De Wikipedia, la enciclopedia libre
  (Redirigido desde motores a reacción )
Saltar a navegación Saltar a búsqueda

Águilas de ataque F-15E de la Fuerza Aérea de EE. UU.
Motor a reacción durante el despegue que muestra un escape caliente visible ( Germanwings Airbus A319 )

Un motor a reacción es un tipo de motor de reacción que descarga un chorro de movimiento rápido que genera empuje por propulsión a chorro . Si bien esta definición amplia puede incluir propulsión de cohete , chorro de agua y propulsión híbrida, el término motor a reacción se refiere típicamente a un motor a reacción de combustión interna que respira aire , como un turborreactor , turbofán , estatorreactor o chorro de pulso . [1] En general, los motores a reacción son motores de combustión interna .

Los motores a reacción que respiran aire típicamente cuentan con un compresor de aire giratorio accionado por una turbina , y la energía sobrante proporciona empuje a través de la boquilla de propulsión ; este proceso se conoce como ciclo termodinámico de Brayton . Los aviones a reacción utilizan estos motores para viajes de larga distancia. Los primeros aviones a reacción usaban motores turborreactores que eran relativamente ineficientes para el vuelo subsónico. La mayoría de los aviones a reacción subsónicos modernos utilizan motores turbofan de alto bypass más complejos . Proporcionan una mayor velocidad y una mayor eficiencia de combustible que los motores aeronáuticos de pistón y hélice en distancias largas. Algunos motores que respiran aire hechos para aplicaciones de alta velocidad (ramjets y scramjets) utilizan el efecto de ariete de la velocidad del vehículo en lugar de un compresor mecánico.

El empuje de un motor de avión típico pasó de 5,000 lbf (22,000 N) ( turborreactor de Havilland Ghost ) en la década de 1950 a 115,000 lbf (510,000 N) ( General Electric GE90 turbofan) en la década de 1990, y su confiabilidad pasó de 40 en vuelo. paradas por 100.000 horas de vuelo del motor a menos de 1 por 100.000 a finales de la década de 1990. Esto, combinado con un consumo de combustible muy reducido, permitió vuelos transatlánticos de rutina en aviones bimotores para el cambio de siglo, donde anteriormente un viaje similar habría requerido múltiples paradas de combustible. [2]

Historia [ editar ]

El principio del motor a reacción no es nuevo; sin embargo, los avances técnicos necesarios para que la idea funcionara no se materializaron hasta el siglo XX. Una demostración rudimentario de las fechas de potencia de chorro de nuevo a la aeolipile , un dispositivo descrito por Herón de Alejandría en el siglo primero Egipto romano . Este dispositivo dirigía la energía del vapor a través de dos boquillas para hacer que una esfera girara rápidamente sobre su eje. Fue visto como una curiosidad. Mientras tanto, las aplicaciones prácticas de la turbina se pueden ver en la rueda hidráulica y el molino de viento .

Las primeras aplicaciones prácticas de la propulsión a chorro aparecieron con la invención del cohete propulsado por pólvora por los chinos en el siglo XIII. Inicialmente era un tipo de fuegos artificiales y gradualmente progresó para propulsar un armamento formidable . Los principios utilizados por los chinos para enviar sus cohetes y fuegos artificiales eran similares a los de un motor a reacción. [3]

En 1551, Taqi ad-Din Muhammad ibn Ma'ruf en el Egipto otomano inventó un gato de vapor , impulsado por una turbina de vapor , que describe un método para hacer girar un asador por medio de un chorro de vapor que juega en paletas giratorias alrededor de la periferia de una rueda. . [4] Fue el primer dispositivo práctico de chorro de vapor. Un dispositivo similar fue descrito más tarde por John Wilkins en 1648. [5]

El primer informe de un intento de vuelo en jet también se remonta al Imperio Otomano . En 1633, el soldado otomano Lagâri Hasan Çelebi supuestamente utilizó un cohete en forma de cono. [3]

Los primeros intentos de respirar aire en los motores a reacción fueron diseños híbridos en los que una fuente de energía externa primero comprimía aire, que luego se mezclaba con combustible y se quemaba para propulsar el jet. El Caproni Campini N.1 y el motor japonés Tsu-11 destinado a impulsar aviones kamikaze Ohka hacia el final de la Segunda Guerra Mundial no tuvieron éxito.

Albert Fonó 's estatorreactor -cannonball desde 1915

Incluso antes del comienzo de la Segunda Guerra Mundial, los ingenieros comenzaban a darse cuenta de que los motores que impulsaban las hélices se acercaban a los límites debido a problemas relacionados con la eficiencia de las hélices, [6] que disminuían a medida que las puntas de las palas se acercaban a la velocidad del sonido . Si el rendimiento de la aeronave aumentaba más allá de esa barrera, era necesario un mecanismo de propulsión diferente. Esta fue la motivación detrás del desarrollo del motor de turbina de gas, la forma más común de motor a reacción.

La clave de un motor a reacción práctico era la turbina de gas , que extraía energía del propio motor para impulsar el compresor . La turbina de gas no era una idea nueva: la patente de una turbina estacionaria se otorgó a John Barber en Inglaterra en 1791. La primera turbina de gas que funcionó con éxito de manera autónoma fue construida en 1903 por el ingeniero noruego Ægidius Elling . [7] Dichos motores no llegaron a fabricarse por cuestiones de seguridad, fiabilidad, peso y, especialmente, funcionamiento sostenido.

La primera patente para utilizar una turbina de gas para propulsar un avión fue presentada en 1921 por Maxime Guillaume . [8] [9] Su motor era un turborreactor de flujo axial, pero nunca se construyó, ya que habría requerido avances considerables sobre el estado de la técnica en compresores. Alan Arnold Griffith publicó Una teoría aerodinámica del diseño de turbinas en 1926 que condujo al trabajo experimental en la RAE .

El motor Whittle W.2 / 700 voló en el Gloster E.28 / 39 , el primer avión británico en volar con un motor turborreactor, y el Gloster Meteor

En 1928, el cadete de la RAF College Cranwell, Frank Whittle, presentó formalmente sus ideas para un turborreactor a sus superiores. [10] En octubre de 1929, desarrolló aún más sus ideas. [11] El 16 de enero de 1930, en Inglaterra, Whittle presentó su primera patente (concedida en 1932). [12] La patente mostraba un compresor axial de dos etapas que alimentaba un compresor centrífugo de un solo lado . Los prácticos compresores axiales fueron posibles gracias a las ideas de AAGriffithen un artículo fundamental en 1926 ("Una teoría aerodinámica del diseño de turbinas"). Más tarde, Whittle se concentraría únicamente en el compresor centrífugo más simple. Whittle no pudo interesar al gobierno en su invento y el desarrollo continuó a un ritmo lento.

Heinkel He 178 , el primer avión del mundo que vuela exclusivamente con turborreactor

En 1935, Hans von Ohain comenzó a trabajar en un diseño similar en Alemania, tanto el compresor como la turbina eran radiales, en lados opuestos del mismo disco, inicialmente sin darse cuenta del trabajo de Whittle. [13] El primer dispositivo de Von Ohain era estrictamente experimental y solo podía funcionar con energía externa, pero pudo demostrar el concepto básico. A continuación, Ohain conoció a Ernst Heinkel , uno de los industriales aeronáuticos más grandes de la época, quien vio de inmediato la promesa del diseño. Heinkel había comprado recientemente la compañía de motores Hirth, y Ohain y su maestro maquinista Max Hahn se establecieron allí como una nueva división de la compañía Hirth. Tuvieron su primer HeS 1motor centrífugo en funcionamiento en septiembre de 1937. A diferencia del diseño de Whittle, Ohain usaba hidrógeno como combustible, suministrado bajo presión externa. Sus diseños posteriores culminaron en la gasolina -fuelled HeS 3 de 5 kN (1,100 lbf), que estaba equipado con sencillo de Heinkel y compacto Él 178 fuselaje y volado por Erich Warsitz en la madrugada del 27 de agosto de 1939, de Rostock -Marienehe aeródromo , un tiempo impresionantemente corto para el desarrollo. El He 178 fue el primer avión a reacción del mundo. [14]Heinkel solicitó una patente estadounidense que cubría la planta de energía de aviones por Hans Joachim Pabst von Ohain el 31 de mayo de 1939; número de patente US2256198, con M Hahn mencionado como inventor.

Un corte del motor Junkers Jumo 004

Austrian Anselm Franz de Junkers división de motores '( Junkers Motoren o 'Jumo') introdujeron el compresor de flujo axial en su motor a reacción. A Jumo se le asignó el siguiente número de motor en la secuencia de numeración RLM 109-0xx para las centrales eléctricas de aviones de turbina de gas, "004", y el resultado fue el motor Jumo 004 . Después de que se resolvieron muchas dificultades técnicas menores, la producción en masa de este motor comenzó en 1944 como motor del primer avión de combate a reacción del mundo , el Messerschmitt Me 262 (y más tarde el primer avión de bombardero a reacción del mundo , el Arado Ar 234). Varias razones conspiraron para retrasar la disponibilidad del motor, lo que hizo que el caza llegara demasiado tarde para mejorar la posición de Alemania en la Segunda Guerra Mundial , sin embargo, este fue el primer motor a reacción que se utilizó en servicio.

Gloster Meteor F.3s. El Gloster Meteor fue el primer caza a reacción británico y el único avión a reacción de los Aliados en realizar operaciones de combate durante la Segunda Guerra Mundial.

Mientras tanto, en Gran Bretaña, el Gloster E28 / 39 realizó su primer vuelo el 15 de mayo de 1941 y el Gloster Meteor finalmente entró en servicio con la RAF en julio de 1944. Estos fueron propulsados ​​por motores turborreactores de Power Jets Ltd., establecidos por Frank Whittle. Los dos primeros turborreactores operativos, el Messerschmitt Me 262 y luego el Gloster Meteor entraron en servicio con tres meses de diferencia en 1944.

Después del final de la guerra, los aviones a reacción alemanes y los motores a reacción fueron ampliamente estudiados por los aliados victoriosos y contribuyeron al trabajo en los primeros aviones de combate soviéticos y estadounidenses. El legado del motor de flujo axial se ve en el hecho de que prácticamente todos los motores a reacción de los aviones de ala fija se han inspirado en este diseño.

En la década de 1950, el motor a reacción era casi universal en los aviones de combate, con la excepción de los tipos de carga, enlace y otros tipos especiales. En este punto, algunos de los diseños británicos ya estaban autorizados para uso civil y habían aparecido en los primeros modelos como el de Havilland Comet y el Avro Canada Jetliner . En la década de 1960, todos los grandes aviones civiles también tenían propulsión a reacción, lo que dejaba al motor de pistón en funciones de nicho de bajo costo, como los vuelos de carga .

La eficiencia de los motores turborreactores era todavía bastante peor que la de los motores de pistón, pero en la década de 1970, con el advenimiento de los motores a reacción turbofan de alto bypass (una innovación no prevista por los primeros comentaristas como Edgar Buckingham , a altas velocidades y grandes altitudes que parecían absurdo para ellos), la eficiencia de combustible era aproximadamente la misma que la de los mejores motores de pistón y hélice. [15]

Usos [ editar ]

Un motor a reacción turbofan JT9D instalado en un avión Boeing 747 .

Los motores a reacción impulsan aviones a reacción , misiles de crucero y vehículos aéreos no tripulados . En forma de motores de cohetes , alimentan fuegos artificiales , cohetes modelo , vuelos espaciales y misiles militares .

Los motores a reacción han propulsado coches de alta velocidad, especialmente los de carreras , con el récord de todos los tiempos en manos de un coche cohete . Un automóvil con turboventilador, ThrustSSC , actualmente tiene el récord de velocidad en tierra .

Los diseños de motores a reacción se modifican con frecuencia para aplicaciones no aeronáuticas, como turbinas de gas industriales o centrales eléctricas marinas . Estos se utilizan en la generación de energía eléctrica, para alimentar bombas de agua, gas natural o petróleo, y proporcionar propulsión para barcos y locomotoras. Las turbinas de gas industriales pueden generar hasta 50.000 caballos de fuerza en el eje. Muchos de estos motores se derivan de turborreactores militares más antiguos, como los modelos Pratt & Whitney J57 y J75. También hay un derivado del turbofan de derivación baja P&W JT8D que genera hasta 35.000 caballos de fuerza (HP).

Los motores a reacción a veces también se desarrollan o comparten ciertos componentes, como núcleos de motores, con motores de turboeje y turbohélice , que son formas de motores de turbina de gas que se utilizan normalmente para propulsar helicópteros y algunos aviones propulsados ​​por hélice.

Tipos de motor a reacción [ editar ]

Hay una gran cantidad de tipos diferentes de motores a reacción, todos los cuales logran un empuje hacia adelante desde el principio de propulsión a reacción .

Respiración de aire [ editar ]

Comúnmente, los aviones son propulsados ​​por motores a reacción que respiran aire. La mayoría de los motores a reacción que respiran aire que se utilizan son motores a reacción turbofan , que proporcionan una buena eficiencia a velocidades justo por debajo de la velocidad del sonido.

Accionado por turbina [ editar ]

Las turbinas de gas son motores rotativos que extraen energía de un flujo de gas de combustión. Tienen un compresor aguas arriba acoplado a una turbina aguas abajo con una cámara de combustión en el medio. En los motores de aviones, esos tres componentes centrales se denominan a menudo "generador de gas". [16] Hay muchas variaciones diferentes de turbinas de gas, pero todas utilizan algún tipo de sistema generador de gas.

Turborreactor [ editar ]
Motor turborreactor

Un turborreactor es un motor de turbina de gas que funciona comprimiendo aire con una entrada y un compresor ( axial , centrífugo o ambos), mezclando combustible con el aire comprimido, quemando la mezcla en la cámara de combustión y luego pasando la corriente caliente de alta presión. aire a través de una turbina y una boquilla . El compresor funciona con la turbina, que extrae energía del gas en expansión que lo atraviesa. El motor convierte la energía interna del combustible en energía cinética en el escape, produciendo empuje. Todo el aire ingerido por la entrada pasa a través del compresor, la cámara de combustión y la turbina, a diferencia del motor turboventilador que se describe a continuación.[17]

Turbofan [ editar ]
Diagrama esquemático que ilustra el funcionamiento de un motor turbofan de derivación baja.

Los turboventiladores se diferencian de los turborreactores en que tienen un ventilador adicional en la parte delantera del motor, que acelera el aire en un conducto sin pasar por el motor de turbina de gas central. Los turboventiladores son el tipo de motor dominante para los aviones de pasajeros de mediano y largo alcance .

Los turboventiladores suelen ser más eficientes que los turborreactores a velocidades subsónicas, pero a altas velocidades su gran área frontal genera más resistencia . [18] Por lo tanto, en vuelos supersónicos y en aeronaves militares y de otro tipo donde otras consideraciones tienen una prioridad más alta que la eficiencia del combustible, los ventiladores tienden a ser más pequeños o ausentes.

Debido a estas distinciones, los diseños de motores turbofan a menudo se clasifican como de derivación baja o derivación alta , según la cantidad de aire que pasa por alto el núcleo del motor. Los turboventiladores de derivación baja tienen una relación de derivación de alrededor de 2: 1 o menos.

Compresión de RAM [ editar ]

Los motores a reacción de compresión Ram son motores que respiran aire similares a los motores de turbina de gas y ambos siguen el ciclo de Brayton . Sin embargo, los motores propulsados ​​por turbinas de gas y ariete difieren en cómo comprimen el flujo de aire entrante. Mientras que los motores de turbina de gas utilizan compresores axiales o centrífugos para comprimir el aire entrante, los motores de ariete dependen únicamente del aire comprimido a través de la entrada o el difusor. [19] Por lo tanto, un motor de ariete requiere una velocidad aerodinámica de avance inicial sustancial antes de que pueda funcionar. Los motores Ram propulsados ​​se consideran el tipo más simple de motor a reacción con respiración de aire porque no pueden contener partes móviles. [20]

Los Ramjets son motores a reacción impulsados ​​por ariete. Son mecánicamente simples y funcionan de manera menos eficiente que los turborreactores, excepto a velocidades muy altas.

Los Scramjets se diferencian principalmente en el hecho de que el aire no se ralentiza a velocidades subsónicas. Más bien, utilizan combustión supersónica. Son eficientes a una velocidad aún mayor. Muy pocos se han construido o volado.

Combustión no continua [ editar ]

Otros tipos de propulsión a chorro [ editar ]

Cohete [ editar ]

Propulsión de motor de cohete

El motor de cohete utiliza los mismos principios físicos básicos de empuje que una forma de motor de reacción , [21] pero se diferencia del motor a reacción en que no requiere aire atmosférico para proporcionar oxígeno; el cohete transporta todos los componentes de la masa de reacción. Sin embargo, algunas definiciones lo tratan como una forma de propulsión a chorro . [22]

Debido a que los cohetes no respiran aire, esto les permite operar a altitudes arbitrarias y en el espacio. [23]

Este tipo de motor se utiliza para el lanzamiento de satélites, exploración espacial y acceso tripulado, y se permitió el aterrizaje en la luna en 1969.

Los motores de cohete se utilizan para vuelos a gran altitud, o en cualquier lugar donde se necesiten aceleraciones muy altas, ya que los motores de cohete tienen una relación de empuje / peso muy alta .

Sin embargo, la alta velocidad de escape y el propulsor más pesado y rico en oxidantes dan como resultado un uso de propulsor mucho mayor que los turboventiladores. Aun así, a velocidades extremadamente altas se vuelven energéticamente eficientes.

Una ecuación aproximada para el empuje neto de un motor cohete es:

Donde es el empuje neto, es el impulso específico , es la gravedad estándar , es el flujo de propulsor en kg / s, es el área de la sección transversal a la salida de la boquilla de escape y es la presión atmosférica.

Híbrido [ editar ]

Los motores de ciclo combinado utilizan simultáneamente dos o más principios diferentes de propulsión a chorro.

Chorro de agua [ editar ]

Un chorro de agua, o bomba de chorro, es un sistema de propulsión marina que utiliza un chorro de agua. La disposición mecánica puede ser una hélice con conductos con boquilla o un compresor centrífugo y boquilla. El surtidor de la bomba debe ser impulsado por un motor separado, como una turbina de gas o diésel .

Esquema de un chorro de bomba.

Principios físicos generales [ editar ]

Todos los motores a reacción son motores de reacción que generan empuje emitiendo un chorro de fluido hacia atrás a una velocidad relativamente alta. Las fuerzas en el interior del motor necesarias para crear este jet dan un fuerte empuje en el motor que empuja la nave hacia adelante.

Los motores a reacción hacen su chorro a partir del propulsor almacenado en tanques que están conectados al motor (como en un 'cohete'), así como en motores de conductos (los que se usan comúnmente en aviones) ingiriendo un fluido externo (muy típicamente aire) y expulsándolo. a mayor velocidad.

Boquilla propulsora [ editar ]

La boquilla propulsora es el componente clave de todos los motores a reacción, ya que crea el chorro de escape . Las boquillas propulsoras convierten la energía interna y de presión en energía cinética de alta velocidad. [25] La presión y la temperatura totales no cambian a través de la boquilla, pero sus valores estáticos disminuyen a medida que el gas se acelera.

La velocidad del aire que ingresa a la boquilla es baja, alrededor de Mach 0.4, un requisito previo para minimizar las pérdidas de presión en el conducto que conduce a la boquilla. La temperatura que ingresa a la boquilla puede ser tan baja como la ambiente al nivel del mar para una boquilla de ventilador en el aire frío a altitudes de crucero. Puede ser tan alta como la temperatura de los gases de escape de 1000K para un motor de postcombustión supersónico o 2200K con el postquemador encendido. [26] La presión que ingresa a la boquilla puede variar desde 1,5 veces la presión fuera de la boquilla, para un ventilador de una sola etapa, hasta 30 veces para el avión tripulado más rápido a mach 3+. [27]

Las boquillas convergentes solo pueden acelerar el gas hasta las condiciones sónicas locales (Mach 1). Para alcanzar altas velocidades de vuelo, se requieren velocidades de escape aún mayores, por lo que a menudo se usa una boquilla convergente-divergente en aviones de alta velocidad. [28]

El empuje de la boquilla es mayor si la presión estática del gas alcanza el valor ambiental cuando sale de la boquilla. Esto solo ocurre si el área de salida de la boquilla tiene el valor correcto para la relación de presión de la boquilla (npr). Dado que el npr cambia con el ajuste de empuje del motor y la velocidad de vuelo, esto rara vez es el caso. También a velocidades supersónicas, el área divergente es menor que la requerida para dar una expansión interna completa a la presión ambiental como compensación con el arrastre externo del cuerpo. Whitford [29] da el F-16 como ejemplo. Otros ejemplos poco ampliados fueron el XB-70 y el SR-71.

El tamaño de la boquilla, junto con el área de las boquillas de la turbina, determina la presión de funcionamiento del compresor. [30]

Empuje [ editar ]

Eficiencia energética relacionada con los motores a reacción de los aviones [ editar ]

Esta descripción general destaca dónde se producen las pérdidas de energía en instalaciones de motores o centrales eléctricas de aviones a reacción completos.

Un motor a reacción en reposo, como en un banco de pruebas, aspira combustible y genera empuje. Qué tan bien lo hace se juzga por la cantidad de combustible que usa y la fuerza que se requiere para contenerlo. Ésta es una medida de su eficiencia. Si algo se deteriora dentro del motor (conocido como deterioro del rendimiento [31] ) será menos eficiente y esto se mostrará cuando el combustible produzca menos empuje. Si se realiza un cambio en una parte interna que permite que el aire o los gases de combustión fluyan con mayor suavidad, el motor será más eficiente y utilizará menos combustible. Se utiliza una definición estándar para evaluar cómo diferentes cosas cambian la eficiencia del motor y también para permitir que se realicen comparaciones entre diferentes motores. Esta definición se denomina consumo específico de combustible., o cuánto combustible se necesita para producir una unidad de empuje. Por ejemplo, para un diseño de motor en particular, se sabrá que si se suavizan algunos golpes en un conducto de derivación, el aire fluirá con mayor suavidad, lo que dará una reducción de la pérdida de presión del x% y se necesitará un y% menos de combustible para obtener la toma. fuera de empuje, por ejemplo. Esta comprensión pertenece a la disciplina de ingeniería Rendimiento del motor a reacción . Más adelante se menciona cómo la eficiencia se ve afectada por la velocidad de avance y el suministro de energía a los sistemas de las aeronaves.

La eficiencia del motor está controlada principalmente por las condiciones de funcionamiento dentro del motor, que son la presión producida por el compresor y la temperatura de los gases de combustión en el primer conjunto de álabes de turbina giratorios. La presión es la presión de aire más alta del motor. La temperatura del rotor de la turbina no es la más alta en el motor, pero es la más alta a la que tiene lugar la transferencia de energía (se producen temperaturas más altas en la cámara de combustión). La presión y temperatura anteriores se muestran en un diagrama de ciclo termodinámico .

La eficiencia se modifica aún más por la fluidez con la que fluyen el aire y los gases de combustión a través del motor, qué tan bien está alineado el flujo (conocido como ángulo de incidencia) con los pasajes móviles y estacionarios de los compresores y turbinas. [32] Los ángulos no óptimos, así como las formas de paso y de las palas no óptimas pueden provocar el engrosamiento y la separación de las capas límite y la formación de ondas de choque . Es importante reducir la velocidad del flujo (una velocidad más baja significa menos pérdidas de presión o caída de presión) cuando viaja a través de conductos que conectan las diferentes partes. La contribución de los componentes individuales a convertir el combustible en empuje se cuantifica mediante medidas como la eficiencia de los compresores, las turbinas y la cámara de combustión y las pérdidas de presión de los conductos. Estos se muestran como líneas en un diagrama de ciclo termodinámico .

La eficiencia del motor, o eficiencia térmica, [33] conocida como . depende de la ciclo termodinámico parámetros, la presión máxima y la temperatura, y en las eficiencias de componentes, , y y las pérdidas de presión del conducto.

El motor necesita aire comprimido solo para funcionar correctamente. Este aire proviene de su propio compresor y se llama aire secundario. No contribuye a generar empuje, por lo que hace que el motor sea menos eficiente. Se utiliza para preservar la integridad mecánica del motor, para detener el sobrecalentamiento de las piezas y para evitar que el aceite se escape de los cojinetes, por ejemplo. Solo una parte de este aire extraído de los compresores regresa al flujo de la turbina para contribuir a la producción de empuje. Cualquier reducción en la cantidad necesaria mejora la eficiencia del motor. Nuevamente, se sabrá para un diseño de motor particular que un requisito reducido de flujo de enfriamiento de x% reducirá el consumo específico de combustible en y%. En otras palabras, se requerirá menos combustible para dar empuje de despegue, por ejemplo. El motor es más eficiente.

Todas las consideraciones anteriores son básicas para que el motor funcione por sí solo y, al mismo tiempo, no haga nada útil, es decir, no mueve una aeronave ni suministra energía para los sistemas eléctricos, hidráulicos y de aire de la aeronave. En la aeronave, el motor cede parte de su potencial de producción de empuje, o combustible, para impulsar estos sistemas. Estos requisitos, que provocan pérdidas en la instalación, [34] reducen su eficiencia. Está usando algo de combustible que no contribuye al empuje del motor.

Finalmente, cuando la aeronave está volando, el propio chorro propulsor contiene energía cinética desperdiciada después de haber abandonado el motor. Esto se cuantifica mediante el término eficiencia propulsora, o Froude, y puede reducirse rediseñando el motor para darle un flujo de derivación y una velocidad más baja para el chorro de propulsión, por ejemplo, como un motor turbohélice o turbofan. Al mismo tiempo, la velocidad de avance aumenta al aumentar la relación de presión general .

La eficiencia general del motor a la velocidad de vuelo se define como . [35]

La velocidad de vuelo depende de qué tan bien la admisión comprima el aire antes de entregarlo a los compresores del motor. La relación de compresión de admisión, que puede ser tan alta como 32: 1 a Mach 3, se suma a la del compresor del motor para dar la relación de presión general y para el ciclo termodinámico . Qué tan bien lo hace se define por su recuperación de presión o medida de las pérdidas en la toma. El vuelo tripulado de Mach 3 ha proporcionado una ilustración interesante de cómo estas pérdidas pueden aumentar drásticamente en un instante. El XB-70 Valkyrie de Norteamérica y el Lockheed SR-71 Blackbird a Mach 3 tuvieron recuperaciones de presión de aproximadamente 0,8, [36] [37]debido a pérdidas relativamente bajas durante el proceso de compresión, es decir, a través de sistemas de choques múltiples. Durante un 'arranque', el sistema de choque eficiente sería reemplazado por un choque único muy ineficiente más allá de la entrada y una recuperación de la presión de admisión de aproximadamente 0,3 y una relación de presión correspondientemente baja.

La boquilla propulsora a velocidades superiores a Mach 2 generalmente tiene pérdidas de empuje internas adicionales porque el área de salida no es lo suficientemente grande como una compensación con el arrastre externo de la carrocería. [38]

Aunque un motor de derivación mejora la eficiencia de propulsión, incurre en pérdidas propias dentro del propio motor. Se debe agregar maquinaria para transferir energía desde el generador de gas a un flujo de aire de derivación. La baja pérdida de la boquilla propulsora de un turborreactor se suma a las pérdidas adicionales debido a las ineficiencias en la turbina y el ventilador agregados. [39] Estos pueden estar incluidos en una transmisión o transferencia de eficiencia . Sin embargo, estas pérdidas están más que compensadas [40] por la mejora en la eficiencia de propulsión. [41] También hay pérdidas de presión adicionales en el conducto de derivación y una boquilla de propulsión adicional.

Con la llegada de los turboventiladores con su maquinaria deficitaria, Bennett ha separado lo que sucede dentro del motor, [42] por ejemplo, entre el generador de gas y la entrega de la maquinaria de transferencia .

Dependencia de la eficiencia de propulsión (η) de la relación velocidad del vehículo / velocidad de escape (v / v e ) para motores a reacción y cohetes que respiran aire.

La eficiencia energética ( ) de los motores a reacción instalados en vehículos tiene dos componentes principales:

  • Eficiencia propulsora ( ): cuánta energía del chorro termina en la carrocería del vehículo en lugar de ser transportada como energía cinética del chorro.
  • eficiencia del ciclo ( ): la eficiencia con la que el motor puede acelerar el chorro

Aunque la eficiencia energética general es:

para todos los motores a reacción, la eficiencia de propulsión es más alta a medida que la velocidad del chorro de escape se acerca a la velocidad del vehículo, ya que esto proporciona la energía cinética residual más pequeña. [43] Para un motor de respiración de aire, una velocidad de escape igual a la velocidad del vehículo, o igual a uno, da un empuje cero sin cambio de momento neto. [44] La fórmula para los motores que respiran aire que se mueven a una velocidad con una velocidad de escape y descuidan el flujo de combustible es: [45]

Y para un cohete: [46]

Además de la eficiencia propulsora, otro factor es la eficiencia del ciclo ; un motor a reacción es una forma de motor térmico. La eficiencia del motor térmico está determinada por la relación entre las temperaturas alcanzadas en el motor y las que se agotan en la boquilla. Esto ha mejorado constantemente con el tiempo a medida que se han introducido nuevos materiales para permitir temperaturas máximas de ciclo más altas. Por ejemplo, se han desarrollado materiales compuestos, que combinan metales con cerámica, para álabes de turbina HP, que funcionan a la temperatura máxima de ciclo. [47]La eficiencia también está limitada por la relación de presión total que se puede lograr. La eficiencia del ciclo es más alta en los motores de cohetes (~ 60 +%), ya que pueden alcanzar temperaturas de combustión extremadamente altas. La eficiencia del ciclo en turborreactores y similares se acerca al 30%, debido a que las temperaturas máximas del ciclo son mucho más bajas.

Eficiencia de combustión típica de una turbina de gas de avión en el rango operativo.
Límites típicos de estabilidad de combustión de una turbina de gas de avión.

La eficiencia de combustión de la mayoría de los motores de turbina de gas de las aeronaves en condiciones de despegue al nivel del mar es casi del 100%. Disminuye de forma no lineal al 98% en condiciones de crucero de altitud. La relación aire-combustible varía de 50: 1 a 130: 1. Para cualquier tipo de cámara de combustión, existe un límite rico y débil para la relación aire-combustible, más allá del cual se extingue la llama. El rango de la relación aire-combustible entre los límites ricos y débiles se reduce con un aumento de la velocidad del aire. Si el aumento del flujo de masa de aire reduce la relación de combustible por debajo de cierto valor, se produce la extinción de la llama. [48]

Impulso específico en función de la velocidad para diferentes tipos de chorro con combustible de queroseno (la I sp de hidrógeno sería aproximadamente el doble). Aunque la eficiencia se desploma con la velocidad, se cubren distancias mayores. La eficiencia por unidad de distancia (por km o milla) es aproximadamente independiente de la velocidad de los motores a reacción como grupo; sin embargo, los fuselajes se vuelven ineficaces a velocidades supersónicas.

Consumo de combustible o propulsor [ editar ]

Un concepto estrechamente relacionado (pero diferente) con la eficiencia energética es la tasa de consumo de masa propulsora. El consumo de propulsor en los motores a reacción se mide por el consumo específico de combustible , el impulso específico o la velocidad de escape efectiva . Todos miden lo mismo. El impulso específico y la velocidad de escape efectiva son estrictamente proporcionales, mientras que el consumo específico de combustible es inversamente proporcional a los demás.

Para los motores que respiran aire, como los turborreactores, la eficiencia energética y la eficiencia del propulsor (combustible) son prácticamente lo mismo, ya que el propulsor es un combustible y la fuente de energía. En cohetes, el propulsor también es el escape, y esto significa que un propulsor de alta energía proporciona una mejor eficiencia del propulsor, pero en algunos casos puede dar una menor eficiencia energética.

Se puede observar en la tabla (justo debajo) que los motores turbofan subsónicas tales como General Electric CF6 de turboventilador utilizan mucha menos combustible para generar empuje para un segundo que lo hizo el Concorde 's Rolls-Royce / Snecma Olympus 593 turborreactores. Sin embargo, dado que la energía es la fuerza multiplicada por la distancia y la distancia por segundo fue mayor para el Concorde, la potencia real generada por el motor para la misma cantidad de combustible fue mayor para el Concorde a Mach 2 que para el CF6. Por lo tanto, los motores del Concorde eran más eficientes en términos de energía por milla.

Relación empuje-peso [ editar ]

La relación empuje-peso de los motores a reacción con configuraciones similares varía con la escala, pero es principalmente una función de la tecnología de construcción del motor. Para un motor dado, cuanto más liviano es el motor, mejor es el empuje al peso, menos combustible se usa para compensar la resistencia debido a la elevación necesaria para soportar el peso del motor o para acelerar la masa del motor.

Como puede verse en la siguiente tabla, los motores de cohetes generalmente alcanzan relaciones de empuje a peso mucho más altas que los motores de conductos como los turborreactores y turbofan. Esto se debe principalmente a que los cohetes utilizan casi universalmente una masa de reacción líquida o sólida densa que proporciona un volumen mucho más pequeño y, por lo tanto, el sistema de presurización que suministra la boquilla es mucho más pequeño y liviano para el mismo rendimiento. Los motores de conductos tienen que lidiar con aire que es de dos a tres órdenes de magnitud menos denso y esto genera presiones en áreas mucho más grandes, lo que a su vez resulta en la necesidad de más materiales de ingeniería para mantener el motor unido y para el compresor de aire.

Comparación de tipos [ editar ]

Comparación de la eficiencia de propulsión para varias configuraciones de motores de turbina de gas

Los motores de hélice manejan flujos de masa de aire más grandes y les dan una aceleración menor que los motores a reacción. Dado que el aumento de la velocidad del aire es pequeño, a altas velocidades de vuelo, el empuje disponible para los aviones propulsados ​​por hélice es pequeño. Sin embargo, a bajas velocidades, estos motores se benefician de una eficiencia de propulsión relativamente alta .

Por otro lado, los turborreactores aceleran un flujo de masa mucho menor de aire de admisión y combustible quemado, pero luego lo rechazan a una velocidad muy alta. Cuando se usa una boquilla de Laval para acelerar el escape de un motor caliente, la velocidad de salida puede ser localmente supersónica . Los turborreactores son especialmente adecuados para aviones que viajan a velocidades muy altas.

Los turboventiladores tienen un escape mixto que consiste en el aire de derivación y el gas producto de combustión caliente del motor central. La cantidad de aire que pasa por alto el motor central en comparación con la cantidad que fluye hacia el motor determina lo que se denomina relación de derivación de un turboventilador (BPR).

Mientras que un motor turborreactor utiliza toda la potencia del motor para producir empuje en forma de un chorro de gas de escape caliente de alta velocidad, el aire frío de derivación de baja velocidad de un turbofan produce entre el 30% y el 70% del empuje total producido por un sistema turbofan. . [74]

El empuje neto ( F N ) generado por un turboventilador también se puede expandir como: [75]

dónde:

Los motores de cohete tienen una velocidad de escape extremadamente alta y, por lo tanto, son los más adecuados para altas velocidades ( hipersónicas ) y grandes altitudes. A cualquier aceleración dada, el empuje y la eficiencia de un motor de cohete mejoran ligeramente al aumentar la altitud (porque la contrapresión disminuye, lo que aumenta el empuje neto en el plano de salida de la boquilla), mientras que con un turborreactor (o turbofan) la densidad descendente del aire que entran en la entrada (y los gases calientes que salen de la boquilla) hacen que el empuje neto disminuya al aumentar la altitud. Los motores de cohete son más eficientes incluso que los scramjets por encima de aproximadamente Mach 15. [76]

Altitud y velocidad [ editar ]

Con la excepción de los scramjets , los motores a reacción, privados de sus sistemas de entrada, solo pueden aceptar aire a aproximadamente la mitad de la velocidad del sonido. El trabajo del sistema de entrada para aviones transónicos y supersónicos es reducir la velocidad del aire y realizar parte de la compresión.

El límite de la altitud máxima para los motores lo establece la inflamabilidad: en altitudes muy elevadas, el aire se vuelve demasiado delgado para quemarse o, después de la compresión, se calienta demasiado. Para los motores turborreactores parecen ser posibles altitudes de unos 40 km, mientras que para los motores estatorreactores pueden alcanzarse 55 km. En teoría, los Scramjets pueden llegar a alcanzar los 75 km. [77] Los motores de cohetes, por supuesto, no tienen límite superior.

En altitudes más modestas, volar más rápido comprime el aire en la parte delantera del motor y esto calienta mucho el aire. Por lo general, se piensa que el límite superior es de aproximadamente Mach 5-8, ya que arriba de aproximadamente Mach 5,5, el nitrógeno atmosférico tiende a reaccionar debido a las altas temperaturas en la entrada y esto consume una cantidad significativa de energía. La excepción a esto son los scramjets que pueden lograr aproximadamente Mach 15 o más, [ cita requerida ] ya que evitan ralentizar el aire, y los cohetes nuevamente no tienen límite de velocidad particular.

Ruido [ editar ]

El ruido emitido por un motor a reacción tiene muchas fuentes. Estos incluyen, en el caso de los motores de turbina de gas, el ventilador, el compresor, la cámara de combustión, la turbina y los chorros de propulsión. [78]

El chorro propulsor produce ruido de chorro que es causado por la acción de mezcla violenta del chorro de alta velocidad con el aire circundante. En el caso subsónico el ruido es producido por remolinos y en el caso supersónico por ondas de Mach . [79] La potencia sonora irradiada por un chorro varía con la velocidad del chorro elevada a la octava potencia para velocidades de hasta 2000 pies / segundo y varía con la velocidad al cubo por encima de los 2000 pies / segundo. [80]Por lo tanto, los chorros de escape de menor velocidad emitidos por motores como los turboventiladores de alto bypass son los más silenciosos, mientras que los chorros más rápidos, como los cohetes, los turborreactores y los ramjets, son los más ruidosos. Para los aviones comerciales a reacción, el ruido de los reactores se ha reducido desde el turborreactor a través de los motores de derivación hasta los turbofán como resultado de una reducción progresiva en las velocidades de propulsión del jet. Por ejemplo, el JT8D, un motor de derivación, tiene una velocidad de chorro de 1450 pies / seg, mientras que el JT9D, un turboventilador, tiene velocidades de chorro de 885 pies / seg (frío) y 1190 pies / seg (caliente). [81]

El advenimiento del turboventilador reemplazó el distintivo ruido del jet con otro sonido conocido como ruido de "sierra circular". El origen son las ondas de choque que se originan en las aspas del ventilador supersónico en el empuje de despegue. [82]

Enfriamiento [ editar ]

La transferencia de calor adecuada lejos de las partes de trabajo del motor a reacción es fundamental para mantener la resistencia de los materiales del motor y garantizar una larga vida útil del motor.

Después de 2016, la investigación continúa en el desarrollo de técnicas de enfriamiento por transpiración para componentes de motores a reacción. [83]

Operación [ editar ]

Pantalla del monitor electrónico centralizado de aeronaves (ECAM) Airbus A340-300

En un motor a reacción, cada sección giratoria principal generalmente tiene un medidor separado dedicado a monitorear su velocidad de rotación. Dependiendo de la marca y el modelo, un motor a reacción puede tener un indicador N 1 que monitorea la sección del compresor de baja presión y / o la velocidad del ventilador en los motores turbofan. La sección del generador de gas puede ser monitoreada por un medidor de N 2 , mientras que los motores de triple carrete también pueden tener un medidor de N 3 . Cada sección del motor gira a muchos miles de RPM. Por lo tanto, sus medidores están calibrados en porcentaje de una velocidad nominal en lugar de las RPM reales, para facilitar la visualización e interpretación. [84]

Ver también [ editar ]

  • Turborreactor de aire
  • Equilibradora
  • Componentes de motores a reacción
  • Turbina de gas
  • Rendimiento del motor a reacción
  • Barco de motor
  • Pulsejet
  • Motor de reacción
  • Boquilla de motor de cohete
  • Motor de turbina de cohete
  • Propulsión de naves espaciales
  • Inversión de empuje
  • Turbofan
  • Turborreactor
  • Desarrollo de turborreactores en la RAE
  • Turbohélice
  • Turboeje
  • Motor de ciclo variable
  • Inyección de agua (motor)

Referencias [ editar ]

  1. ^ "Motor a reacción - seguridad de la aviación de SKYbrary" . www.skybrary.aero . Consultado el 17 de noviembre de 2019 .
  2. ^ "Notas informativas de operaciones de vuelo - técnicas complementarias: manejo de averías del motor" (PDF) . Aerobús. Archivado desde el original (PDF) el 22 de octubre de 2016.
  3. ↑ a b Hendrickson, Kenneth E. (2014). La enciclopedia de la revolución industrial en la historia mundial . Rowman y Littlefield. pag. 488. ISBN 9780810888883.
  4. ^ Taqi al-Din y la primera turbina de vapor, 1551 d. C. Archivado el 18de febrero de 2008en la Wayback Machine , página web, acceso en línea el 23 de octubre de 2009; esta página web hace referencia a Ahmad Y Hassan (1976), Taqi al-Din and Arabic Mechanical Engineering , págs. 34–5, Instituto de Historia de la Ciencia Árabe, Universidad de Alepo .
  5. ^ CME: el ingeniero mecánico colegiado . Institución de Ingenieros Mecánicos . 1978. p. 84.
  6. ^ eficiencia de la hélice Archivado el 25 de mayo de 2008 en la Wayback Machine.
  7. ^ Bakken, Lars E .; Jordal, Kristin; Syverud, Elisabet; Veer, Timot (14 de junio de 2004). "Centenario de la primera turbina de gas para dar potencia neta: un tributo a Ægidius Elling". Volumen 2: Turbo Expo 2004 . págs. 83–88. doi : 10.1115 / GT2004-53211 . ISBN 978-0-7918-4167-9.
  8. ^ "Espacenet - Documento original" . Worldwide.espacenet.com .
  9. ^ "¿Quién inventó realmente el motor a reacción?" . Revista BBC Science Focus . Consultado el 18 de octubre de 2019 .
  10. ^ "Persiguiendo el sol - Frank Whittle" . PBS . Consultado el 26 de marzo de 2010 .
  11. ^ "Historia - Frank Whittle (1907-1996)" . BBC . Consultado el 26 de marzo de 2010 .
  12. ^ "Espacenet - Documento original" . Worldwide.espacenet.com .
  13. ^ La historia del motor a reacción - Sir Frank Whittle - Hans Von Ohain Ohain dijo que no había leído la patente de Whittle y Whittle le creyó. ( Frank Whittle 1907-1996 ).
  14. ^ Warsitz, Lutz: El primer piloto a reacción: la historia del piloto de pruebas alemán Erich Warsitz (p. 125), Pen and Sword Books Ltd., Inglaterra, 2009
  15. ^ "cap. 10-3" . Hq.nasa.gov . Consultado el 26 de marzo de 2010 .
  16. ^ Mattingly, Jack D. (2006). Elementos de propulsión: turbinas de gas y cohetes . Serie de educación AIAA. Reston, VA: Instituto Americano de Aeronáutica y Astronáutica. pag. 6. ISBN 978-1-56347-779-9.
  17. ^ Mattingly, págs. 6-8
  18. ^ Mattingly, págs. 9-11
  19. ^ Mattingly, pág. 14
  20. ^ * Flack, Ronald D. (2005). Fundamentos de la propulsión a chorro con aplicaciones . Serie aeroespacial de Cambridge. Nueva York: Cambridge University Press. pag. 16. ISBN 978-0-521-81983-1.
  21. ^ Definición de motor de reacción , diccionario en línea de Collins: "un motor, como un motor a reacción o un cohete, que expulsa gas a alta velocidad y desarrolla su empuje a partir de la reacción resultante" (Reino Unido), o "un motor, como un jet o un cohete motor, que genera empuje por la reacción a una corriente expulsada de gases de escape calientes , iones, etc. " (EE. UU.) (Consultado el 28 de junio de 2018)
  22. ^ Propulsión a chorro , definición del diccionario en línea de Collins. (consultado el 1 de julio de 2018)
  23. ^ AC Kermode; Mechanics of Flight , octava edición, Pitman 1972, págs. 128–31.
  24. ^ "Ecuación de empuje del cohete" . Grc.nasa.gov. 2008-07-11 . Consultado el 26 de marzo de 2010 .
  25. ^ Propulsión a chorro para aplicaciones aeroespaciales Segunda edición 1964, Hesse y Mumford, Pitman Publishing Corporation, LCCN  64-18757 , p. 48
  26. ^ "Propulsión a chorro" Nicholas Cumpsty 1997, Cambridge University Press, ISBN 0-521-59674-2 , p. 197 
  27. ^ "Convenciones de AEHS 1" . www.enginehistory.org .
  28. ^ Gamble, Eric; Terrell, Dwain; DeFrancesco, Richard. 40a Conferencia y Exhibición Conjunta de Propulsión AIAA / ASME / SAE / ASEE . Instituto Americano de Aeronáutica y Astronáutica. doi : 10.2514 / 6.2004-3923 - a través del Instituto Americano de Aeronáutica y Astronáutica.
  29. ^ Diseño para combate aéreo "Ray Whitford Jane's Publishing Company Ltd. 1987, ISBN 0-7106-0426-2 , p. 203 
  30. ^ "Propulsión a chorro" Nicholas Cumpsty 1997, Cambridge University Press, ISBN 0-521-59674-2 , p. 141 
  31. ^ Deterioro del rendimiento de la turbina de gas, Meher-Homji, Chaker y Motiwala, Actas del 30º Simposio de turbomáquinas, ASME, págs. 139–75
  32. ^ "Jet Propulsion 'Nicholas Cumpsty, Cambridge University Press 2001, ISBN 0-521-59674-2 , Figura 9.1 muestra pérdidas con incidencia 
  33. ^ "Propulsión a chorro 'Nicholas Cumpsty, Cambridge University Press 2001, ISBN 0-521-59674-2 , p. 35 
  34. ^ Rendimiento de la turbina de gas 'Segunda edición, Walsh y Fletcher, Blackwell Science Ltd., ISBN 0-632-06434-X , p. 64 
  35. ^ "Jet Propulsion 'Nicholas Cumpsty, Cambridge University Press 2001, ISBN 0-521-59674-2 , p. 26 
  36. ^ "Copia archivada" (PDF) . Archivado desde el original (PDF) el 9 de mayo de 2016 . Consultado el 16 de mayo de 2016 . Mantenimiento de CS1: copia archivada como título ( enlace ) Figura 22 Recuperación de la presión de entrada
  37. ^ B-70 Aircraft Study Informe final Volumen IV, SD 72-SH-0003 Abril de 1972, LJTaube, División espacial North American Rockwell, págs. Iv – 11
  38. ^ "Diseño para combate aéreo" Ray Whitford, Jane's Publishing Company Limited 1987, ISBN 0-7106-0426-2 , p. 203 'Relación de área para una expansión óptima' 
  39. ^ Rendimiento de la turbina de gas 'Segunda edición, Walsh y Fletcher, Blackwell Science Ltd., ISBN 0-632-06535-4 , p. 305 
  40. ^ Desarrollo de motores aero para el futuro, Bennett, Proc Instn Mech Engrs Vol 197A, IMechE julio de 1983, Fig.5 Espectro general de pérdidas del motor
  41. ^ Segunda edición de la teoría de la turbina de gas, Cohen, Rogers y Saravanamuttoo, Longman Group Limited 1972, ISBN 0-582-44927-8 , p. 
  42. ^ Desarrollo de motores aero para el futuro, Bennett, Proc Instn Mech Engrs Vol 197A, IMechE julio de 1983, p. 150
  43. ^ Nota: En la mecánica newtoniana, la energía cinética depende del marco. La energía cinética es más fácil de calcular cuando la velocidad se mide en el centro del marco de masa del vehículo y (menos obviamente) su reacción masa  / aire (es decir, el marco estacionario antes de que comience el despegue).
  44. ^ "Propulsión a chorro para aplicaciones aeroespaciales 'Segunda edición, Hesse y Mumford, Piman Publishing Corporation 1964, LCCN  64-18757 , p. 39
  45. ^ "Propulsión a chorro" Nicholas Cumpsty ISBN 0-521-59674-2 p. 24 
  46. ^ George P. Sutton y Oscar Biblarz (2001). Elementos de propulsión de cohetes (7ª ed.). John Wiley e hijos. págs. 37–38. ISBN 978-0-471-32642-7.
  47. ^ S. Walston, A. Cetel, R. MacKay, K. O'Hara, D. Duhl y R. Dreshfield (2004). Desarrollo conjunto de una superaleación monocristalina de cuarta generación Archivado el 15 de octubre de 2006 en la Wayback Machine . NASA TM — 2004-213062. Diciembre de 2004. Consultado el 16 de junio de 2010.
  48. ^ Claire Soares, "Turbinas de gas: un manual de aplicaciones de aire, tierra y mar", p. 140.
  49. ^ "NK33" . Enciclopedia Astronautica.
  50. ^ "SSME" . Enciclopedia Astronautica.
  51. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Nathan Meier (21 de marzo de 2005). "Especificaciones militares de turborreactores / turbofán" .
  52. ^ a b https://www.airinternational.com/article/flanker
  53. ^ a b "Motor turbofan EJ200" (PDF) . Motores MTU Aero. Abril de 2016.
  54. ^ a b Ilan Kroo. "Datos sobre grandes motores turboventiladores" . Diseño de aeronaves: síntesis y análisis . Universidad Stanford.
  55. ^ a b c https://mediatum.ub.tum.de/doc/1283437/1283437.pdf
  56. ^ a b c d e f g h i j k https://ruomo.lib.uom.gr/bitstream/7000/534/1/Manuscript_DEA_Turbofan_Aero_Engines%20-%20OMEGA_2019_617_Accepted.pdf
  57. ^ a b c d e f g h http://www.jet-engine.net/civtfspec.html
  58. ^ https://engineering.purdue.edu/~propulsi/propulsion/jets/tfans/tfe731.html
  59. ^ a b c http://elodieroux.com/ExempleEngines.pdf
  60. ↑ a b Vladimir Karnozov (19 de agosto de 2019). "Aviadvigatel considera PD-14 de mayor empuje para reemplazar PS-90A" . AIN en línea .
  61. ^ Wade, Mark. "RD-0410" . Enciclopedia Astronautica . Consultado el 25 de septiembre de 2009 .
  62. ^ "« Konstruktorskoe Buro Khimavtomatiky »- Complejo de investigación científica / RD0410. Motor de cohete nuclear. Vehículos de lanzamiento avanzados" . KBKhA - Oficina de diseño de productos químicos automáticos . Consultado el 25 de septiembre de 2009 .
  63. ^ "Aeronave: Lockheed SR-71A Blackbird" . Archivado desde el original el 29 de julio de 2012 . Consultado el 16 de abril de 2010 .
  64. ^ "Fichas técnicas: Pratt & Whitney J58 Turbojet" . Museo Nacional de la Fuerza Aérea de los Estados Unidos. Archivado desde el original el 4 de abril de 2015 . Consultado el 15 de abril de 2010 .
  65. ^ "Rolls-Royce SNECMA Olympus - Jane's Transport News" . Archivado desde el original el 6 de agosto de 2010 . Consultado el 25 de septiembre de 2009 . Con postquemador, inversor y boquilla ... 3.175 kg ... Postquemador ... 169,2 kN
  66. ^ Adquisición de motor a reacción militar , RAND, 2002.
  67. ^ "« Konstruktorskoe Buro Khimavtomatiky »- Complejo de investigación científica / RD0750" . KBKhA - Oficina de diseño de productos químicos automáticos . Consultado el 25 de septiembre de 2009 .
  68. ^ Wade, Mark. "RD-0146" . Enciclopedia Astronautica . Consultado el 25 de septiembre de 2009 .
  69. ^ SSME
  70. ^ "RD-180" . Consultado el 25 de septiembre de 2009 .
  71. ^ Enciclopedia Astronautica: F-1
  72. ^ Entrada de Astronautix NK-33
  73. ^ Mueller, Thomas (8 de junio de 2015). "¿Es creíble la relación empuje-peso del Merlin 1D de SpaceX de más de 150?" . Consultado el 9 de julio de 2015 . El Merlin 1D pesa 1030 libras, incluidos los actuadores de dirección hidráulica (TVC). Produce 162,500 libras de empuje en vacío. eso es casi 158 empuje / peso. La nueva variante de empuje completo pesa lo mismo y genera alrededor de 185,500 libras de fuerza en vacío.
  74. ^ Administración de aviación federal (FAA) (2004). FAA-H-8083-3B Manual del manual de vuelo en avión (PDF) . Administración Federal de Aviación. Archivado desde el original (PDF) el 21 de septiembre de 2012.
  75. ^ "Turbofan Thrust" . Archivado desde el original el 4 de diciembre de 2010 . Consultado el 24 de julio de 2012 .
  76. ^ "Microsoft PowerPoint - KTHhigspeed08.ppt" (PDF) . Archivado desde el original (PDF) el 29 de septiembre de 2009 . Consultado el 26 de marzo de 2010 .
  77. ^ "Scramjet" . Orbitalvector.com. 2002-07-30. Archivado desde el original el 12 de febrero de 2016 . Consultado el 26 de marzo de 2010 .
  78. ^ "Suavemente, suavemente hacia el jet silencioso" Michael JT Smith New Scientist 19 de febrero de 1970 p. 350
  79. ^ "Silenciar las fuentes del ruido de los aviones" Dr. David Crighton New Scientist 27 de julio de 1972 p. 185
  80. ^ "Ruido" IC Cheeseman Flight International 16 de abril de 1970 p. 639
  81. ^ "El motor de turbina de gas de la aeronave y su funcionamiento" United Technologies Pratt & Whitney Parte No. P&W 182408 Diciembre de 1982 Presiones y temperaturas internas estáticas a nivel del mar pp. 219-20
  82. ^ 'Silenciar un motor silencioso: el programa de demostración RB211 "Documento SAE de MJT Smith 760897" Supresión de ruido de admisión "p. 5
  83. ^ Sistemas de refrigeración por transpiración para turbinas de motor a reacción y vuelo hipersónico , consultado el 30 de enero de 2019.
  84. ^ "15 - Funcionamiento del motor a reacción". Manual de vuelo en avión (PDF) . FAA. pag. 3. ISBN  9781510712843. OCLC  992171581 . Este artículo incorpora  material de dominio público de sitios web o documentos de la Administración Federal de Aviación .

Bibliografía [ editar ]

  • Brooks, David S. (1997). Vikingos en Waterloo: trabajo en tiempos de guerra en el motor Whittle Jet de la compañía Rover . Rolls-Royce Heritage Trust. ISBN 978-1-872922-08-9.
  • Golley, John (1997). Génesis del Jet: Frank Whittle y la invención del motor a reacción . Prensa Crowood. ISBN 978-1-85310-860-0.
  • Hill, Philip; Peterson, Carl (1992), Mecánica y termodinámica de la propulsión (2a ed.), Nueva York: Addison-Wesley, ISBN 978-0-201-14659-2
  • Kerrebrock, Jack L. (1992). Motores de aviones y turbinas de gas (2ª ed.). Cambridge, MA: The MIT Press. ISBN 978-0-262-11162-1.

Enlaces externos [ editar ]

  • Medios relacionados con los motores a reacción en Wikimedia Commons
  • La definición del diccionario de motor a reacción en Wiktionary
  • Medios sobre motores a reacción de Rolls-Royce
  • Artículo Cómo funcionan las cosas sobre cómo funciona un motor de turbina de gas
  • Influencia del motor a reacción en la industria aeroespacial
  • Una descripción general de la historia de los motores a reacción militares , Apéndice B, págs. 97-120, en Adquisición de motores a reacción militares (Rand Corp., 24 págs., PDF)
  • Tutorial básico sobre motores a reacción (vídeo QuickTime)
  • Un artículo sobre cómo funciona el motor de reacción.