ulster . Se espera que el público en general pueda utilizar las tecnologías del hidrógeno en la vida cotidiana con al menos el mismo nivel de seguridad y comodidad que con los combustibles fósiles actuales.

Costos

Costo de producción de H2 ($ -gge sin impuestos) [ globalizar ] a diferentes precios del gas natural

Aunque gran parte de una red de gas natural existente podría reutilizarse con un 100% de hidrógeno, eliminar el gas natural de un área grande como Gran Bretaña requeriría una gran inversión. [1] Cambiar de gas natural a calefacción con bajas emisiones de carbono es más costoso si los costes de carbono del gas natural no se reflejan en su precio. [137]

La capacidad de las centrales eléctricas que ahora no se utiliza durante la noche podría utilizarse para producir hidrógeno verde, pero esto no sería suficiente; [138] por lo tanto, se necesita hidrógeno turquesa de pirólisis de metano no contaminante o hidrógeno azul con captura y almacenamiento de carbono , posiblemente después del reformado autotérmico de metano en lugar de reformado con vapor de metano . [1]

A partir de 2020, el hidrógeno verde cuesta entre $ 2,50 y 6,80 por kilogramo y el hidrógeno turquesa entre $ 1,40 y 2,40 / kg o el hidrógeno azul entre $ 1,40 y 2,40 / kg en comparación con el hidrógeno gris con alto contenido de carbono a $ 1–1,80 / kg. [138] El despliegue de hidrógeno puede proporcionar una opción rentable para desplazar los combustibles fósiles que contaminan el carbono en aplicaciones en las que la reducción de emisiones sería de otro modo impráctico y / o costoso. [139] Estos pueden incluir calefacción para edificios e industria, conversión de centrales eléctricas de gas natural [140] y combustible para aviación y, lo que es más importante, camiones pesados. [141]

En Australia, la Agencia Australiana de Energía Renovable (ARENA) ha invertido $ 55 millones en 28 proyectos de hidrógeno, desde las primeras etapas de investigación y desarrollo hasta las primeras etapas de pruebas y despliegues. El objetivo declarado de la agencia es producir hidrógeno por electrólisis a $ 2 por kilogramo, anunciado por el ministro de Energía y Emisiones, Angus Taylor, en una Declaración de tecnología de bajas emisiones de 2021. [142]

Ejemplos y programas piloto

Un Mercedes-Benz O530 Citaro propulsado por pilas de combustible de hidrógeno, en Brno , República Checa .

La distribución de hidrógeno con fines de transporte es actualmente [ ¿cuándo? ] se está probando en todo el mundo, particularmente en los EE. UU. ( California , Massachusetts ), Canadá , Japón , la UE ( Portugal , Noruega , Dinamarca , Alemania ) e Islandia , pero el costo es muy alto.

Varios automóviles estadounidenses nacionales han desarrollado vehículos que utilizan hidrógeno, como GM y Toyota. [143] Sin embargo, a partir de febrero de 2020, la infraestructura para el hidrógeno estaba subdesarrollada, excepto en algunas partes de California. [144] El Estados Unidos tienen su propia política de hidrógeno . [ cita requerida ] Una empresa conjunta entre NREL y Xcel Energy está combinando la energía eólica y la energía del hidrógeno de la misma manera en Colorado. [145] Hydro en Terranova y Labrador está convirtiendo el actual sistema de energía eólica-diesel. en la remota isla de Ramea en una instalación de sistemas de energía híbridos de hidrógeno y viento . [146] Un proyecto piloto similar en Stuart Island utiliza energía solar , en lugar de energía eólica , para generar electricidad. Cuando hay un exceso de electricidad disponible después de que las baterías están completamente cargadas, el hidrógeno se genera por electrólisis y se almacena para la producción posterior de electricidad mediante una celda de combustible. [147] Los EE. UU. También cuentan con un gran sistema de tuberías de gas natural. [148]

Los países de la UE que ya cuentan con un sistema de gasoductos de gas natural relativamente grande son Bélgica , Alemania , Francia y los Países Bajos . [148] En 2020, la UE puso en marcha su European Clean Hydrogen Alliance (ECHA). [149] [150]

El Reino Unido inició un programa piloto de pila de combustible en enero de 2004, el programa ejecutó dos autobuses de pila de combustible en la ruta 25 en Londres hasta diciembre de 2005, y cambió a la ruta RV1 hasta enero de 2007. [151] La expedición de hidrógeno está trabajando actualmente para crear un hidrógeno nave propulsada por pilas de combustible y utilizándola para dar la vuelta al mundo, como una forma de demostrar la capacidad de las pilas de combustible de hidrógeno. [152]

El Departamento de Planificación e Infraestructura de Australia Occidental operó tres autobuses de celda de combustible Daimler Chrysler Citaro como parte de su prueba de energía de transporte sostenible para Perth Fuel Cells Bus Trial en Perth. [153] Los autobuses fueron operados por Path Transit en rutas regulares de autobuses públicos de Transperth. La prueba comenzó en septiembre de 2004 y concluyó en septiembre de 2007. Las celdas de combustible de los autobuses utilizaron un sistema de membranas de intercambio de protones y se suministraron con hidrógeno crudo de una refinería de BP en Kwinana, al sur de Perth. El hidrógeno era un subproducto del proceso industrial de la refinería. Los autobuses se repostaron en una estación en el suburbio de Málaga, al norte de Perth.

Islandia se ha comprometido a convertirse en la primera economía mundial del hidrógeno para el año 2050. [154] Islandia se encuentra en una posición única. Actualmente, [ ¿cuándo? ] importa todos los productos derivados del petróleo necesarios para alimentar sus automóviles y su flota pesquera . Islandia tiene grandes recursos geotérmicos, tanto que el precio local de la electricidad en realidad es más bajo que el precio de los hidrocarburos que podrían usarse para producir esa electricidad.

Islandia ya convierte su excedente de electricidad en bienes exportables y reemplazos de hidrocarburos. En 2002, produjo 2.000 toneladas de gas hidrógeno por electrólisis, principalmente para la producción de amoníaco (NH 3 ) para fertilizantes. El amoníaco se produce, transporta y usa en todo el mundo, y el 90% del costo del amoníaco es el costo de la energía para producirlo.

Ninguna industria reemplaza directamente a los hidrocarburos. Reykjavík , Islandia, tenía una pequeña flota piloto de autobuses urbanos que funcionaban con hidrógeno comprimido, [155] y se están llevando a cabo investigaciones sobre cómo impulsar la flota pesquera del país con hidrógeno (por ejemplo, de empresas como Icelandic New Energy ). Para fines más prácticos, Islandia podría procesar petróleo importado con hidrógeno para extenderlo, en lugar de reemplazarlo por completo.

Los autobuses de Reykjavík forman parte de un programa más amplio, HyFLEET: CUTE, [156] que opera autobuses de hidrógeno en ocho ciudades europeas. Los autobuses HyFLEET: CUTE también se operaron en Beijing, China y Perth, Australia (ver más abajo). En la isla noruega de Utsira está en funcionamiento un proyecto piloto que demuestra la economía del hidrógeno . La instalación combina energía eólica e hidrógeno. En períodos en los que hay un excedente de energía eólica, el exceso de energía se utiliza para generar hidrógeno por electrólisis . El hidrógeno se almacena y está disponible para la generación de energía en períodos en los que hay poco viento. [ cita requerida ]

Se dice que India adopta hidrógeno y H-CNG, debido a varias razones, entre las que se encuentran el hecho de que ya se está produciendo un despliegue nacional de redes de gas natural y el gas natural ya es un importante combustible para vehículos. Además, la India sufre una contaminación atmosférica extrema en las zonas urbanas. [157] [158]

Sin embargo, actualmente la energía del hidrógeno se encuentra en la etapa de Investigación, Desarrollo y Demostración (RD&D). [159] [160] Como resultado, el número de estaciones de hidrógeno aún puede ser bajo, [161] aunque se espera que se introduzcan muchas más pronto. [162] [163] [164]

El Ministerio de Energía y Recursos Naturales de Turquía y la Organización de las Naciones Unidas para el Desarrollo Industrial firmaron un acuerdo de fondo fiduciario por valor de 40 millones de dólares en 2003 para la creación del Centro Internacional de Tecnologías de Energía de Hidrógeno (ONUDI-ICHET) en Estambul , que comenzó a funcionar en 2004. [165] En las instalaciones de la ONUDI-ICHET se están demostrando una carretilla elevadora de hidrógeno, un carro de hidrógeno y una casa móvil alimentada con energías renovables. Un sistema de alimentación ininterrumpida funciona desde abril de 2009 en la sede de la empresa Istanbul Sea Buses .

Otro indicador de la presencia de grandes infraestructuras de gas natural ya instaladas en los países y en uso por los ciudadanos es el número de vehículos de gas natural presentes en el país. Los países con la mayor cantidad de vehículos a gas natural son (en orden de magnitud): [166] Irán , China , Pakistán , Argentina , India , Brasil , Italia , Colombia , Tailandia , Uzbekistán , Bolivia , Armenia , Bangladesh , Egipto , Perú. , Ucrania, Estados Unidos . Los vehículos de gas natural también se pueden convertir para funcionar con hidrógeno .

Algunos hospitales han instalado unidades combinadas de celdas de combustible, almacenamiento y electrolizador para la energía de emergencia local. Estos son ventajosos para uso de emergencia debido a su bajo requerimiento de mantenimiento y facilidad de ubicación en comparación con los generadores impulsados ​​por combustión interna. [ cita requerida ]

Además, en algunas casas particulares, se pueden encontrar plantas de microcogeneración de celdas de combustible , que pueden operar con hidrógeno u otros combustibles como gas natural o GLP. [167] [168] Cuando funciona con gas natural, se basa en el reformado con vapor de gas natural para convertir el gas natural en hidrógeno antes de su uso en la pila de combustible. Por lo tanto, esto todavía emite CO2 (ver reacción) pero (temporalmente) ejecutarlo puede ser una buena solución hasta el punto en que el hidrógeno comienza a distribuirse a través del sistema de tuberías (gas natural).

Economía de hidrógeno parcial

El hidrógeno es simplemente un método para almacenar y transmitir energía. El desarrollo energético de varios escenarios alternativos de transmisión y almacenamiento de energía que comienzan con la producción de hidrógeno, pero no lo utilizan para todas las partes de la infraestructura de almacenamiento y transmisión, puede resultar más económico, tanto a corto como a largo plazo. Éstas incluyen:

Economía de amoniaco

Una alternativa al hidrógeno gaseoso como portador de energía es unirlo con nitrógeno del aire para producir amoníaco, que puede licuarse, transportarse y usarse fácilmente (directa o indirectamente) como combustible limpio y renovable . [169] [170] Por ejemplo, investigadores de CSIRO en Australia en 2018 alimentaron un Toyota Mirai y un Hyundai Nexo con hidrógeno separado del amoníaco utilizando una tecnología de membrana. [35]

Bombas de calor híbridas

Las bombas de calor híbridas (que no deben confundirse con los híbridos aire-agua ) también incluyen una caldera que podría funcionar con metano o hidrógeno, y podría ser una vía para la descarbonización completa de la calefacción residencial, ya que la caldera se usaría para recargar la calefacción cuando el clima Hacía mucho frío. [171]

Bio-SNG

A partir de 2019, aunque la producción técnicamente posible de gas de síntesis a partir de hidrógeno y dióxido de carbono a partir de bioenergía con captura y almacenamiento de carbono (BECCS) a través de la reacción de Sabatier está limitada por la cantidad de bioenergía sostenible disponible: [172] por lo tanto, cualquier bio-SNG elaborado puede reservarse para la producción de biocombustible de aviación . [173]

Ver también

  • Política de hidrógeno de Estados Unidos
  • Daño por hidrógeno
  • Fragilidad por hidrógeno
  • Combustible alternativo
  • Desarrollo energético
  • Iniciativa tecnológica conjunta de pilas de combustible e hidrógeno
  • Ácido fórmico
  • Vehículo con motor de combustión interna de hidrógeno
  • Premio de hidrógeno
  • Aviones propulsados ​​por hidrógeno
  • Revista Internacional de Energía de Hidrógeno
  • Comunidad Lolland Hydrogen
  • Pirólisis de metano

Referencias

  1. ^ a b c "Transición al hidrógeno: evaluación de los riesgos e incertidumbres de la ingeniería" . theiet.org . Archivado desde el original el 19 de junio de 2020 . Consultado el 11 de abril de 2020 .
  2. ^ CCJ News (13 de agosto de 2020). "Cómo los camiones de pila de combustible producen energía eléctrica y cómo se alimentan" . Noticias CCJ . Diario de transportista comercial. Archivado desde el original el 19 de octubre de 2020 . Consultado el 19 de octubre de 2020 .
  3. ^ "Una cartera de trenes de potencia para Europa: un análisis basado en hechos" (PDF) . Asociación internacional para el hidrógeno y las pilas de combustible en la economía . Archivado desde el original (PDF) el 15 de octubre de 2017 . Consultado el 9 de septiembre de 2020 .
  4. ^ Toyota. "Camión Clase 8 de pila de combustible de hidrógeno" . El camión propulsado por hidrógeno ofrecerá capacidad de servicio pesado y emisiones limpias . Toyota. Archivado desde el original el 19 de octubre de 2020 . Consultado el 19 de octubre de 2020 .
  5. ↑ a b c IEA H2 2019 , pág. 13
  6. ^ "Información sobre el hidrógeno: una perspectiva sobre la inversión en hidrógeno, el desarrollo del mercado y la competitividad de costos" (PDF) . Consejo de Hidrógeno. Febrero de 2021. Archivado (PDF) desde el original el 17 de febrero de 2021 . Consultado el 21 de febrero de 2021 .
  7. ^ "El hidrógeno no es el combustible del futuro. Ya está aquí" . Foro Económico Mundial . Archivado desde el original el 2 de noviembre de 2019 . Consultado el 29 de noviembre de 2019 .
  8. Deign, Jason (14 de octubre de 2019). "Diez países avanzando hacia una economía verde del hidrógeno" . greentechmedia.com . Archivado desde el original el 9 de diciembre de 2019 . Consultado el 29 de noviembre de 2019 .
  9. ^ Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (octubre de 2018). "Descubrimiento de una gran acumulación de hidrógeno natural en Bourakebougou (Mali)". Revista Internacional de Energía de Hidrógeno . 43 (42): 19315-19326. doi : 10.1016 / j.ijhydene.2018.08.193 .
  10. ^ Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (septiembre de 2015). "Filtración de hidrógeno molecular natural asociada con depresiones redondeadas superficiales en el Cratón europeo en Rusia". Investigación de recursos naturales . 24 (3): 369–383. doi : 10.1007 / s11053-014-9257-5 . S2CID 128762620 . 
  11. ^ Gaucher, Eric C. (1 de febrero de 2020). "Nuevas perspectivas en la exploración industrial de hidrógeno nativo" . Elementos . 16 (1): 8–9. doi : 10.2138 / gselements.16.1.8 .
  12. ^ Truche, Laurent; Bazarkina, Elena F. (2019). "El hidrógeno natural, el combustible del siglo XXI" . Web de conferencias E3S . 98 : 03006. Bibcode : 2019E3SWC..9803006T . doi : 10.1051 / e3sconf / 20199803006 .
  13. Snyder, John (5 de septiembre de 2019). "Las pilas de combustible de hidrógeno cobran impulso en el sector marítimo" . Riviera Maritime Media . Archivado desde el original el 8 de febrero de 2021 . Consultado el 29 de noviembre de 2020 .
  14. ^ "Tamaño del mercado global de generación de hidrógeno | Informe de la industria, 2020-2027" . Archivado desde el original el 16 de abril de 2019 . Consultado el 5 de marzo de 2019 .
  15. ^ Upham, D. Chester (17 de noviembre de 2017). "Metales fundidos catalíticos para la conversión directa de metano en hidrógeno y carbono no contaminante separable en un proceso comercial de un solo paso de reacción (a un costo potencialmente bajo). Esto proporcionaría hidrógeno sin contaminación procedente del gas natural sin emisión de gases de efecto invernadero, esencialmente para siempre " . Ciencia . Asociación Estadounidense para el Avance de la Ciencia. 358 (6365): 917–921. doi : 10.1126 / science.aao5023 . PMID 29146810 . S2CID 206663568 . Consultado el 31 de octubre de 2020 .  
  16. ↑ a b Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R .; Gordon, Michael J .; Metiu, Horia; McFarland, Eric W. (17 de noviembre de 2017). "Metales fundidos catalíticos para la conversión directa de metano en hidrógeno y carbono separable" . Ciencia . 358 (6365): 917–921. Código Bibliográfico : 2017Sci ... 358..917U . doi : 10.1126 / science.aao5023 . PMID 29146810 . S2CID 206663568 .  
  17. ^ a b BASF. "Investigadores de BASF que trabajan en procesos de producción de bajo carbono fundamentalmente nuevos, pirólisis de metano" . Sostenibilidad de Estados Unidos . BASF. Archivado desde el original el 19 de octubre de 2020 . Consultado el 19 de octubre de 2020 .
  18. ^ UKCCC H2 2018 , p. 20
  19. ^ Shih, Choon Fong; Zhang, Tao; Li, Jinghai; Bai, Chunli (2018). "Impulsando el futuro con Liquid Sunshine" . Joule . 2 (10): 1925-1949. doi : 10.1016 / j.joule.2018.08.016 .
  20. ^ "Economía del metanol versus economía del hidrógeno" (PDF) . Metanol : 661–674. 2018-01-01. doi : 10.1016 / B978-0-444-63903-5.00025-X .
  21. ^ Simón Araya, Samuel; Liso, Vincenzo; Cui, Xiaoti; Li, Na; Zhu, Jimin; Sahlin, Simon Lennart; Jensen, Søren Højgaard; Nielsen, Mads Pagh; Kær, Søren Knudsen (2020). "Una revisión de la economía del metanol: la ruta de la pila de combustible" . Energías . 13 (3): 596. doi : 10.3390 / en13030596 .
  22. ^ "El hidrógeno podría ayudar a descarbonizar la economía mundial" . Financial Times . Archivado desde el original el 17 de septiembre de 2019 . Consultado el 31 de agosto de 2019 .
  23. ^ IEA H2 2019 , p. 18
  24. ^ Asociación Nacional de Hidrógeno; Departamento de Energía de Estados Unidos. "La historia del hidrógeno" (PDF) . hydrogenassociation.org . Asociación Nacional de Hidrógeno. pag. 1. Archivado desde el original (PDF) el 14 de julio de 2010 . Consultado el 17 de diciembre de 2010 .
  25. ^ " Dédalo o ciencia y el futuro , un artículo leído a los herejes, Cambridge, el 4 de febrero de 1923 - Transcripción 1993" . Archivado desde el original el 15 de noviembre de 2017 . Consultado el 16 de enero de 2016 .
  26. ^ Jones, Lawrence W (13 de marzo de 1970). Hacia una economía de combustible de hidrógeno líquido . Acción ambiental de la Universidad de Michigan para la supervivencia Teach In. Ann Arbor, Michigan: Universidad de Michigan . hdl : 2027,42 / 5800 .
  27. ^ Bakker, Sjoerd (2010). "La industria del automóvil y el estallido del bombo del hidrógeno" (PDF) . Política energética . 38 (11): 6540–6544. doi : 10.1016 / j.enpol.2010.07.019 . Archivado (PDF) desde el original el 3 de noviembre de 2018 . Consultado el 11 de diciembre de 2019 .
  28. ^ Harrison, James. "Reacciones: bombo de hidrógeno" . Ingeniero químico . 58 : 774–775. Archivado desde el original el 8 de febrero de 2021 . Consultado el 31 de agosto de 2017 .
  29. ^ Rizzi, Francesco Annunziata, Eleonora Liberati, Guglielmo Frey, Marco (2014). "Trayectorias tecnológicas en la industria automotriz: ¿las tecnologías del hidrógeno siguen siendo una posibilidad?". Revista de producción más limpia . 66 : 328–336. doi : 10.1016 / j.jclepro.2013.11.069 .CS1 maint: varios nombres: lista de autores ( enlace )
  30. Murai, Shusuke (5 de marzo de 2018). "Las principales empresas de energía y automóviles de Japón se unen para promover el desarrollo de estaciones de hidrógeno" . The Japan Times Online . Japan Times. Archivado desde el original el 17 de abril de 2018 . Consultado el 16 de abril de 2018 .
  31. Mishra, Ankit (29 de marzo de 2018). "Las perspectivas de los vehículos eléctricos de pila de combustible aumentaron con el respaldo chino" . Puesto de energía. Archivado desde el original el 17 de abril de 2018 . Consultado el 16 de abril de 2018 .
  32. ↑ a b IEA H2 2019 , pág. 17
  33. ^ IEA H2 2019 , p. 14
  34. ^ Crabtree, George W .; Dresselhaus, Mildred S .; Buchanan, Michelle V. (2004). La economía del hidrógeno (PDF) (Informe técnico). Archivado (PDF) desde el original el 10 de abril de 2020 . Consultado el 5 de marzo de 2020 .
  35. ^ a b Mealey, Rachel. "Membranas de hidrógeno automotrices: gran avance para automóviles" Archivado el 10 de junio de 2019 en Wayback Machine , ABC , 8 de agosto de 2018
  36. ^ "Copia archivada" . Laboratorio Nacional Argonne. Archivado desde el original el 22 de septiembre de 2007 . Consultado el 15 de junio de 2007 .CS1 maint: copia archivada como título ( enlace )
  37. ^ Laboratorio Nacional de Argonne . "Implicaciones de la tecnología y la configuración de las aplicaciones potenciales del sistema de hidrógeno nuclear" (PDF) . Archivado desde el original (PDF) el 5 de agosto de 2013 . Consultado el 29 de mayo de 2013 .
  38. ^ "Programa de tecnologías de vehículos: hecho # 205: costo de hidrógeno del 25 de febrero de 2002 y producción mundial" . .eere.energy.gov. Archivado desde el original el 1 de julio de 2013 . Consultado el 19 de septiembre de 2009 .
  39. ^ a b "Bellona-HydrogenReport" . Interstatetraveler.us. Archivado desde el original el 3 de junio de 2016 . Consultado el 5 de julio de 2010 .
  40. ^ a b c d BMWi (junio de 2020). La estrategia nacional del hidrógeno (PDF) . Berlín, Alemania: Ministerio Federal de Economía y Energía (BMWi). Archivado (PDF) desde el original el 13 de diciembre de 2020 . Consultado el 27 de noviembre de 2020 .
  41. ^ a b c Van de Graaf, Thijs; Overland, Indra; Scholten, Daniel; Westphal, Kirsten (diciembre de 2020). "¿El nuevo petróleo? La geopolítica y la gobernanza internacional del hidrógeno" . Investigación energética y ciencias sociales . 70 : 101667. doi : 10.1016 / j.erss.2020.101667 . PMC 7326412 . PMID 32835007 .  
  42. ^ Sansom, Robert; Baxter, Jenifer; Brown, Andy; Hawksworth, Stuart; McCluskey, Ian (2020). Transición al hidrógeno: evaluación de los riesgos e incertidumbres de la ingeniería (PDF) . Londres, Reino Unido: Instituto de Ingeniería y Tecnología (IET). Archivado (PDF) desde el original el 8 de mayo de 2020 . Consultado el 22 de marzo de 2020 .
  43. ^ Bruce, S; Temminghoff, M; Hayward, J; Schmidt, E; Munnings, C; Palfreyman, D; Hartley, P (2018). Hoja de ruta nacional del hidrógeno: caminos hacia una industria del hidrógeno económicamente sostenible en Australia (PDF) . Australia: CSIRO. Archivado (PDF) desde el original el 8 de diciembre de 2020 . Consultado el 28 de noviembre de 2020 .
  44. ^ Zgonnik, Viacheslav (abril de 2020). "La aparición y geociencia del hidrógeno natural: una revisión completa". Reseñas de Ciencias de la Tierra . 203 : 103140. Bibcode : 2020ESRv..20303140Z . doi : 10.1016 / j.earscirev.2020.103140 .
  45. ^ "LLC de energía de hidrógeno natural" . Archivado desde el original el 25 de octubre de 2020 . Consultado el 29 de septiembre de 2020 .
  46. ^ "Definición de hidrógeno verde" (PDF) . Asociación de Energía Limpia . Consultado el 6 de septiembre de 2014 . [ enlace muerto permanente ]
  47. ^ a b Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (octubre de 2020). "Estado del arte de la producción de hidrógeno mediante pirólisis de gas natural" . Reseñas de ChemBioEng . 7 (5): 150-158. doi : 10.1002 / cben.202000014 .
  48. ^ Sampson2019-02-11T10: 48: 00 + 00: 00, Joanna. "Hidrógeno azul para un futuro verde" . gasworld . Archivado desde el original el 9 de mayo de 2019 . Consultado el 3 de junio de 2019 .
  49. ^ "Lignito el trampolín de la economía del hidrógeno | ECT" . Archivado desde el original el 8 de abril de 2019 . Consultado el 3 de junio de 2019 .
  50. ^ "Producción mundial real de hidrógeno de…" . Arno A Evers. Diciembre de 2008. Archivado desde el original el 2 de febrero de 2015 . Consultado el 9 de mayo de 2008 .
  51. ^ Fernández, Sonia. "Los investigadores desarrollan tecnología potencialmente de bajo costo y bajas emisiones que puede convertir el metano sin formar CO2" . Phys-Org . Instituto Americano de Física. Archivado desde el original el 19 de octubre de 2020 . Consultado el 19 de octubre de 2020 .
  52. ^ Palmer, Clarke; Upham, D. Chester; Inteligente, Simon; Gordon, Michael J .; Metiu, Horia; McFarland, Eric W. (enero de 2020). "Reformado en seco de metano catalizado por aleaciones de metales fundidos". Catálisis de la naturaleza . 3 (1): 83–89. doi : 10.1038 / s41929-019-0416-2 . S2CID 210862772 . 
  53. ^ Cartwright, Jon. "La reacción que nos daría combustibles fósiles limpios para siempre" . NewScientist . New Scientist Ltd. Archivado desde el original, el 26 de octubre 2020 . Consultado el 30 de octubre de 2020 .
  54. ^ Instituto de tecnología de Karlsruhe. "Hidrógeno a partir de metano sin emisiones de CO2" . Phys.Org . Phys.Org. Archivado desde el original el 21 de octubre de 2020 . Consultado el 30 de octubre de 2020 .
  55. ^ Badwal, Sukhvinder PS; Giddey, Sarbjit S .; Munnings, Christopher; Bhatt, Anand I .; Hollenkamp, ​​Anthony F. (24 de septiembre de 2014). "Tecnologías emergentes de conversión y almacenamiento de energía electroquímica" . Fronteras de la química . 2 : 79. Código bibliográfico : 2014FrCh .... 2 ... 79B . doi : 10.3389 / fchem.2014.00079 . PMC 4174133 . PMID 25309898 .  
  56. ^ Werner Zittel; Reinhold Wurster (8 de julio de 1996). "Capítulo 3: Producción de hidrógeno. Parte 4: Producción a partir de electricidad mediante electrólisis" . HyWeb: Conocimiento - Hidrógeno en el Sector Energético . Ludwig-Bölkow-Systemtechnik GmbH. Archivado desde el original el 7 de febrero de 2007 . Consultado el 1 de octubre de 2010 .
  57. ^ Bjørnar Kruse; Sondre Grinna; Cato Buch (13 de febrero de 2002). "Hidrógeno - Estado y posibilidades" . La Fundación Bellona. Archivado desde el original (PDF) en 2011-07-02. Se predicen factores de eficiencia para electrolizadores PEM de hasta el 94%, pero esto es solo teórico en este momento.
  58. ^ "electrólisis de agua 3D de alta velocidad y alta eficiencia" . Grid-shift.com. Archivado desde el original el 22 de marzo de 2012 . Consultado el 13 de diciembre de 2011 .
  59. ^ "Amplia adaptación de la solución competitiva de hidrógeno" (PDF) . nelhydrogen.com . Nel ASA. Archivado (PDF) desde el original el 22 de abril de 2018 . Consultado el 22 de abril de 2018 .
  60. ^ Philibert, Cédric. "Comentario: producción de hidrógeno industrial a partir de energías renovables" . iea.org . Agencia Internacional de Energía. Archivado desde el original el 22 de abril de 2018 . Consultado el 22 de abril de 2018 .
  61. ^ IEA H2 2019 , p. 37
  62. ^ "¿Cuánta electricidad / agua se necesita para producir 1 kg de H2 por electrólisis?" . Archivado desde el original el 17 de junio de 2020 . Consultado el 17 de junio de 2020 .
  63. ^ https://www.hfpeurope.org/infotools/energyinfos__e/hydrogen/main03.html [ enlace muerto permanente ]
  64. ^ Tao, Yongzhen; Chen, Yang; Wu, Yongqiang; Él, Yanling; Zhou, Zhihua (1 de febrero de 2007). "Alto rendimiento de hidrógeno de un proceso de dos pasos de fermentación oscura y foto-fermentación de sacarosa". Revista Internacional de Energía de Hidrógeno . 32 (2): 200–206. doi : 10.1016 / j.ijhydene.2006.06.034 . INIST : 18477081 .
  65. ^ "Producción de hidrógeno a partir de materia sólida orgánica" . Biohydrogen.nl. Archivado desde el original el 20 de julio de 2011 . Consultado el 5 de julio de 2010 .
  66. ^ Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (diciembre de 2009). "Aproximaciones analíticas a la producción de hidrógeno fotobiológico en algas verdes unicelulares" . Investigación de la fotosíntesis . 102 (2–3): 523–540. doi : 10.1007 / s11120-009-9415-5 . PMC 2777220 . PMID 19291418 .  
  67. ^ "NanoLogix genera energía in situ con hidrógeno producido por biorreactores" . Tecnología de estado sólido . 20 de septiembre de 2007. Archivado desde el original el 15 de mayo de 2018 . Consultado el 14 de mayo de 2018 .
  68. ^ "Energía de plantas que utilizan pila de combustible microbiana" (en holandés). Archivado desde el original el 8 de febrero de 2021 . Consultado el 5 de julio de 2010 .
  69. ^ "2001-Electrólisis de alta presión: la tecnología clave para un H.2 eficiente" (PDF) . Consultado el 5 de julio de 2010 . [ enlace muerto permanente ]
  70. ^ Carmo, M; Fritz D; Mergel J; Stolten D (2013). "Una revisión completa sobre la electrólisis del agua PEM". Revista de energía de hidrógeno . 38 (12): 4901–4934. doi : 10.1016 / j.ijhydene.2013.01.151 .
  71. ^ "2003-PHOEBUS-Pag.9" (PDF) . Archivado desde el original (PDF) el 27 de marzo de 2009 . Consultado el 5 de julio de 2010 .
  72. ^ "Finlandia exportando estaciones de combustible TEN-T" . Diciembre de 2015. Archivado desde el original el 28 de agosto de 2016 . Consultado el 22 de agosto de 2016 .
  73. ^ "Calor de vapor: los investigadores se preparan para una planta de hidrógeno a gran escala" (Comunicado de prensa). Science Daily . 2008-09-18. Archivado desde el original el 21 de septiembre de 2008 . Consultado el 19 de septiembre de 2008 .
  74. ^ "Plan de I + D de hidrógeno nuclear" (PDF) . Departamento de Energía de EE . UU . Marzo de 2004. Archivado desde el original (PDF) el 18 de mayo de 2008 . Consultado el 9 de mayo de 2008 .
  75. Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J .; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco (diciembre de 2016). "Heteroestructuras coaxiales que integran dióxido de paladio / titanio con nanotubos de carbono para un desprendimiento de hidrógeno electrocatalítico eficiente" . Comunicaciones de la naturaleza . 7 (1): 13549. Código Bibliográfico : 2016NatCo ... 713549V . doi : 10.1038 / ncomms13549 . PMC 5159813 . PMID 27941752 .  
  76. ^ William Ayers, Patente estadounidense 4.466.869 Producción fotolítica de hidrógeno
  77. Navarro Yerga, Rufino M .; Álvarez Galván, M. Consuelo; del Valle, F .; Villoria de la Mano, José A .; Fierro, José LG (22 de junio de 2009). "División de agua en catalizadores semiconductores bajo irradiación de luz visible". ChemSusChem . 2 (6): 471–485. doi : 10.1002 / cssc.200900018 . PMID 19536754 . 
  78. ^ Navarro, RM; Del Valle, F .; Villoria de la Mano, JA; Álvarez-Galván, MC; Fierro, JLG (2009). "División de agua fotocatalítica bajo luz visible". Avances en Ingeniería Química - Tecnologías Fotocatalíticas . Avances en Ingeniería Química. 36 . págs. 111-143. doi : 10.1016 / S0065-2377 (09) 00404-9 . ISBN 978-0-12-374763-1.
  79. ^ Nann, Thomas; Ibrahim, Saad K .; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 de febrero de 2010). "División de agua por luz visible: un nanofotocátodo para la producción de hidrógeno" . Angewandte Chemie International Edition . 49 (9): 1574-1577. doi : 10.1002 / anie.200906262 . PMID 20140925 . 
  80. ^ Yamamura, Tetsushi (2 de agosto de 2015). Panasonic se acerca a la autosuficiencia energética doméstica con pilas de combustible ” . Asahi Shimbun . Archivado desde el original el 7 de agosto de 2015 . Consultado el 2 de agosto de 2015 .
  81. ^ "Portal de DLR - los científicos de DLR logran la producción de hidrógeno solar en una planta piloto de 100 kilovatios" . Dlr.de. 2008-11-25. Archivado desde el original el 22 de junio de 2013 . Consultado el 19 de septiembre de 2009 .
  82. ^ "353 ciclos termoquímicos" (PDF) . Archivado (PDF) desde el original el 5 de febrero de 2009 . Consultado el 5 de julio de 2010 .
  83. ^ Base de datos de puntuación automatizada del ciclo termoquímico de la UNLV (pública) [ enlace muerto permanente ]
  84. ^ "Desarrollo de la producción termoquímica de hidrógeno a partir del agua con energía solar" (PDF) . Archivado (PDF) desde el original el 17 de abril de 2007 . Consultado el 5 de julio de 2010 .
  85. ^ Jie, Xiangyu; Li, Weisong; Slocombe, Daniel; Gao, Yige; Banerjee, Ira; González-Cortés, Sergio; Yao, Benzhen; AlMegren, Hamid; Alshihri, Saeed; Dilworth, Jonathan; Thomas, John; Xiao, Tiancun; Edwards, Peter (2020). "Deconstrucción catalítica iniciada por microondas de residuos plásticos en hidrógeno y carbonos de alto valor". Catálisis de la naturaleza . 3 (11): 902–912. doi : 10.1038 / s41929-020-00518-5 . ISSN 2520-1158 . S2CID 222299492 .  
  86. ^ http://www.nedstack.com/images/stories/news/documents/20120202_Press%20release%20Solvay%20PEM%20Power%20Plant%20start%20up.pdf Archivado el 8 dediciembre de 2014en Wayback Machine Nedstack
  87. ^ "Diferentes gases de los procesos de producción de acero" . Archivado desde el original el 27 de marzo de 2016 . Consultado el 5 de julio de 2020 .
  88. ^ "Producción de hidrógeno licuado de COG" (PDF) . Archivado (PDF) desde el original el 8 de febrero de 2021 . Consultado el 8 de julio de 2020 .
  89. ^ Zubrin, Robert (2007). Victoria energética . Amherst, Nueva York: Prometheus Books. pp.  117 -118. ISBN 978-1-59102-591-7. Sin embargo, la situación es mucho peor, porque antes de que el hidrógeno pueda transportarse a cualquier lugar, es necesario comprimirlo o licuarlo. Para licuarlo hay que refrigerarlo a una temperatura de -253 ° C (20 grados por encima del cero absoluto). A estas temperaturas, las leyes fundamentales de la termodinámica hacen que los refrigeradores sean extremadamente ineficientes. Como resultado, se debe gastar alrededor del 40 por ciento de la energía del hidrógeno para licuarlo. Esto reduce el contenido energético neto real de nuestro combustible de producto a 792 kcal. Además, debido a que es un líquido criogénico, podría esperarse que se pierda aún más energía a medida que el hidrógeno se evapora a medida que se calienta por el calor que se filtra desde el ambiente exterior durante el transporte y almacenamiento.
  90. Savvides, Nick (11 de enero de 2017). "Japón planea utilizar hidrógeno licuado importado para impulsar los Juegos Olímpicos de Tokio 2020" . Seguridad en el mar . Portal Marítimo IHS Markit. Archivado desde el original el 23 de abril de 2018 . Consultado el 22 de abril de 2018 .
  91. S.Sadaghiani, Mirhadi (2 de marzo de 2017). "Introducción y análisis energético de una nueva configuración de proceso de licuefacción de hidrógeno criogénico". Revista Internacional de Energía de Hidrógeno . 42 (9).
  92. ^ 1994 - Resumen de ECN Archivado 2004-01-02 en Wayback Machine . Hyweb.de. Consultado el 8 de enero de 2012.
  93. ^ Red europea de energía renovable Archivado el 17 de julio de 2019 en la Wayback Machine págs.86, 188
  94. ^ "Almacenamiento de energía: el papel de la electricidad" (PDF) . Comisión Europea . Comisión Europea. Archivado desde el original (PDF) el 8 de noviembre de 2020 . Consultado el 22 de abril de 2018 .
  95. ^ "Hyunder" . Archivado desde el original el 11 de noviembre de 2013 . Consultado el 11 de noviembre de 2013 .
  96. ^ Almacenamiento de energía renovable: ¿Es el hidrógeno una solución viable? [ enlace muerto permanente ]
  97. ^ "LLEVANDO LA ENERGÍA DEL MAR DEL NORTE A TIERRA EFICIENTEMENTE" (PDF) . worldenergy.org . Consejo Mundial de Energía de los Países Bajos. Archivado (PDF) desde el original el 23 de abril de 2018 . Consultado el 22 de abril de 2018 .
  98. GERDES, JUSTIN (10 de abril de 2018). "Reclutamiento de pozos de gas y petróleo abandonados como 'Reservas de electrones ' " . greentechmedia.com . Wood MacKenzie. Archivado desde el original el 23 de abril de 2018 . Consultado el 22 de abril de 2018 .
  99. ^ Anscombe, Nadya (4 de junio de 2012). "Almacenamiento de energía: ¿podría ser el hidrógeno la respuesta?" . Solar Novus hoy . Archivado desde el original el 19 de agosto de 2013 . Consultado el 3 de noviembre de 2012 .
  100. ^ Naturalhy Archivado el 18 de enero de 2012 en la Wayback Machine.
  101. ^ Revista Kijk, 10, 2019
  102. ^ 50% de hidrógeno para Europa. Un manifiesto de Frank Wouters y Ad van Wijk
  103. ^ Bhadhesia, Harry. "Prevención de la fragilización por hidrógeno en aceros" (PDF) . Grupo de Investigación de Transformaciones de Fase y Propiedades Complejas, Universidad de Cambridge . Archivado (PDF) desde el original el 11 de noviembre de 2020 . Consultado el 17 de diciembre de 2020 .
  104. ^ IEA H2 2019 , p. 15
  105. ^ "Estrategia de hidrógeno de Japón y sus implicaciones económicas y geopolíticas" . Etudes de l'Ifri . Archivado desde el original el 10 de febrero de 2019 . Consultado el 9 de febrero de 2019 .
  106. ^ "Ambiciones económicas de hidrógeno de Corea del Sur" . El diplomático . Archivado desde el original el 9 de febrero de 2019 . Consultado el 9 de febrero de 2019 .
  107. ^ "La producción de hidrógeno de clase más grande del mundo, el campo de investigación de energía de hidrógeno de Fukushima (FH2R) ahora se completa en la ciudad de Namie en Fukushima" . Comunicados de prensa de Toshiba Energy . Corporaciones de Soluciones y Sistemas de Energía de Toshiba. 7 de marzo de 2020. Archivado desde el original el 22 de abril de 2020 . Consultado el 1 de abril de 2020 .
  108. Editor (14 de junio de 2019). "El hidrógeno podría reemplazar al gas natural para calentar hogares y reducir las emisiones de carbono, afirma un nuevo informe | Envirotec" . Archivado desde el original el 25 de septiembre de 2019 . Consultado el 25 de septiembre de 2019 .CS1 maint: texto adicional: lista de autores ( enlace )
  109. Murray, Jessica (24 de enero de 2020). "Hidrógeno sin carbono inyectado en la red de gas por primera vez en una prueba pionera en el Reino Unido" . The Guardian . ISSN 0261-3077 . Archivado desde el original el 24 de enero de 2020 . Consultado el 24 de enero de 2020 . 
  110. frankwouters1 (7 de mayo de 2019). "Un manifiesto europeo del hidrógeno" . Frank Wouters . Archivado desde el original el 20 de septiembre de 2020 . Consultado el 2 de diciembre de 2019 .
  111. ^ "idealhy.eu - Esquema de hidrógeno líquido" . idealhy.eu . Archivado desde el original el 11 de noviembre de 2020 . Consultado el 2 de diciembre de 2019 .
  112. ^ Electricidad de madera a través de la combinación de gasificación y celdas de combustible de óxido sólido. Archivado el 13 de marzo de 2011 en la Wayback Machine , Ph.D. Tesis de Florian Nagel, Instituto Federal Suizo de Tecnología de Zúrich, 2008
  113. ^ "Relación peso-potencia" . .eere.energy.gov. 2009-06-23. Archivado desde el original el 9 de junio de 2010 . Consultado el 5 de julio de 2010 .
  114. ^ "Estimaciones de kilometraje de EPA" . Honda FCX Clarity: especificaciones del vehículo . American Honda Motor Company . Archivado desde el original el 1 de julio de 2013 . Consultado el 17 de diciembre de 2010 .
  115. ^ "Oficina de tecnologías de pila de combustible; logros y avances" . Departamento de Energía de Estados Unidos. Archivado desde el original el 15 de abril de 2018 . Consultado el 16 de abril de 2018 .
  116. ^ Ruffo, Gustavo Henrique. "Este video compara los BEV con los FCEV y el más eficiente es ..." Archivado 2020-10-26 en Wayback Machine , InsideEVs.com, 29 de septiembre de 2019
  117. ^ Allen, James. "Honda: Ahora es el momento adecuado para adoptar los coches eléctricos" Archivado el 24 de noviembre de 2020 en la Wayback Machine , The Sunday Times , 4 de noviembre de 2019
  118. ^ Baxter, Tom (3 de junio de 2020). "Los coches de hidrógeno no superarán a los vehículos eléctricos porque están obstaculizados por las leyes de la ciencia" . La conversación . Archivado desde el original el 31 de julio de 2020 . Consultado el 24 de noviembre de 2020 .
  119. ^ Kluth, Andreas. "Cómo el hidrógeno es y no es el futuro de la energía" Archivado el 24 de noviembre de 2020 en Wayback Machine , Bloomberg.com. 9 de noviembre de 2020
  120. ^ Kreith, 2004
  121. ^ Seba, Tony (23 de octubre de 2015). "Toyota vs Tesla - vehículos de pila de combustible de hidrógeno vs coches eléctricos" . EnergyPost.eu . Archivado desde el original el 6 de diciembre de 2016 . Consultado el 3 de diciembre de 2016 .
  122. ^ Bossel, Ulrich (2006). "¿Tiene sentido una economía del hidrógeno?". Actas del IEEE . 94 (10): 1826–1837. doi : 10.1109 / JPROC.2006.883715 . S2CID 39397471 .  Mirror Archivado el 6 de septiembre de 2015 en la Wayback Machine.
  123. ^ Ann Mari Svensson; Steffen Møller-Holst; Ronny Glöckner; Ola Maurstad (septiembre de 2006). "Estudio de pozo a rueda de vehículos de pasajeros en el sistema energético noruego". Energía . 32 (4): 437–45. doi : 10.1016 / j.energy.2006.07.029 .
  124. ^ Boyd, Robert S. (15 de mayo de 2007). "Los coches de hidrógeno pueden tardar en llegar" . Periódicos McClatchy. Archivado desde el original el 1 de mayo de 2009 . Consultado el 9 de mayo de 2008 .
  125. ^ Squatriglia, Chuck (12 de mayo de 2008). "Los coches de hidrógeno no harán la diferencia durante 40 años" . Cableado . Archivado desde el original el 12 de mayo de 2008 . Consultado el 13 de mayo de 2008 .
  126. ^ Academia Nacional de Ingeniería (2004). El hidrógeno Economía: Oportunidades, Costos, barreras y necesidades de I + D . Washington, DC: The National Academies Press. doi : 10.17226 / 10922 . ISBN 978-0-309-53068-2. Archivado desde el original el 8 de septiembre de 2010 . Consultado el 17 de diciembre de 2010 .
  127. ^ "Plan de negocios de Ford Motor Company" Archivado el 27 de marzo de 2017 en la Wayback Machine , 2 de diciembre de 2008
  128. ^ Dennis, Lyle. "Nissan renuncia al hidrógeno y solo fabricará coches eléctricos". Archivado el 21 de diciembre de 2010 en la Wayback Machine , All Cars Electric , el 26 de febrero de 2009.
  129. ^ "Carta de entendimiento 2009" (PDF) . Archivado (PDF) desde el original el 27 de septiembre de 2013 . Consultado el 8 de julio de 2012 .
  130. ^ "Hidrógeno para el transporte" Archivado el 20 de enero de 2015en la Wayback Machine , The Carbon Trust , 28 de noviembre de 2014. Consultado el 20 de enero de 2015.
  131. ^ Simposio ZEV de energía limpia de BMW Group. Septiembre de 2006, pág. 12
  132. ^ "Liebreich: separación del bombo del hidrógeno - segunda parte: el lado de la demanda" . BloombergNEF . 2020-10-16. Archivado desde el original el 26 de enero de 2021 . Consultado el 26 de enero de 2021 .
  133. ^ "Esta empresa puede haber resuelto uno de los problemas más duros de las energías limpias" . Vox. 2018-02-16. Archivado desde el original el 12 de noviembre de 2019 . Consultado el 9 de febrero de 2019 .
  134. ^ Utgikar, Vivek P; Thiesen, Todd (2005). "Seguridad de los tanques de combustible de hidrógeno comprimido: Fuga de vehículos estacionados". Tecnología en la sociedad . 27 (3): 315–320. doi : 10.1016 / j.techsoc.2005.04.005 .
  135. ^ "Sensor de hidrógeno: rápido, sensible, confiable y económico de producir" (PDF) . Laboratorio Nacional Argonne . Septiembre de 2006. Archivado desde el original (PDF) el 1 de julio de 2013 . Consultado el 9 de mayo de 2008 .
  136. ^ "Programa canadiense de seguridad del hidrógeno probando H2 / CNG" . Hydrogenandfuelcellsafety.info . Archivado desde el original el 21 de julio de 2011 . Consultado el 5 de julio de 2010 .
  137. ^ UKCCC H2 2018 , p. 113
  138. ^ a b "Una llamada de atención al hidrógeno verde: la cantidad de viento y energía solar necesaria es inmensa | Recarga" . Recarga | Últimas noticias sobre energías renovables . Archivado desde el original el 11 de abril de 2020 . Consultado el 11 de abril de 2020 .
  139. ^ UKCCC H2 2018 , p. 7
  140. ^ UKCCC H2 2018 , p. 124
  141. ^ UKCCC H2 2018 , p. 118
  142. ^ "Camino de Australia a $ 2 por kg de hidrógeno - ARENAWIRE" . Agencia Australiana de Energías Renovables . Archivado desde el original el 15 de diciembre de 2020 . Consultado el 6 de enero de 2021 .
  143. ^ "¿Son los vehículos de pila de combustible de hidrógeno el futuro de los automóviles?" . ABC News . Archivado desde el original el 17 de enero de 2021 . Consultado el 18 de enero de 2021 .
  144. ^ Siddiqui, Faiz. "El coche eléctrico enchufable está teniendo su momento. Pero a pesar de los arranques en falso, Toyota todavía está tratando de hacer que suceda la pila de combustible" . Washington Post . ISSN 0190-8286 . Archivado desde el original el 19 de enero de 2021 . Consultado el 18 de enero de 2021 . 
  145. ^ "Sistema experimental de 'viento a hidrógeno' en funcionamiento" . Physorg.com. 8 de enero de 2007. Archivado desde el original el 1 de julio de 2013 . Consultado el 9 de mayo de 2008 .
  146. ^ "Centro de motor de hidrógeno recibe pedido de generador de energía de hidrógeno generador de 250kW para demostración de viento / hidrógeno" (PDF) . Hydrogen Engine Center, Inc. 16 de mayo de 2006. Archivado desde el original (PDF) el 27 de mayo de 2008 . Consultado el 9 de mayo de 2008 .
  147. ^ "Iniciativa energética de Stuart Island" . Archivado desde el original el 1 de julio de 2013 . Consultado el 9 de mayo de 2008 .
  148. ^ a b "Transporte y distribución de hidrógeno" . Archivado desde el original el 29 de septiembre de 2019 . Consultado el 29 de septiembre de 2019 .
  149. ^ "Copia archivada" . Archivado desde el original el 7 de agosto de 2020 . Consultado el 14 de agosto de 2020 .CS1 maint: copia archivada como título ( enlace )
  150. ^ "ECHA" . Archivado desde el original el 12 de agosto de 2020 . Consultado el 14 de agosto de 2020 .
  151. ^ "Autobuses de hidrógeno" . Transporte para Londres. Archivado desde el original el 23 de marzo de 2008 . Consultado el 9 de mayo de 2008 .
  152. ^ "La expedición del hidrógeno" (PDF) . Enero de 2005. Archivado desde el original (PDF) el 27 de mayo de 2008 . Consultado el 9 de mayo de 2008 .
  153. ^ "Prueba de autobús de celda de combustible de Perth" . Departamento de Planificación e Infraestructura, Gobierno de Australia Occidental . 13 de abril de 2007. Archivado desde el original el 7 de junio de 2008 . Consultado el 9 de mayo de 2008 .
  154. Hannesson, Hjálmar W. (2 de agosto de 2007). "El cambio climático como desafío global" . Ministerio de Relaciones Exteriores de Islandia . Archivado desde el original el 1 de julio de 2013 . Consultado el 9 de mayo de 2008 .
  155. ^ Doyle, Alister (14 de enero de 2005). "Los autobuses de hidrógeno de Islandia avanzan hacia una economía libre de petróleo" . Reuters. Archivado desde el original el 24 de julio de 2012 . Consultado el 9 de mayo de 2008 .
  156. ^ "¿Qué es HyFLEET: LINDO?" . Archivado desde el original el 24 de febrero de 2008 . Consultado el 9 de mayo de 2008 .
  157. ^ "Vehículos de hidrógeno e infraestructura de reabastecimiento de combustible en la India" (PDF) . Archivado (PDF) desde el original el 12 de junio de 2017 . Consultado el 28 de septiembre de 2019 .
  158. ^ Das, L (1991). "Caracterización de las emisiones de escape del sistema de motor accionado por hidrógeno: naturaleza de los contaminantes y sus técnicas de control". Revista Internacional de Energía de Hidrógeno . 16 (11): 765–775. doi : 10.1016 / 0360-3199 (91) 90075-T .
  159. ^ "MNRE: Preguntas frecuentes" . Archivado desde el original el 21 de septiembre de 2019 . Consultado el 28 de septiembre de 2019 .
  160. ^ Descripción general del programa de hidrógeno de la India
  161. ^ "Estaciones H2 en todo el mundo" . Archivado desde el original el 21 de septiembre de 2019 . Consultado el 28 de septiembre de 2019 .
  162. ^ "India trabajando en más estaciones H2" . Archivado desde el original el 21 de septiembre de 2019 . Consultado el 28 de septiembre de 2019 .
  163. ^ "Shell planea abrir 1200 estaciones de servicio en la India, algunas de las cuales pueden incluir recarga de H2" . Archivado desde el original el 22 de septiembre de 2019 . Consultado el 28 de septiembre de 2019 .
  164. ^ "Vehículos de hidrógeno e infraestructura de reabastecimiento de combustible en la India" (PDF) . Archivado (PDF) desde el original el 12 de junio de 2017 . Consultado el 28 de septiembre de 2019 .
  165. ^ "Revisión independiente de mitad de período del proyecto de la ONUDI: establecimiento y funcionamiento del Centro internacional de tecnologías de energía de hidrógeno (ICHET), TF / INT / 03/002" (PDF) . ONUDI . 31 de agosto de 2009. Archivado desde el original (PDF) el 1 de junio de 2010 . Consultado el 20 de julio de 2010 .
  166. ^ "Estadísticas mundiales de NGV" . Archivado desde el original el 6 de febrero de 2015 . Consultado el 29 de septiembre de 2019 .
  167. ^ "Micro CHP de pila de combustible" . Archivado desde el original el 6 de noviembre de 2019 . Consultado el 23 de octubre de 2019 .
  168. ^ "Micro Cogeneración de pila de combustible" . Archivado desde el original el 23 de octubre de 2019 . Consultado el 23 de octubre de 2019 .
  169. ^ Agosta, Vito (10 de julio de 2003). "La economía del amoníaco" . Archivado desde el original el 13 de mayo de 2008 . Consultado el 9 de mayo de 2008 .
  170. ^ "Energía renovable" . Centro de energía de Iowa. Archivado desde el original el 13 de mayo de 2008 . Consultado el 9 de mayo de 2008 .
  171. ^ UKCCC H2 2018 , p. 36: "La búsqueda a corto plazo de bombas de calor híbridas no conduciría necesariamente a una solución a largo plazo de bombas de calor híbridas con calderas de hidrógeno".
  172. ^ UKCCC H2 2018 , p. 79: El potencial de la biogasificación con CAC para ser desplegado a escala está limitado por la cantidad de bioenergía sostenible disponible. .... "
  173. ^ UKCCC H2 2018 , p. 33: la producción de biocombustibles, incluso con CAC, es solo uno de los mejores usos del recurso biológico sostenible finito si los combustibles fósiles que desplaza no pueden ser desplazados de otra manera (por ejemplo, el uso de biomasa para producir biocombustibles de aviación con CAC) ".

Fuentes

  • Hidrógeno en una economía baja en carbono (PDF) . Comité de Cambio Climático del Reino Unido. 2018.
  • El futuro del hidrógeno (PDF). Agencia Internacional de Energía. 2019.

enlaces externos

  • Asociación internacional para la economía del hidrógeno
  • Asociación Europea de Hidrógeno
  • Proyectos de energía de hidrógeno en Australia
Obtenido de " https://en.wikipedia.org/w/index.php?title=Hydrogen_economy&oldid=1036044439 "