De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda
Tras el desastre nuclear de Fukushima en Japón en 2011 , las autoridades cerraron las 54 plantas de energía nuclear del país. A partir de 2013, el sitio de Fukushima sigue siendo radiactivo , con unos 160.000 evacuados que todavía viven en viviendas temporales, aunque nadie ha muerto o se espera que muera a causa de los efectos de la radiación. [1] El difícil trabajo de limpieza llevará 40 años o más y costará decenas de miles de millones de dólares. [2] [3]
Vías desde la contaminación radiactiva en el aire hasta el ser humano
La central nuclear de Kashiwazaki-Kariwa , una central nuclear japonesa con siete unidades, la central nuclear más grande del mundo, se cerró por completo durante 21 meses después de un terremoto en 2007. Se descubrió que los sistemas críticos para la seguridad no sufrieron daños debido a la terremoto. [4] [5]

El Organismo Internacional de Energía Atómica (OIEA) define un accidente nuclear y por radiación como "un evento que ha tenido consecuencias importantes para las personas, el medio ambiente o la instalación. Por ejemplo, efectos letales para las personas , grandes emisiones de radiactividad al medio ambiente, reactores núcleo fundido ". [6] El principal ejemplo de un "accidente nuclear importante" es aquel en el que el núcleo de un reactor se daña y se liberan cantidades significativas de isótopos radiactivos , como en el desastre de Chernobyl en 1986 y el desastre nuclear de Fukushima Daiichi en 2011. [7]

El impacto de los accidentes nucleares ha sido un tema de debate desde que se construyeron los primeros reactores nucleares en 1954 y ha sido un factor clave en la preocupación pública por las instalaciones nucleares . [8] Se han adoptado medidas técnicas para reducir el riesgo de accidentes o minimizar la cantidad de radiactividad liberada al medio ambiente, sin embargo , persiste el error humano y "ha habido muchos accidentes con diferentes impactos, así como cuasi accidentes e incidentes". [8] [9]A partir de 2014, ha habido más de 100 accidentes e incidentes nucleares graves derivados del uso de la energía nuclear. Se han producido 57 accidentes o incidentes graves desde el desastre de Chernobyl, y aproximadamente el 60% de todos los accidentes o incidentes graves relacionados con la energía nuclear han ocurrido en los EE. UU. [10] Los accidentes graves de centrales nucleares incluyen el desastre nuclear de Fukushima Daiichi (2011), el desastre de Chernobyl (1986), el accidente de Three Mile Island (1979) y el accidente SL-1 (1961). [11] Los accidentes relacionados con la energía nuclear pueden implicar la pérdida de vidas y grandes costes monetarios para las obras de rehabilitación. [12]

Los accidentes de submarinos de propulsión nuclear incluyen el K-19 (1961), K-11 (1965), K-27 (1968), K-140 (1968), K-429 (1970), K-222 (1980) y K-431 (1985) [11] [13] [14] accidentes. Los incidentes / accidentes de radiación graves incluyen el desastre de Kyshtym , el incendio de Windscale , el accidente de radioterapia en Costa Rica , [15] el accidente de radioterapia en Zaragoza , [16] el accidente de radiación en Marruecos , [17] elEl accidente de Goiania , [18] el accidente de radiación en la Ciudad de México , el accidente de la unidad de radioterapia en Tailandia, [19] y el accidente radiológico de Mayapuri en India. [19]

El OIEA mantiene un sitio web que informa sobre accidentes nucleares recientes. [20]

Accidentes de plantas nucleares [ editar ]

La ciudad abandonada de Pripyat, Ucrania , tras el desastre de Chernobyl . La central nuclear de Chernobyl está al fondo.

El peor accidente nuclear hasta la fecha fue el desastre de Chernobyl que ocurrió en 1986 en Ucrania . El accidente mató a 31 personas directamente y dañó aproximadamente $ 7 mil millones en propiedades. Un estudio publicado en 2005 por la Organización Mundial de la Salud estima que eventualmente puede haber hasta 4,000 muertes adicionales por cáncer relacionadas con el accidente entre las personas expuestas a niveles significativos de radiación. [21] La lluvia radiactiva del accidente se concentró en áreas de Bielorrusia, Ucrania y Rusia. Otros estudios han estimado hasta más de un millón de eventuales muertes por cáncer de Chernobyl. [22] [23]Las estimaciones de eventuales muertes por cáncer son muy controvertidas. Las agencias de la industria, la ONU y el DOE afirman que un bajo número de muertes por cáncer legalmente comprobables será atribuible al desastre. Las Naciones Unidas, el DOE y las agencias de la industria usan los límites de las muertes epidemiológicas resolubles como el límite por debajo del cual no se puede probar legalmente que provengan del desastre. Los estudios independientes calculan estadísticamente los cánceres mortales a partir de la dosis y la población, aunque el número de cánceres adicionales estará por debajo del umbral epidemiológico de medición de alrededor del 1%. Estos son dos conceptos muy diferentes y dan lugar a enormes variaciones en las estimaciones. Ambas son proyecciones razonables con diferentes significados. Aproximadamente 350.000 personas fueron reubicadas por la fuerza fuera de estas áreas poco después del accidente. 6.000 personas participaron en la limpieza de Chernobyl y 10,800 millas cuadradas fueron contaminadas.[24] [25]

El científico social y experto en políticas energéticas, Benjamin K. Sovacool, ha informado que en todo el mundo ha habido 99 accidentes en plantas de energía nuclear entre 1952 y 2009 (definidos como incidentes que resultaron en la pérdida de vidas humanas o más de 50.000 dólares en daños a la propiedad, la cantidad que el gobierno federal de los Estados Unidos utiliza para definir los accidentes energéticos mayores que deben notificarse), por un total de 20.500 millones de dólares en daños a la propiedad. [10] Ha habido comparativamente pocas muertes asociadas con accidentes en plantas de energía nuclear. [10] Mark Foreman publicó una revisión académica de muchos accidentes de reactores y los fenómenos de estos eventos. [26]

Ataques a reactores nucleares [ editar ]

La vulnerabilidad de las centrales nucleares a un ataque deliberado es motivo de preocupación en el ámbito de la seguridad nuclear tecnológica y física . [40] Las plantas de energía nuclear , los reactores de investigación civiles, determinadas instalaciones de combustible naval, las plantas de enriquecimiento de uranio , las plantas de fabricación de combustible e incluso las minas de uranio potencialmente son vulnerables a ataques que podrían provocar una contaminación radiactiva generalizada . La amenaza de ataque es de varios tipos generales: ataques terrestres similares a comandos contra equipos que, si se desactivan, podrían provocar la fusión del núcleo del reactor o la dispersión generalizada de radiactividad; y ataques externos, como el choque de un avión contra un complejo de reactores, o ataques cibernéticos. [41]

La Comisión del 11 de septiembre de Estados Unidos encontró que las plantas de energía nuclear eran objetivos potenciales originalmente considerados para los ataques del 11 de septiembre de 2001 . Si los grupos terroristas pudieran dañar lo suficiente los sistemas de seguridad como para causar una fusión del núcleo en una planta de energía nuclear, y / o dañar suficientemente las piscinas de combustible gastado, tal ataque podría conducir a una contaminación radiactiva generalizada. La Federación de Científicos Estadounidenses ha dicho que si el uso de la energía nuclear se expandirá significativamente, las instalaciones nucleares deberán estar extremadamente seguras de ataques que podrían liberar radiactividad al medio ambiente. Los nuevos diseños de reactores tienen características de seguridad nuclear pasiva, lo que puede ayudar. En los Estados Unidos, la NRC lleva a cabo ejercicios "Force on Force" (FOF) en todas las plantas de energía nuclear (NPP) al menos una vez cada tres años. [41]

Los reactores nucleares se convierten en objetivos preferidos durante los conflictos militares y, durante las últimas tres décadas, han sido atacados repetidamente durante ataques aéreos militares, ocupaciones, invasiones y campañas. [42] Varios actos de desobediencia civil desde 1980 por parte del grupo pacifista Ploughhares han demostrado cómo se pueden penetrar las instalaciones de armas nucleares, y las acciones del grupo representan violaciones extraordinarias de la seguridad en las plantas de armas nucleares en los Estados Unidos. La Administración Nacional de Seguridad Nuclear ha reconocido la seriedad de la acción de Arados de 2012. No proliferaciónLos expertos en política han cuestionado "el uso de contratistas privados para brindar seguridad en las instalaciones que fabrican y almacenan el material militar más peligroso del gobierno". [43] Los materiales de armas nucleares en el mercado negro son una preocupación mundial, [44] [45] y existe preocupación por la posible detonación de un arma nuclear pequeña y tosca o una bomba sucia por parte de un grupo militante en una ciudad importante, lo que causa una gran cantidad de pérdida de vidas y bienes. [46] [47]

El número y la sofisticación de los ciberataques va en aumento. Stuxnet es un gusano informático descubierto en junio de 2010 que se cree que fue creado por Estados Unidos e Israel para atacar las instalaciones nucleares de Irán. Apagó los dispositivos de seguridad, lo que provocó que las centrífugas giraran fuera de control. [48] Las computadoras del operador de la planta nuclear de Corea del Sur ( KHNP ) fueron pirateadas en diciembre de 2014. Los ataques cibernéticos involucraron miles de correos electrónicos de phishing que contenían códigos maliciosos y se robaron información. [49]

Radiación y otros accidentes e incidentes [ editar ]

El Dr. Joseph G. Hamilton fue el investigador principal de los experimentos de plutonio humano realizados en UC San Francisco de 1944 a 1947. [50] Hamilton escribió un memorando en 1950 desalentando nuevos experimentos humanos porque la AEC quedaría abierta "a críticas considerables, "ya que los experimentos propuestos tenían" un poco del toque de Buchenwald ". [51]
Uno de los cuatro ejemplos de estimaciones de la columna de plutonio (Pu-239) del incendio de 1957 en la Planta de Armas Nucleares de Rocky Flats . Las protestas públicas y una redada combinada de la Oficina Federal de Investigaciones y la Agencia de Protección Ambiental de los Estados Unidos en 1989 detuvieron la producción en la planta.
Tambor de 55 galones corroído y con fugas, para almacenar desechos radiactivos en la planta Rocky Flats , inclinado de costado para que se vea la parte inferior.
El sitio de Hanford representa dos tercios de los desechos radiactivos de alto nivel de EE. UU. Por volumen. Los reactores nucleares se alinean en la orilla del río en el sitio de Hanford a lo largo del río Columbia en enero de 1960.
El 14 de febrero de 2014, en el WIPP, se filtraron materiales radiactivos de un tambor de almacenamiento dañado (ver foto). El análisis de varios accidentes, realizado por el DOE, ha demostrado la falta de una "cultura de seguridad" en la instalación. [52]
La extensión de 18.000 km 2 del sitio de pruebas de Semipalatinsk (indicado en rojo), que cubre un área del tamaño de Gales . La Unión Soviética llevó a cabo 456 pruebas nucleares en Semipalatinsk desde 1949 hasta 1989 sin tener en cuenta su efecto sobre la población local o el medio ambiente. El impacto total de la exposición a la radiación estuvo oculto durante muchos años por las autoridades soviéticas y solo ha salido a la luz desde que el sitio de prueba cerró en 1991. [53]
2007 Símbolo de peligro de radiactividad ISO . El fondo rojo está destinado a transmitir un peligro urgente, y el letrero está diseñado para usarse en lugares o en equipos donde se pueden encontrar o crear campos de radiación excepcionalmente intensos a través del uso indebido o la manipulación. La intención es que un usuario normal nunca vea un letrero de este tipo, sin embargo, después de desmantelar parcialmente el equipo, el letrero quedará expuesto advirtiendo que la persona debe dejar de trabajar y abandonar el lugar.

Los accidentes e incidentes graves por radiación y otros incluyen:

1940
  • Mayo de 1945: Albert Stevens fue uno de los varios sujetos de un experimento de radiación humana y fue inyectado con plutonio sin su conocimiento o consentimiento informado. Aunque Stevens fue la persona que recibió la dosis más alta de radiación durante los experimentos con plutonio, no fue ni el primero ni el último sujeto en ser estudiado. Se inyectó plutonio a dieciocho personas de entre 4 y 69 años. Los sujetos que fueron elegidos para el experimento habían sido diagnosticados con una enfermedad terminal. Vivieron desde los 6 días hasta los 44 años después del momento de la inyección. [50] Ocho de los 18 murieron dos años después de la inyección. [50]Aunque se desconocía una causa de muerte, un informe de William Moss y Roger Eckhardt concluyó que "no había evidencia de que ninguno de los pacientes muriera por razones que pudieran atribuirse a las inyecciones de plutonio. [50] Pacientes de Rochester, Chicago y Oak Ridge también fue inyectado con plutonio en los experimentos humanos del Proyecto Manhattan. [50] [54] [55]
  • 6 al 9 de agosto de 1945: por orden del presidente Harry S. Truman , se utilizó una bomba de diseño de pistola de uranio, Little Boy , contra la ciudad de Hiroshima, Japón. Fat Man , una bomba de plutonio con diseño de implosión se utilizó contra la ciudad de Nagasaki. Las dos armas mataron a aproximadamente 120.000 a 140.000 civiles y personal militar instantáneamente y miles más han muerto a lo largo de los años a causa de la enfermedad por radiación y cánceres relacionados .
  • Agosto de 1945: Accidente de criticidad en el Laboratorio Nacional de Los Alamos de EE. UU . Harry Daghlian muere. [56]
  • Mayo de 1946: Accidente de criticidad en el Laboratorio Nacional de Los Alamos. Louis Slotin muere. [56]
1950
  • 13 de febrero de 1950: un Convair B-36B se estrelló en el norte de la Columbia Británica después de arrojar una bomba atómica Mark IV . Esta fue la primera pérdida de armas nucleares de este tipo en la historia.
  • 12 de diciembre de 1952: NRX AECL Chalk River Laboratories, Chalk River, Ontario, Canadá. Fusión parcial, alrededor de 10,000 Curies liberados. [57] Aproximadamente 1202 personas participaron en la limpieza de dos años. [58] El futuro presidente Jimmy Carter fue una de las muchas personas que ayudaron a limpiar el accidente. [59]
  • 15 de marzo de 1953: Mayak , ex Unión Soviética. Accidente de criticidad . Ocurrió contaminación del personal de la planta. [56]
  • 1 de marzo de 1954: La toma de 15 Mt Castle Bravo de 1954 que esparció una considerable lluvia radiactiva en muchas islas del Pacífico, incluidas varias que estaban habitadas y algunas que no habían sido evacuadas. [60]
    • 1 de marzo de 1954: Daigo Fukuryū Maru , barco pesquero japonés contaminado por la lluvia radiactiva del Castillo Bravo, 1 víctima mortal.
    • 2 de marzo de 1954: el petrolero USS  Patapsco de la Marina de los EE . UU. Contaminado por la lluvia radiactiva del castillo Bravo mientras navegaba desde el atolón Enewetak hacia Pearl Harbor .
  • Septiembre de 1957: se produjo un incendio de plutonio en la planta de Rocky Flats , que provocó la contaminación del edificio 71 y la liberación de plutonio a la atmósfera, lo que provocó daños por valor de 818.600 dólares.
  • 21 de mayo de 1957: Mayak , ex Unión Soviética. Accidente de criticidad en la fábrica número 20 en la colección de oxalato decantado después de filtrar sedimento de uranio enriquecido en oxalato. Seis personas recibieron dosis de 300 a 1.000 rem (cuatro mujeres y dos hombres), una mujer murió. [56]
  • 29 de septiembre de 1957: Desastre de Kyshtym : explosión del tanque de almacenamiento de residuos nucleares en la misma planta de Mayak , Rusia. No hay muertes inmediatas, aunque podrían haberse producido hasta más de 200 muertes por cáncer adicionales a causa de la contaminación radiactiva del área circundante; 270.000 personas estuvieron expuestas a niveles peligrosos de radiación . Más de treinta pequeñas comunidades fueron eliminadas de los mapas soviéticos entre 1958 y 1991. [61] (INES nivel 6) [28]
  • Octubre de 1957: incendio de Windscale , Reino Unido. El fuego enciende una "pila de plutonio" (un reactor refrigerado por aire, moderado por grafito, alimentado con uranio que se utilizó para la producción de plutonio e isótopos) y contamina las granjas lecheras circundantes. [10] [62] Se estima que 33 muertes por cáncer. [10] [62]
  • 1957-1964: Rocketdyne, ubicado en el laboratorio de campo de Santa Susanna, a 30 millas al norte de Los Ángeles, California, operó diez reactores nucleares experimentales. Se produjeron numerosos accidentes, incluida la fusión del núcleo. No se requería que los reactores experimentales de esa época tuvieran el mismo tipo de estructuras de contención que protegen a los reactores nucleares modernos. Durante la época de la Guerra Fría en la que los accidentes que ocurrieron en Rocketdyne, estos eventos no fueron informados públicamente por el Departamento de Energía. [63]
  • 1958: Ruptura de combustible e incendio en el reactor National Research Universal (NRU) , Chalk River, Canadá.
  • 10 de febrero de 1958: Mayak , ex Unión Soviética. Accidente de criticidad en planta SCR. Realización de experimentos para determinar la masa crítica de uranio enriquecido en un recipiente cilíndrico con diferentes concentraciones de uranio en solución. El personal rompió las reglas e instrucciones para trabajar con YADM (material fisionable nuclear). Cuando el personal de SCR recibió dosis de 7.600 a 13.000 rem. Tres personas murieron, un hombre se enfermó por radiación y se quedó ciego. [56]
  • 30 de diciembre de 1958: Accidente de criticidad de Cecil Kelley en el Laboratorio Nacional de Los Alamos. [56] [64]
  • Marzo de 1959: Laboratorio de campo de Santa Susana , Los Ángeles , California . Incendio en una instalación de procesamiento de combustible.
  • Julio de 1959: Laboratorio de campo de Santa Susana , Los Ángeles , California . Fusión parcial .
1960
  • 7 de junio de 1960: el accidente de 1960 Fort Dix IM-99 destruyó un misil nuclear CIM-10 Bomarc y un refugio y contaminó el lugar del accidente del misil BOMARC en Nueva Jersey.
  • 24 de enero de 1961: el accidente de Goldsboro B-52 de 1961 ocurrió cerca de Goldsboro, Carolina del Norte . Un B-52 Stratofortress que llevaba dos bombas nucleares Mark 39 se rompió en el aire, dejando caer su carga nuclear en el proceso. [sesenta y cinco]
  • Julio de 1961: accidente del submarino soviético K-19 . Ocho muertes y más de 30 personas estuvieron sobreexpuestas a la radiación. [66]
  • 21 de marzo a agosto de 1962: accidente por radiación en la Ciudad de México , cuatro muertos.
  • 23 de julio de 1964: Accidente de criticidad en Wood River Junction. Resultó en 1 fatalidad
  • 1964, 1969: Laboratorio de campo de Santa Susana , Los Ángeles , California . Derrumbes parciales .
  • 1965 Accidente del Philippine Sea A-4 , donde un avión de ataque Skyhawk con un arma nuclear cayó al mar. [67] El piloto, el avión y la bomba nuclear B43 nunca fueron recuperados. [68] No fue hasta la década de 1980 que el Pentágono reveló la pérdida de la bomba de un megatón. [69]
  • Octubre de 1965: expedición estadounidense dirigida por la CIA abandona un dispositivo de escucha de relé de telemetría de propulsión nuclear en Nanda Devi [70]
  • 17 de enero de 1966: el accidente del Palomares B-52 de 1966 se produjo cuando un bombardero B-52G de la USAF colisionó con un petrolero KC-135 durante el reabastecimiento de combustible en el aire frente a las costas de España . El KC-135 fue completamente destruido cuando su carga de combustible se encendió, matando a los cuatro miembros de la tripulación. El B-52G se rompió, matando a tres de los siete miembros de la tripulación a bordo. [71] De los cuatro Mk28 tipo de bombas de hidrógeno el B-52G transportados, [72] tres fueron conocer en la tierra cerca de Almería, España. Los explosivos no nucleares de dos de las armas detonaron al impactar contra el suelo, lo que provocó la contaminación de un área de 2 kilómetros cuadrados (490 acres) (0,78 millas cuadradas) por plutonio radiactivo . [73] El cuarto, que cayó al mar Mediterráneo , se recuperó intacto después de una búsqueda de dos meses y medio. [74]
  • 21 de enero de 1968: el accidente de 1968 de la Base Aérea Thule B-52 involucró a un bombardero B-52 de la Fuerza Aérea de los Estados Unidos (USAF) . La aeronave transportaba cuatro bombas de hidrógeno cuando un incendio en la cabina obligó a la tripulación a abandonar la aeronave. Seis miembros de la tripulación se expulsaron de forma segura, pero uno que no tenía un asiento de expulsión murió mientras intentaba rescatar. El bombardero se estrelló contra el hielo marino en Groenlandia , lo que provocó que la carga útil nuclear se rompiera y se dispersara, lo que provocó una contaminación radiactiva generalizada .
  • Mayo de 1968: Reactor del submarino soviético K-27 cerca de la fusión. 9 personas murieron, 83 personas resultaron heridas. [14]
  • En agosto de 1968: Proyecto 667A del programa de desarrollo de submarinos de misiles balísticos nucleares soviéticos. El submarino K-140 de la clase Yankee de propulsión nuclear estaba en el astillero naval de Severodvinsk para reparaciones. El 27 de agosto, se produjo un aumento descontrolado de la potencia del reactor después de los trabajos para mejorar la vasija. Uno de los reactores se puso en marcha automáticamente cuando las barras de control se elevaron a una posición más alta. La potencia aumentó a 18 veces su cantidad normal, mientras que los niveles de presión y temperatura en el reactor aumentaron a cuatro veces la cantidad normal. La puesta en marcha automática del reactor fue provocada por la instalación incorrecta de los cables eléctricos de la varilla de control y por error del operador. Los niveles de radiación a bordo del barco se deterioraron.
  • 10 de diciembre de 1968: Mayak , ex Unión Soviética. Accidente de criticidad. La solución de plutonio se vertió en un recipiente cilíndrico con geometría peligrosa. Una persona murió, otra recibió una dosis alta de radiación y se enfermó por radiación, después de lo cual le amputaron dos piernas y le amputaron el brazo derecho. [56]
  • Enero de 1969: el reactor Lucens en Suiza sufre una fusión parcial del núcleo que conduce a una contaminación radiactiva masiva de una caverna.
1970
  • 1974-1976: Accidente de radioterapia en Columbus, 10 muertes, 88 lesiones por fuente de cobalto-60. [14] [75]
  • Julio de 1978: Anatoli Bugorski estaba trabajando en el U-70 , el acelerador de partículas soviético más grande , cuando accidentalmente expuso su cabeza directamente al haz de protones . Sobrevivió, a pesar de sufrir algunos daños a largo plazo.
  • Julio de 1979: Derrame del molino de uranio de Church Rock en Nuevo México , EE. UU., Cuando el estanque de eliminación de relaves del molino de uranio de United Nuclear Corporation rompió su presa. Más de 1,000 toneladas de desechos radiactivos de la planta y millones de galones de efluentes de la mina fluyeron hacia el río Puerco y los contaminantes viajaron río abajo. [76]
Los ochenta
  • 1980 a 1989: el accidente radiológico de Kramatorsk ocurrió en Kramatorsk, República Socialista Soviética de Ucrania. En 1989, se encontró una pequeña cápsula que contenía cesio 137 altamente radiactivo dentro de la pared de hormigón de un edificio de apartamentos. 6 residentes del edificio murieron de leucemia y 17 más recibieron diferentes dosis de radiación. El accidente se detectó solo después de que los residentes llamaron a un físico de salud.
  • 1980: accidente de radioterapia en Houston, 7 muertes. [14] [75]
  • 5 de octubre de 1982: fuente de radiación perdida, Bakú, Azerbaiyán, URSS. 5 muertos, 13 heridos. [14]
  • Marzo de 1984: Accidente de radiación en Marruecos , ocho muertes por sobreexposición a la radiación de una fuente de iridio 192 perdida . [17]
  • 1984: Fernald Feed Materials Production Center ganó notoriedad cuando se supo que la planta estaba liberando millones de libras de polvo de uranio a la atmósfera, causando una importante contaminación radiactiva de las áreas circundantes. Ese mismo año, el empleado Dave Bocks, un instalador de tuberías de 39 años, desapareció durante el turno de noche de la instalación y luego fue reportado como desaparecido. Finalmente, sus restos fueron descubiertos dentro de un horno de procesamiento de uranio ubicado en la Planta 6. [77]
  • Agosto de 1985: accidente del submarino soviético K-431 . Diez muertos y otras 49 personas sufrieron lesiones por radiación. [11]
  • 4 de enero de 1986: un tanque sobrecargado en Sequoyah Fuels Corporation se rompió y liberó 14,5 toneladas de gas hexafluoruro de uranio (UF6), causando la muerte de un trabajador, la hospitalización de otros 37 trabajadores y aproximadamente 100 downwinders. [78] [79] [80]
  • Octubre de 1986: El reactor del submarino soviético K-219 casi se derrumba. Sergei Preminin murió después de que bajó manualmente las barras de control y detuvo la explosión. El submarino se hundió tres días después.
  • Septiembre de 1987: accidente de Goiania . Cuatro muertes, y luego de un examen radiológico de más de 100,000 personas, se determinó que 249 personas recibieron contaminación por radiación grave debido a la exposición al cesio-137 . [18] [81] En la operación de limpieza, la capa superior del suelo tuvo que ser removida de varios sitios y varias casas fueron demolidas. Todos los objetos del interior de esas casas fueron retirados y examinados. La revista Time ha identificado el accidente como uno de los "peores desastres nucleares" del mundo y la Agencia Internacional de Energía Atómica lo calificó como "uno de los peores incidentes radiológicos del mundo". [81] [82]
  • 1989: San Salvador, El Salvador; una muerte debido a la violación de las reglas de seguridad en la instalación de irradiación de cobalto-60 . [83]
Los noventa
  • 1990: Soreq, Israel; una muerte debido a la violación de las reglas de seguridad en la instalación de irradiación de cobalto-60 . [83]
  • 16 de diciembre de 1990: accidente de radioterapia en Zaragoza . Once muertos y otros 27 pacientes resultaron heridos. [66]
  • 1991: Neswizh, Bielorrusia; una muerte debido a la violación de las reglas de seguridad en la instalación de irradiación de cobalto-60 . [83]
  • 1992: Jilin, China; tres muertes en la instalación de irradiación de cobalto-60 . [83]
  • 1992: Estados Unidos; una fatalidad. [83]
  • Abril de 1993: accidente en el Complejo de reprocesamiento Tomsk-7 , cuando un tanque explotó mientras se limpiaba con ácido nítrico . La explosión liberó una nube de gas radiactivo. (INES nivel 4). [28]
  • 1994: Tammiku, Estonia; una muerte por fuente de cesio-137 eliminada . [83]
  • Agosto - diciembre de 1996: Accidente de radioterapia en Costa Rica . Trece víctimas mortales y otros 114 pacientes recibieron una sobredosis de radiación. [15]
  • 1996: un accidente en las instalaciones de investigación de Pelindaba en Sudáfrica provoca la exposición de los trabajadores a la radiación. Harold Daniels y varios otros mueren de cánceres y quemaduras por radiación relacionadas con la exposición. [84]
  • Junio ​​de 1997: Sarov, Rusia; una muerte debido a la violación de las reglas de seguridad. [83]
  • Mayo de 1998: El accidente de Acerinox fue un incidente de contaminación radiactiva en el sur de España. Una fuente de cesio-137 logró pasar por el equipo de monitoreo en una planta de reprocesamiento de chatarra de Acerinox . Cuando se derritió, el cesio-137 provocó la liberación de una nube radiactiva.
  • Septiembre de 1999: dos muertes en un accidente de criticidad en el accidente nuclear de Tokaimura (Japón)
2000
  • Enero-febrero de 2000: Accidente de radiación de Samut Prakan : tres muertes y diez heridos resultaron en Samut Prakan cuando se desmanteló una unidad de radioterapia de cobalto-60 . [19]
  • Mayo de 2000: encuentro con Halfa, Egipto; dos muertes por accidente de radiografía. [83]
  • Agosto de 2000 - marzo de 2001: Instituto Oncológico Nacional de Panamá, 17 muertos. Los pacientes que reciben tratamiento para el cáncer de próstata y el cáncer de cuello uterino reciben dosis letales de radiación. [14] [85]
  • 9 de agosto de 2004: accidente en la central nuclear de Mihama , 4 muertos. El agua caliente y el vapor se escaparon de una tubería rota (en realidad no fue un accidente de radiación). [86]
  • 9 mayo de 2005: se anunció que la térmica de la planta de reprocesamiento de óxido en Sellafield, en el Reino Unido sufrió una gran fuga de una solución altamente radiactivo, que comenzó en julio de 2004. [87]
  • Abril de 2010: accidente radiológico de Mayapuri , India, una muerte después de que un irradiador de investigación de cobalto-60 fuera vendido a un comerciante de chatarra y desmantelado. [19]
2010
  • Marzo de 2011: Accidentes nucleares de Fukushima I , Japón y descarga radiactiva en la central eléctrica de Fukushima Daiichi. [88]
  • 17 de enero de 2014: En la mina de uranio Rössing , Namibia, una falla estructural catastrófica de un tanque de lixiviación resultó en un derrame importante. [89] El laboratorio con sede en Francia, CRIIRAD , informó niveles elevados de materiales radiactivos en el área que rodea la mina. [90] [91] Los trabajadores no fueron informados sobre los peligros de trabajar con materiales radiactivos y los efectos sobre la salud de los mismos. [92] [93] [94]
  • 1 de febrero de 2014: Diseñado para durar diez mil años, el sitio de la Planta Piloto de Aislamiento de Desechos (WIPP) aproximadamente a 26 millas (42 km) al este de Carlsbad, Nuevo México, Estados Unidos, tuvo su primera fuga de materiales radiactivos en el aire. [95] [96]140 empleados que trabajaban bajo tierra en ese momento estaban protegidos bajo techo. Trece de ellos dieron positivo por contaminación radiactiva interna, lo que aumenta su riesgo de futuros cánceres o problemas de salud. Una segunda fuga en la planta ocurrió poco después de la primera, liberando plutonio y otras radiotoxinas que preocuparon a las comunidades cercanas. La fuente de la ruptura del tambor se remonta al uso de arena orgánica para gatos en las instalaciones de envasado de WCRRF en el Laboratorio Nacional de Los Alamos, donde se empaquetó y preparó el tambor para su envío. [97]
  • 8 de agosto de 2019: accidente de radiación de Nyonoksa en el campo de pruebas de la Armada Central del Estado en Nyonoksa , cerca de Severodvinsk , Rusia .

Resumen mundial de ensayos nucleares [ editar ]

Se han realizado más de 2.000 ensayos nucleares en más de una docena de sitios diferentes en todo el mundo. Rojo Rusia / Unión Soviética, azul Francia, azul claro Estados Unidos, violeta Gran Bretaña, negro Israel, amarillo China, naranja India, marrón Pakistán, verde Corea del Norte y verde claro Australia (territorios expuestos a bombas nucleares)
Operation Crossroads Test Able , un arma nuclear de 23 kilotones desplegada en el aire detonó el 1 de julio de 1946.
Los materiales radiactivos se liberaron accidentalmente de la prueba nuclear de Baneberry de 1970 en el sitio de pruebas de Nevada .

Entre el 16 de julio de 1945 y el 23 de septiembre de 1992, los Estados Unidos mantuvieron un programa de ensayos nucleares vigorosos , con la excepción de una moratoria entre noviembre de 1958 y septiembre de 1961. Según el recuento oficial, se llevaron a cabo un total de 1.054 ensayos nucleares y dos ataques nucleares. con más de 100 de ellos en sitios en el Océano Pacífico , más de 900 de ellos en el sitio de prueba de Nevada y diez en sitios diversos en los Estados Unidos ( Alaska , Colorado , Mississippi y Nuevo México ). [98]Hasta noviembre de 1962, la gran mayoría de las pruebas estadounidenses fueron atmosféricas (es decir, sobre el suelo); después de la aceptación del Tratado de Prohibición Parcial de Pruebas, todas las pruebas fueron reguladas bajo tierra, con el fin de evitar la dispersión de la lluvia radiactiva.

El programa estadounidense de pruebas nucleares atmosféricas expuso a una parte de la población a los peligros de la lluvia radiactiva. Estimar el número exacto y las consecuencias exactas de personas expuestas ha sido médicamente muy difícil, con la excepción de las altas exposiciones de los habitantes de las islas Marshall y los pescadores japoneses en el caso del Castillo Bravo.incidente en 1954. Varios grupos de ciudadanos estadounidenses, especialmente agricultores y habitantes de ciudades a sotavento del sitio de pruebas de Nevada y trabajadores militares estadounidenses en varias pruebas, han demandado una compensación y el reconocimiento de su exposición, muchos de ellos con éxito. La aprobación de la Ley de Compensación por Exposición a la Radiación de 1990 permitió la presentación sistemática de reclamaciones de compensación en relación con las pruebas, así como con los empleados en las instalaciones de armas nucleares. En junio de 2009, se han entregado más de $ 1.4 mil millones en total en compensación, con más de $ 660 millones destinados a " downwinders ". [99]

Esta vista del centro de Las Vegas muestra una nube en forma de hongo al fondo. Escenas como ésta eran típicas de la década de 1950. De 1951 a 1962, el gobierno llevó a cabo 100 pruebas atmosféricas en el cercano sitio de pruebas de Nevada .
Este prospecto se distribuyó 16 días antes de que se detonase el primer dispositivo nuclear en el sitio de pruebas de Nevada.

Tráfico y robos [ editar ]

La Agencia Internacional de Energía Atómica dice que hay "un problema persistente con el tráfico ilícito de materiales nucleares y otros materiales radiactivos, robos, pérdidas y otras actividades no autorizadas". [100] La base de datos sobre tráfico ilícito de armas nucleares del OIEA señala 1.266 incidentes notificados por 99 países durante los últimos 12 años, incluidos 18 incidentes relacionados con el tráfico de UME o plutonio: [101] [81] [102]

  • El especialista en seguridad Shaun Gregory argumentó en un artículo que los terroristas han atacado instalaciones nucleares paquistaníes tres veces en el pasado reciente; dos veces en 2007 y una en 2008. [103] [104]
  • En noviembre de 2007, ladrones con intenciones desconocidas se infiltraron en la instalación de investigación nuclear de Pelindaba cerca de Pretoria, Sudáfrica. Los ladrones escaparon sin adquirir nada del uranio retenido en la instalación. [105] [106]
  • En febrero de 2006, Oleg Khinsagov de Rusia fue arrestado en Georgia , junto con tres cómplices georgianos, con 79,5 gramos de HEU enriquecido en un 89 por ciento. [107]
  • El envenenamiento de Alexander Litvinenko en noviembre de 2006 con polonio radiactivo "representa un hito ominoso: el comienzo de una era de terrorismo nuclear", según Andrew J. Patterson. [108]

Categorías de accidentes [ editar ]

Derretimiento nuclear [ editar ]

Una fusión nuclear es un accidente severo en un reactor nuclear que da como resultado daños en el núcleo del reactor por sobrecalentamiento. Se ha definido como la fusión accidental del núcleo de un reactor nuclear y se refiere al colapso total o parcial del núcleo. [109] [110] Un accidente de fusión del núcleo ocurre cuando el calor generado por un reactor nuclear excede el calor eliminado por los sistemas de enfriamiento hasta el punto en que al menos un elemento de combustible nuclear excede su punto de fusión . Esto difiere de la falla de un elemento de combustible , que no es causada por altas temperaturas. Una fusión puede ser causada por una pérdida de refrigerante , pérdida de presión de refrigerante o bajo índice de flujo de refrigerante o ser el resultado de unexcursión de criticidad en la que el reactor funciona a un nivel de potencia que excede sus límites de diseño. Alternativamente, en una planta de reactores como el RBMK-1000 , un incendio externo puede poner en peligro el núcleo y provocar una fusión.

Las fusiones nucleares a gran escala en centrales nucleares civiles incluyen: [13] [56]

  • el accidente de Three Mile Island en Pennsylvania , Estados Unidos, en 1979.
  • el desastre de Chernobyl en la planta de energía nuclear de Chernobyl , Ucrania, URSS, en 1986.
  • el desastre nuclear de Fukushima Daiichi después del terremoto y tsunami en Japón, marzo de 2011.

Se han producido otras fusiones de núcleos en: [56]

  • NRX (militar), Ontario , Canadá, en 1952
  • BORAX-I (experimental), Idaho, Estados Unidos, en 1954
  • EBR-I , Idaho, Estados Unidos, en 1955
  • Windscale (militar), Sellafield , Inglaterra, en 1957 (ver fuego Windscale )
  • Experimento del reactor de sodio , Laboratorio de campo de Santa Susana (civil), California, Estados Unidos, en 1959
  • Fermi 1 (civil), Michigan , Estados Unidos, en 1966
  • Central nuclear de Chapelcross (civil), Escocia , en 1967
  • el reactor de Lucens , Suiza, en 1969.
  • Central nuclear de Saint-Laurent (civil), Francia, en 1969
  • Planta A1 , (civil) en Jaslovské Bohunice , Checoslovaquia , en 1977
  • Central nuclear de Saint-Laurent (civil), Francia, en 1980
  • Ocho submarinos nucleares de la Armada soviética han tenido derretimientos de núcleo nuclear: K-19 (1961), K-11 (1965), K-27 (1968), K-140 (1968), K-429 (1970), K-222 ( 1980) y K-431 (1985). [13]

Accidentes de criticidad [ editar ]

Un accidente de criticidad (también denominado a veces "excursión" o "excursión de potencia") ocurre cuando se permite accidentalmente que ocurra una reacción en cadena nuclear en material fisible , como uranio enriquecido o plutonio . El accidente de Chernobyl no se considera universalmente como un ejemplo de accidente crítico, porque ocurrió en un reactor en funcionamiento en una central eléctrica. Se suponía que el reactor estaba en un estado crítico controlado, pero se perdió el control de la reacción en cadena. El accidente destruyó el reactor y dejó inhabitable una gran zona geográfica. En un accidente de menor escala en Sarov, un técnico que trabaja con uranio altamente enriquecidofue irradiado mientras preparaba un experimento con una esfera de material fisionable. El accidente de Sarov es interesante porque el sistema permaneció crítico durante muchos días antes de que pudiera ser detenido, aunque ubicado de manera segura en una sala experimental protegida. [111] Este es un ejemplo de un accidente de alcance limitado en el que solo unas pocas personas pueden resultar dañadas, mientras que no se produjo ninguna liberación de radiactividad al medio ambiente. En 1999, en Tokaimura, durante la producción de combustible de uranio enriquecido, se produjo un accidente de criticidad con una liberación limitada fuera del sitio de radiación ( gamma y neutrones ) y una liberación muy pequeña de radiactividad . [112]Dos trabajadores murieron, un tercero resultó herido de forma permanente y 350 ciudadanos quedaron expuestos a la radiación. En 2016, se informó de un accidente de criticidad en la instalación de pruebas críticas de Afrikantov OKBM en Rusia. [113]

Calor de descomposición [ editar ]

Los accidentes por calor por desintegración son aquellos en los que el calor generado por la desintegración radiactiva causa daño. En un gran reactor nuclear, un accidente de pérdida de refrigerante puede dañar el núcleo : por ejemplo, en Three Mile Island, un reactor PWR recientemente cerrado ( SCRAMed ) se dejó durante un tiempo sin agua de refrigeración. Como resultado, el combustible nuclearestaba dañado y el núcleo se derritió parcialmente. La eliminación del calor de desintegración es una preocupación importante para la seguridad del reactor, especialmente poco después de la parada. No eliminar el calor de descomposición puede hacer que la temperatura del núcleo del reactor aumente a niveles peligrosos y ha provocado accidentes nucleares. La eliminación de calor generalmente se logra a través de varios sistemas redundantes y diversos, y el calor a menudo se disipa a un 'disipador de calor final' que tiene una gran capacidad y no requiere energía activa, aunque este método se usa generalmente después de que el calor de descomposición se ha reducido a un valor muy pequeño. La principal causa de liberación de radiactividad en el accidente de Three Mile Island fue una válvula de alivio operada por un piloto.en el bucle primario que se atascó en la posición abierta. Esto provocó que el tanque de desbordamiento en el que drenaba se rompiera y liberara grandes cantidades de agua de refrigeración radiactiva en el edificio de contención .

En su mayor parte, las instalaciones nucleares reciben su energía de sistemas eléctricos externos. También tienen una red de generadores de respaldo de emergencia para proporcionar energía en caso de un apagón. Un evento que podría evitar tanto la energía externa como la energía de emergencia se conoce como "apagón de la estación". [114] En 2011, un terremoto y un tsunami provocaron una pérdida de energía eléctrica en la planta de energía nuclear de Fukushima Daiichi en Japón. El calor de desintegración no pudo eliminarse, y los núcleos de los reactores de las unidades 1, 2 y 3 se sobrecalentaron, el combustible nuclear se derritió y se rompieron los confinamientos. Los materiales radiactivos se liberaron de la planta a la atmósfera y al océano. [115]

Transporte [ editar ]

La bomba termonuclear recuperada fue exhibida por oficiales de la Marina de los EE. UU. En la popa del buque de rescate submarino USS Petrel después de que se ubicara en el mar frente a las costas de España a una profundidad de 762 metros y se recuperara en abril de 1966.

Los accidentes de transporte pueden causar una liberación de radiactividad que resulte en contaminación o que el blindaje se dañe y provoque una irradiación directa. En Cochabamba, un equipo de radiografía gamma defectuoso fue transportado en un autobús de pasajeros como carga. La fuente gamma estaba fuera del blindaje e irradió a algunos pasajeros del autobús.

En el Reino Unido , se reveló en un caso judicial que en marzo de 2002 se transportó una fuente de radioterapia de Leeds a Sellafield con un blindaje defectuoso. El blindaje tenía un hueco en la parte inferior. Se cree que ningún ser humano ha resultado gravemente dañado por la radiación que se escapa. [116]

El 17 de enero de 1966, ocurrió una colisión fatal entre un B-52G y un KC-135 Stratotanker sobre Palomares , España (ver Accidente de Palomares B-52 en 1966 ). [117] El accidente fue designado como " Flecha Rota ", es decir, un accidente con un arma nuclear que no presenta riesgo de guerra. [118]

Fallo del equipo [ editar ]

La falla del equipo es un posible tipo de accidente. En Białystok , Polonia, en 2001, la electrónica asociada con un acelerador de partículas utilizado para el tratamiento del cáncer sufrió un mal funcionamiento. [119] Esto luego llevó a la sobreexposición de al menos un paciente. Si bien la falla inicial fue la simple falla de un diodo semiconductor , puso en marcha una serie de eventos que llevaron a una lesión por radiación.

Una causa relacionada de accidentes es la falla del software de control , como en los casos que involucran el equipo de radioterapia médica Therac-25 : la eliminación de un enclavamiento de seguridad de hardware en un nuevo modelo de diseño expuso un error no detectado previamente en el software de control, que podría haber provocado a pacientes que reciben sobredosis masivas bajo un conjunto específico de condiciones.

Error humano [ editar ]

Un boceto utilizado por los médicos para determinar la cantidad de radiación a la que cada persona había estado expuesta durante la excursión de Slotin.

Muchos de los accidentes nucleares importantes se han atribuido directamente a errores del operador o humanos . Este fue obviamente el caso en el análisis de los accidentes de Chernobyl y TMI-2. En Chernobyl, se estaba llevando a cabo un procedimiento de prueba antes del accidente. Los líderes de la prueba permitieron a los operadores desactivar e ignorar los circuitos de protección clave y las advertencias que normalmente habrían apagado el reactor. En TMI-2, los operadores permitieron que miles de galones de agua escaparan de la planta del reactor antes de observar que las bombas de refrigerante se comportaban de manera anormal. Las bombas de refrigerante se apagaron así para proteger las bombas, lo que a su vez llevó a la destrucción del propio reactor ya que el enfriamiento se perdió por completo dentro del núcleo.

Una investigación detallada sobre SL-1 determinó que un operador (quizás sin darse cuenta) sacó manualmente la barra de control central de 84 libras (38 kg) aproximadamente 26 pulgadas en lugar de la intención del procedimiento de mantenimiento de aproximadamente 4 pulgadas. [120]

Una evaluación realizada por el Commissariat à l'Énergie Atomique (CEA) en Francia concluyó que ninguna cantidad de innovación técnica puede eliminar el riesgo de errores de origen humano asociados con la operación de centrales nucleares. Se consideraron más graves dos tipos de errores: errores cometidos durante las operaciones de campo, como el mantenimiento y las pruebas, que pueden provocar un accidente; y errores humanos cometidos durante pequeños accidentes que caen en cascada hasta una falla total. [10]

En 1946, el físico del Proyecto Manhattan canadiense Louis Slotin realizó un arriesgado experimento conocido como "cosquillas en la cola del dragón" [121], que involucró dos hemisferios de berilio reflectante de neutrones que se unían alrededor de un núcleo de plutonio para llevarlo a un punto crítico. Contra los procedimientos operativos, los hemisferios se separaron solo con un destornillador. El destornillador resbaló y provocó un accidente de criticidad de reacción en cadena.llenando la habitación con radiación dañina y un destello de luz azul (causado por partículas de aire ionizadas y excitadas que regresan a sus estados no excitados). Slotin separó reflexivamente los hemisferios en reacción al destello de calor y la luz azul, evitando una mayor irradiación de varios compañeros de trabajo presentes en la habitación. Sin embargo, Slotin absorbió una dosis letal de radiación y murió nueve días después. La infame masa de plutonio utilizada en el experimento se denominó núcleo demoníaco .

Fuente perdida [ editar ]

Los accidentes de fuentes perdidas, [122] [123] también denominados fuentes huérfanas , son incidentes en los que se pierde, se roba o abandona una fuente radiactiva. Entonces, la fuente podría causar daño a los humanos. El ejemplo más conocido de este tipo de eventos es el accidente de Goiânia en 1987 en Brasil, cuando una fuente de radioterapia fue olvidada y abandonada en un hospital, para luego ser robada y abierta por carroñeros. Un caso similar ocurrió en 2000 en Samut Prakan, Tailandia, cuando la fuente de radiación de una unidad de teleterapia vencida se vendió sin registrar y se almacenó en un aparcamiento sin vigilancia del que fue robada. [124] Otros casos ocurrieron en Yanango , Perú, donde una radiografíase perdió la fuente, y Gilan , Irán, donde una fuente de radiografía hirió a un soldador . [125]

La Agencia Internacional de Energía Atómica ha proporcionado guías para los recolectores de chatarra sobre cómo se vería una fuente sellada. [126] La industria de la chatarra es aquella en la que es más probable encontrar fuentes perdidas. [127]

Los expertos creen que se perdieron hasta 50 armas nucleares durante la Guerra Fría . [118]

Comparaciones [ editar ]

Número hipotético de muertes globales que habrían resultado de la producción de energía si la producción mundial de energía se cubriera a través de una sola fuente, en 2014.

Al comparar el historial de seguridad de la energía nuclear civil con otras formas de generación eléctrica, Ball, Roberts y Simpson, el OIEA y el Instituto Paul Scherrer encontraron en estudios separados que durante el período de 1970 a 1992, solo había 39 muertes en el trabajo de trabajadores de plantas de energía nuclear en todo el mundo, mientras que durante el mismo período de tiempo, hubo 6.400 muertes en el trabajo de trabajadores de plantas de energía de carbón , 1.200 muertes en el trabajo de trabajadores de plantas de energía de gas natural y miembros de la público en general causado por centrales eléctricas de gas natural , y 4.000 muertes de miembros del público en general causadas por centrales hidroeléctricas [128] [129] [130] [cita requerida ]con la falla dela presadeBanqiaoen 1975 que resultó en 170,000-230,000 muertes solamente. [131]

Como otras fuentes comunes de energía, se estima que las centrales eléctricas de carbón matan a 24.000 estadounidenses por año debido a enfermedades pulmonares [132] y provocan 40.000 ataques cardíacos al año en los Estados Unidos. [133] Según Scientific American , la central eléctrica de carbón promedio emite 100 veces más radiación por año que una central nuclear de tamaño comparativo en forma de desechos tóxicos de carbón conocidos como cenizas volantes . [134]

En términos de accidentes de energía , las plantas hidroeléctricas fueron responsables de la mayoría de las muertes, pero los accidentes de plantas de energía nuclear ocupan el primer lugar en términos de costo económico, representando el 41 por ciento de todos los daños a la propiedad. Le siguen el petróleo y la energía hidroeléctrica con alrededor del 25 por ciento cada uno, seguidos del gas natural con el 9 por ciento y el carbón con el 2 por ciento. [25] Excluyendo Chernobyl y la presa Shimantan , los otros tres accidentes más costosos involucraron el derrame de petróleo del Exxon Valdez (Alaska), el derrame de petróleo del Prestige (España) y el accidente nuclear de Three Mile Island (Pensilvania). [25]

Seguridad nuclear [ editar ]

La seguridad nuclear abarca las acciones tomadas para prevenir accidentes nucleares y radiológicos o para limitar sus consecuencias. Esto cubre las plantas de energía nuclear , así como todas las demás instalaciones nucleares, el transporte de materiales nucleares y el uso y almacenamiento de materiales nucleares para usos médicos, eléctricos, industriales y militares.

La industria de la energía nuclear ha mejorado la seguridad y el rendimiento de los reactores y ha propuesto nuevos diseños de reactores más seguros (pero generalmente no probados), pero no hay garantía de que los reactores se diseñen, construyan y operen correctamente. [135] Se producen errores y los diseñadores de los reactores de Fukushima en Japón no anticiparon que un tsunami generado por un terremoto deshabilitaría los sistemas de respaldo que se suponía que estabilizarían el reactor después del terremoto. [136] [137] Según UBS AG, los accidentes nucleares de Fukushima I han arrojado dudas sobre si incluso una economía avanzada como Japón puede dominar la seguridad nuclear. [138]También son concebibles escenarios catastróficos que involucren ataques terroristas. [135]

En su libro Accidentes normales , Charles Perrow dice que las fallas inesperadas están integradas en los sistemas de reactores nucleares complejos y estrechamente acoplados de la sociedad. Las plantas de energía nuclear no pueden funcionar sin algunos accidentes graves. Tales accidentes son inevitables y no se pueden diseñar en torno a ellos. [139] Un equipo interdisciplinario del MIT ha estimado que, dado el crecimiento esperado de la energía nuclear entre 2005 y 2055, se esperarían al menos cuatro accidentes nucleares graves en ese período. [140] [141] Hasta la fecha, ha habido cinco accidentes graves ( daños centrales ) en el mundo desde 1970 (uno en Three Mile Island en 1979; uno en Chernobyl en 1986; y tres enFukushima-Daiichi en 2011), correspondiente al inicio de la operación de reactores de generación II . Esto lleva a que, en promedio, se produzca un accidente grave cada ocho años en todo el mundo. [137]

Cuando los reactores nucleares comienzan a envejecer, requieren un control más exhaustivo y un mantenimiento preventivo y pruebas para operar de manera segura y prevenir accidentes. Sin embargo, estas medidas pueden resultar costosas y algunos propietarios de reactores no han seguido estas recomendaciones. La mayor parte de la infraestructura nuclear existente en uso es antigua. [142]

Para combatir los accidentes asociados con el envejecimiento de las centrales nucleares, puede resultar ventajoso construir nuevos reactores nucleares y retirar las antiguas centrales nucleares. Solo en los Estados Unidos, más de 50 empresas de nueva creación están trabajando para crear diseños innovadores para plantas de energía nuclear [143] , garantizando al mismo tiempo que las plantas sean más asequibles y rentables.

Impactos ecológicos [ editar ]

Impacto en la tierra [ editar ]

Los isótopos liberados durante una fusión o un evento relacionado se dispersan típicamente en la atmósfera y luego se depositan en la superficie a través de sucesos naturales y deposición. Los isótopos que se depositan en la capa superior del suelo pueden permanecer allí durante muchos años como resultado de la vida media de dichas partículas involucradas en eventos nucleares. Debido a los efectos perjudiciales a largo plazo en la agricultura, la ganadería y la ganadería, conlleva un mayor potencial de afectar la salud y la seguridad humanas mucho después del evento real. Después del accidente de Fukushima Daiichi en 2011, las áreas agrícolas circundantes se contaminaron con más de 100.000 MBq km −2 en concentraciones de cesio. [144]Como resultado, la producción de alimentos del este de Fukushima sufrió enormes limitaciones. Debido a la naturaleza topográfica de Japón, así como al patrón meteorológico de la prefectura, los depósitos de cesio y otros isótopos residen en la capa superior de los suelos de todo el este y el noreste de Japón. Afortunadamente, las cadenas montañosas han protegido el oeste de Japón. El desastre de Chernobyl en 1986 provocó que aproximadamente 125.000 mi 2 de tierra en Ucrania, Bielorrusia y Rusia estuvieran expuestas a la radiación. [145] La cantidad de radiación concentrada causó graves daños a la reproducción de las plantas, lo que provocó que la mayoría de las plantas no pudieran reproducirse durante un mínimo de tres años. Muchas de estas ocurrencias en tierra pueden ser el resultado de la distribución de isótopos a través de los sistemas de agua.

Impacto en el agua [ editar ]

Accidente de Fukushima Daiichi [ editar ]

En 2013, se encontraron aguas subterráneas contaminadas entre algunos de los edificios de turbinas afectados en la instalación de Fukushima Daiichi, incluidas ubicaciones en los puertos marítimos fronterizos que desembocaban en el Océano Pacífico. En ambos lugares, la instalación normalmente expulsa agua limpia para alimentar otros sistemas de aguas subterráneas. La Compañía de Energía Eléctrica de Tokio (TEPCO), la entidad que administra y opera la instalación, investigó más a fondo la contaminación en áreas que se considerarían seguras para realizar operaciones. Descubrieron que una cantidad significativa de contaminación se originó en zanjas de cables subterráneos que se conectaban a bombas de circulación dentro de la instalación. Tanto la Agencia Internacional de Energía Atómica (OIEA) como TEPCO confirmaron que esta contaminación fue resultado del terremoto de 2011. [146]Debido a daños como estos, la planta de Fukushima liberó material nuclear en el Océano Pacífico y ha continuado haciéndolo. Después de 5 años de filtraciones, los contaminantes llegaron a todos los rincones del Océano Pacífico desde América del Norte, Australia y la Patagonia. [147] A lo largo de la misma costa, el Instituto Oceanográfico Woods Hole (WHOI) encontró trazas de Fukushima contamina a 100 millas (150 km) de la costa de Eureka, California en noviembre de 2014. [146] A pesar de los aumentos relativamente dramáticos de la radiación, los niveles de contaminación aún caen por debajo del estándar de la Organización Mundial de la Salud (OMS) para agua potable limpia. [146]

En 2019, el gobierno japonés anunció que estaba considerando la posibilidad de verter agua contaminada del reactor de Fukushima en el Océano Pacífico. El ministro de Medio Ambiente japonés, Yoshiaki Harada, informó que TEPCO había recogido más de un millón de toneladas de agua contaminada y que para 2022 se quedarían sin espacio para almacenar de forma segura el agua radiactiva. [148]

Múltiples agencias privadas, así como varios gobiernos de América del Norte, monitorean la propagación de la radiación en todo el Pacífico para rastrear los peligros potenciales que puede introducir en los sistemas alimentarios, los suministros de agua subterránea y los ecosistemas. En 2014, la Administración de Drogas y Alimentos de los Estados Unidos (FDA) publicó un informe que indica que los radionucleidos, rastreados de la instalación de Fukushima, estaban presentes en el suministro de alimentos de los Estados Unidos, pero no a niveles considerados una amenaza para la salud pública, también. como cualquier alimento y producto agrícola importado de fuentes japonesas. [149]Se cree comúnmente que, con la tasa de fuga actual de radionúclidos, la dispersión en el agua resultaría beneficiosa ya que la mayoría de los isótopos se diluirían en el agua y se volverían menos efectivos con el tiempo, gracias a la desintegración radiactiva. El cesio (Cs-137) es el isótopo principal liberado por las instalaciones de Fukushima Daiichi. [150] El Cs-137 tiene una vida media larga, lo que significa que podría tener efectos dañinos a largo plazo, pero a partir de ahora, sus niveles de 200 km en las afueras de Fukushima muestran niveles cercanos a los anteriores al accidente con poca propagación a América del Norte. costas. [146]

Accidente de Chernobyl [ editar ]

Se pueden ver pruebas del evento de Chernobyl de 1986. Debido a la naturaleza violenta del accidente en Chernobyl, una parte considerable de la contaminación radiactiva que resultó de la atmósfera fueron partículas que se dispersaron durante la explosión. Muchos de estos contaminantes se asentaron en los sistemas de aguas subterráneas en las áreas circundantes inmediatas, pero también en Rusia y Bielorrusia. Debido a la radiación resultante en las aguas subterráneas, los efectos ecológicos del desastre se pueden ver en varios aspectos a lo largo de la línea del proceso ambiental. Los radionúclidos transportados por los sistemas de aguas subterráneas en las áreas de Chernobyl y sus alrededores han provocado que las plantas de la región y los animales y, finalmente, los humanos, las absorban las plantas de la región y, finalmente, los seres humanos, ya que uno de los puntos de mayor exposición a la radiación fue la agricultura contaminada agua subterránea. [151]Una vez más, una de las mayores preocupaciones de la población local dentro de la zona de exclusión de 30 km es la ingesta de Cs-137 a través del consumo de productos agrícolas contaminados con aguas subterráneas. Comparativamente, gracias a las condiciones ambientales y del suelo fuera de la zona de exclusión, los niveles registrados están por debajo de los que requieren rehabilitación según un estudio de 1996. [151] Durante este evento, el transporte de material radiactivo por las aguas subterráneas traspasó las fronteras hacia los países vecinos. . Bielorrusia, situada en la frontera norte de Chernobyl, estaba sujeta a aproximadamente 250.000 hectáreas de tierras de cultivo previamente utilizables en manos de funcionarios estatales hasta que se consideraran seguras. [152]

El riesgo radiológico fuera del sitio se puede encontrar en forma de inundaciones. Se ha considerado que muchos ciudadanos de las áreas circundantes corren riesgo de exposición a la radiación debido a la proximidad del reactor de Chernobyl a las llanuras aluviales. Se realizó un estudio realizado en 1996 para ver hasta qué punto se sintieron los efectos radiactivos en Europa del Este. Se descubrió que el lago Kojanovskoe en Rusia, a 250 km del lugar del accidente de Chernobyl, era uno de los lagos más afectados del área del desastre. [153] Se encontró que el pescado recolectado en el lago era 60 veces más radiactivo que el Estándar de la Unión Europea. Una investigación adicional encontró que la fuente de agua que alimenta el lago proporcionó agua potable a aproximadamente 9 millones de ucranianos, así como también proporcionó riego agrícola y alimentos a 23 millones más. [153]

Se construyó una cubierta alrededor del reactor dañado de la planta nuclear de Chernobyl. Esto ayuda a remediar las fugas de material radiactivo del lugar del accidente, pero hace poco para ayudar al área local con isótopos que se dispersaron en sus suelos y vías fluviales hace más de 30 años. En parte debido a las áreas urbanas ya abandonadas, así como a las relaciones internacionales que afectan actualmente al país, los esfuerzos de remediación se han minimizado en comparación con las acciones de limpieza iniciales y accidentes más recientes como el incidente de Fukushima. Los laboratorios en el sitio, los pozos de monitoreo y las estaciones meteorológicas se pueden encontrar en una función de monitoreo en los lugares clave afectados por el accidente. [154]

Efectos de la exposición aguda a la radiación [ editar ]

Ver también [ editar ]

  • Comité Europeo de Riesgo Radiológico
  • Incidente en Hospital Son Dureta
  • 1990 Accidente de radioterapia en la Clínica de Zaragoza
  • Denunciantes nucleares
  • Lista de accidentes nucleares militares
  • Síndrome de radiación aguda
  • Genpatsu-shinsai
  • Escala internacional de eventos nucleares
  • Debate sobre la energía nuclear
  • Envenenamiento por radiación (desambiguación)
  • Categoría: Víctimas de intoxicación radiológica

Referencias [ editar ]

  1. ^ "FUENTES, EFECTOS Y RIESGOS DE LA RADIACIÓN IONIZANTE: Informe UNSCEAR 2013" (PDF) . Unscea.org . Consultado el 12 de marzo de 2019 .
  2. ^ Richard Schiffman (12 de marzo de 2013). "Dos años después, Estados Unidos no ha aprendido lecciones del desastre nuclear de Fukushima" . The Guardian .
  3. ^ Martin Fackler (1 de junio de 2011). "Informe encuentra Japón subestimado peligro de tsunami" . New York Times .
  4. ^ "Informe de seguridad de OKs regulador sobre unidades Kashiwazaki-Kariwa - World Nuclear News" . World-nuclear-news.org . Consultado el 12 de marzo de 2019 .
  5. ^ "Equipo del OIEA para informar sobre el examen de la planta de energía nuclear de Kashiwazaki Kariwa" (PDF) . Iaea.org . Consultado el 12 de marzo de 2019 .
  6. ^ Personal, OIEA, AEN / NEA. Manual del usuario de la escala internacional de sucesos nucleares y radiológicos, edición de 2008 (PDF) . Viena, Austria: Organismo Internacional de Energía Atómica. pag. 183. Archivado desde el original (PDF) el 15 de mayo de 2011 . Consultado el 26 de julio de 2010 . CS1 maint: varios nombres: lista de autores ( enlace )
  7. Yablokov, Alexey V .; Nesterenko, Vassily B .; Nesterenko, Alexey; Sherman-Nevinger, editor consultor, Jannette D. (2009). Chernobyl: Consecuencias de la catástrofe para las personas y el medio ambiente . Boston, MA: Blackwell Publishing para los Anales de la Academia de Ciencias de Nueva York. ISBN 978-1-57331-757-3. Consultado el 11 de junio de 2016 .
  8. ^ a b M.V. Ramana . Energía nuclear: cuestiones económicas, de seguridad, de salud y medioambientales de las tecnologías a corto plazo, Revisión anual del medio ambiente y los recursos , 2009, 34, pág. 136.
  9. ^ Matthew Wald (29 de febrero de 2012). "Los altibajos nucleares de 2011" . New York Times .
  10. ↑ a b c d e f g Sovacool, Benjamin K. (2010). "Una evaluación crítica de la energía nuclear y la electricidad renovable en Asia". Revista de Asia contemporánea . 40 (3): 369–400. doi : 10.1080 / 00472331003798350 . S2CID 154882872 . 
  11. ^ a b c "Los peores desastres nucleares" . TIME.com . 25 de marzo de 2009.
  12. ^ Gralla, Fabienne, Abson, David J. y Muller, Anders, P. et al. "Los accidentes nucleares requieren una investigación energética transdisciplinaria", Sustainability Science , enero de 2015.
  13. ↑ a b c Kristin Shrader-Frechette (octubre de 2011). "Fukushima, epistemología defectuosa y eventos de cisne negro" (PDF) . Ética, política y medio ambiente, vol. 14, N ° 3 .
  14. ↑ a b c d e f Johnston, Robert (23 de septiembre de 2007). "Accidentes de radiación más mortales y otros eventos que causan víctimas por radiación" . Base de datos de Incidentes Radiológicos y Eventos Relacionados.
  15. ^ a b Gusev, Igor; Guskova, Angelina; Mettler, Fred A. (28 de marzo de 2001). Manejo médico de accidentes por radiación, segunda edición . Prensa CRC. ISBN 9781420037197.
  16. ^ Fortalecimiento de la seguridad de las fuentes de radiación p. 15.
  17. ^ a b "NRC: Aviso de información No. 85-57: Fuente perdida de Iridium-192 que resultó en la muerte de ocho personas en Marruecos" . Nrc.gov .
  18. ^ a b El accidente radiológico en Goiania p. 2, Pub.iaea.org
  19. ^ a b c d Pallava Bagla. "Accidente por radiación, una 'llamada de atención' para la comunidad científica de la India" Science , vol. 328, 7 de mayo de 2010, pág. 679.
  20. ^ "Publicaciones científicas y técnicas de especial interés del OIEA" . Pub.iaea.org . Archivado desde el original el 3 de mayo de 2017 . Consultado el 7 de abril de 2016 .
  21. ^ "Chernobyl: la verdadera magnitud del accidente" . Organización Mundial de la Salud. 2005-09-05 . Consultado el 17 de junio de 2019 .
  22. ^ "Predecir las consecuencias para la salud mundial de la metodología del accidente de Chernobyl del Comité Europeo de Riesgo de Radiación" (PDF) . Bsrrw.org .
  23. ^ "Consecuencias de Chernobyl de la catástrofe para las personas y el medio ambiente" (PDF) . Strahlentelex.de .
  24. ^ "National Geographic: historias de animales, naturaleza y cultura" . NatGeo . Consultado el 14 de noviembre de 2019 .
  25. ^ a b c d Benjamin K. Sovacool . Una evaluación preliminar de los accidentes energéticos importantes, 1907–2007, Energy Policy 36 (2008), págs. 1802-1820.
  26. ^ MRStJ. Capataz, Actualización de química de accidentes de reactores, Cogent Chemistry, 2018, volumen 4, 1450944, https://www.cogentoa.com/article/10.1080/23312009.2018.1450944
  27. ^ Benjamin K. Sovacool (2009). El siglo de los accidentes: accidentes energéticos destacados en los últimos 100 años Archivado el 8 de agosto de 2014 en la Wayback Machine.
  28. ^ a b c Cronología: accidentes de plantas nucleares BBC News , 11 de julio de 2006.
  29. ^ a b Cohen, Jennie. "Los peores desastres nucleares de la historia" . HISTORIA .
  30. ^ "Accidentes nucleares" . Hyperphysics.phy-astr.gsu.edu .
  31. ^ cs: Havárie elektrárny Jaslovské Bohunice A-1
  32. ^ "Fuentes y efectos de la radiación ionizante - Informe UNSCEAR 2008. Volumen II: EFECTOS. Anexos científicos C, D y E" (PDF) . NO ESCUCHAR . 6 de abril de 2011. págs. 64–65 . Consultado el 23 de marzo de 2019 .
  33. ^ "Evaluaciones UNSCEAR del accidente de Chernobyl" . Unscear.org . Consultado el 19 de octubre de 2016 .
  34. ^ Ver en el artículo de referencia Lista de accidentes de energía nuclear por país , laestimaciónoficial de la OMS
  35. ^ "La nit més llarga de Vandellòs" . El País Catalunya .
  36. ^ "Trabajador muere en la planta nuclear de Fukushima dañada" . CBS News . 2011-05-14.
  37. ^ "Registro de actualización de accidentes nucleares de Fukushima" . Iaea.org . 2011-04-11.
  38. ^ Rich, Motoko (6 de septiembre de 2018). "Por primera vez, Japón dice que la radiación de Fukushima causó la muerte por cáncer de los trabajadores (publicado en 2018)" , a través de NYTimes.com.
  39. ^ Jiji, Kyodo (24 de marzo de 2018). "El costo estimado del desastre de Fukushima podría dispararse a 218 mil millones de yenes" . The Japan Times. Archivado desde el original el 23 de marzo de 2018 . Consultado el 25 de septiembre de 2018 . ... se disparan a entre ¥ 131,8 mil millones y ¥ 218,2 mil millones.CS1 maint: bot: original URL status unknown (link) - Según la portada de la fuente para el 2018-03-24, el tipo de cambio fue de 105 ¥ / USD, lo que resultó en un rango de USD1,255-2,078.
  40. ^ Julia Mareike Neles, Christoph Pistner (Hrsg.), Kernenergie. ¿Eine Technik für die Zukunft? , Berlín - Heidelberg 2012, S. 114 f.
  41. ↑ a b Charles D. Ferguson y Frank A. Settle (2012). "El futuro de la energía nuclear en los Estados Unidos" (PDF) . Federación de Científicos Americanos .
  42. ^ Benjamin K. Sovacool (2011). Impugnando el futuro de la energía nuclear : una evaluación global crítica de la energía atómica , World Scientific, p. 192.
  43. ^ Kennette Benedict (9 de agosto de 2012). "Desobediencia civil" . Boletín de los científicos atómicos .
  44. ^ Jay Davis. Después de un 11 de septiembre nuclear The Washington Post , 25 de marzo de 2008.
  45. ^ Brian Michael Jenkins. ¿Un 11-S nuclear? CNN.com , 11 de septiembre de 2008.
  46. ^ Orde Kittrie . Evitar la catástrofe: por qué el Tratado de no proliferación nuclear está perdiendo su capacidad de disuasión y cómo restaurarlo Archivado el 7 dejunio de 2010en la Wayback Machine el 22 de mayo de 2007, p. 338.
  47. ^ Nicholas D. Kristof. A Nuclear 9/11 The New York Times , 10 de marzo de 2004.
  48. ^ "Expertos legales: el ataque de Stuxnet contra Irán fue un 'acto de fuerza ' ilegal " . Cableado. 25 de marzo de 2013.
  49. ^ Penny Hitchin, "Ataques cibernéticos a la industria nuclear", Nuclear Engineering International , 15 de septiembre de 2015.
  50. ^ a b c d e Moss, William; Eckhardt, Roger (1995). "Los experimentos de inyección de plutonio humano" (PDF) . Ciencia de Los Alamos . Protección radiológica y experimentos de radiación humana (23): 177-223 . Consultado el 13 de noviembre de 2012 .
  51. ^ "Los medios y yo: [La historia de la radiación que nadie tocaría] , Geoffrey Sea, Columbia Journalism Review , marzo / abril de 1994.
  52. ^ Cameron L. Tracy, Megan K. Dustin y Rodney C. Ewing, Política: Reevaluar el depósito de desechos nucleares de Nuevo México , Nature , 13 de enero de 2016.
  53. ^ Togzhan Kassenova (28 de septiembre de 2009). "El peaje duradero de las pruebas nucleares de Semipalatinsk" . Boletín de los científicos atómicos .
  54. ^ Welsome, Eileen (1999). Las limas de plutonio . Nueva York, NY: Delacorte Press. pag. 184 . ISBN 978-0385314022.
  55. ^ Informe final archivado el 24 de febrero de 2013 en Wayback Machine , Comité Asesor sobre Experimentos de Radiación Humana , 1985
  56. ^ a b c d e f g h i "Anexo C: exposiciones a la radiación en accidentes" (PDF) . Fuentes y efectos de las radiaciones ionizantes - Informe de 2008 a la Asamblea General . Comité Científico de las Naciones Unidas sobre los Efectos de las Radiaciones Atómicas . II Anexos científicos C, D y E. 2011.
  57. ^ "Las preguntas frecuentes nucleares canadienses - sección D: seguridad y responsabilidad" . Nuclearfaq.ca . Consultado el 7 de abril de 2016 .
  58. ^ "El incidente de NRX" . Media.cns-snc.ca .
  59. ^ "Exposición de Jimmy Carter al peligro nuclear" . Archivado desde el original el 28 de octubre de 2012.
  60. ^ "La evacuación de Rongelap" . Archivado desde el original el 13 de febrero de 2007. CS1 maint: discouraged parameter (link)
  61. Newtan, Samuel Upton ( 1 de junio de 2007). Primera Guerra Nuclear y Otros Grandes Desastres Nucleares del Siglo XX . AuthorHouse. ISBN 9781425985127.
  62. ^ a b "Quizás lo peor, no el primero" . Tiempo . 12 de mayo de 1986.
  63. ^ Laramee, Eve Andree. "Seguimiento de nuestro legado nuclear" . WEAD .
  64. ^ McInroy, James F. (1995), "Una verdadera medida de exposición al plutonio: el programa de análisis de tejido humano en Los Alamos" (PDF) , Los Alamos Science , 23 : 235-255
  65. ^ Barry Schneider (mayo de 1975). "Big Bangs de Little Bombs" . Boletín de los científicos atómicos . 31 (5): 28. Código Bibliográfico : 1975BuAtS..31e..24S . doi : 10.1080 / 00963402.1975.11458238 . Consultado el 13 de julio de 2009 .
  66. ^ a b Fortalecimiento de la seguridad de las fuentes de radiación p. 14.
  67. ^ "Ticonderoga Cruise Reports" (lista web Navy.mil de la compilación de agosto de 2003 de informes de cruceros) . Consultado el 20 de abril de 2012 . El Archivo Nacional sostienen [s] registros de la cubierta de portaaviones para el conflicto de Vietnam.
  68. ^ Flechas rotas en www.atomicarchive.com. Consultado el 24 de agosto de 2007.
  69. ^ "Estados Unidos confirma la pérdida de la bomba H en el 65 cerca de las islas japonesas". The Washington Post . Reuters . 9 de mayo de 1989. p. A – 27.
  70. ^ Vinod K. Jose (1 de diciembre de 2010). "Río Deep Mountain High" . Revista Caravan . Consultado el 20 de mayo de 2013 .
  71. ^ Hayes, Ron (17 de enero de 2007). "El incidente de la bomba H paralizó la carrera del piloto" . Puesto de Palm Beach. Archivado desde el original el 16 de junio de 2011 . Consultado el 24 de mayo de 2006 .
  72. ^ Maydew, Randall C. (1997). America's Lost H-Bomb: Palomares, España, 1966 . Prensa de la Universidad de Sunflower. ISBN 978-0-89745-214-4.
  73. ^ Phillips, Dave (19 de junio de 2016). "Décadas más tarde, enfermedad entre aviadores después de un accidente con bomba de hidrógeno" . The New York Times . Consultado el 20 de junio de 2016 .
  74. ^ Long, Tony (17 de enero de 2008). "17 de enero de 1966: Llueven bombas H sobre un pueblo pesquero español" . CON CABLE. Archivado desde el original el 3 de diciembre de 2008 . Consultado el 16 de febrero de 2008 .
  75. ^ a b Ricks, Robert C .; et al. (2000). "Registro de accidentes por radiación REAC / TS: Actualización de accidentes en los Estados Unidos" (PDF) . Asociación Internacional de Protección Radiológica. pag. 6.
  76. ^ Segundo informe de revisión quinquenal para el. United Nuclear Corporation. Unidad operativa de agua subterránea EPA , septiembre de 2003
  77. ^ "Copia archivada" . Archivado desde el original el 22 de julio de 2016 . Consultado el 27 de noviembre de 2016 .CS1 maint: archived copy as title (link)
  78. ^ Shum, Edward Y. "Liberación accidental de UF6 en las instalaciones de Sequoyah Fuels Corporation en Gore, Oklahoma, Estados Unidos" (PDF) . Comisión Reguladora Nuclear . Consultado el 12 de febrero de 2017 .
  79. ^ Brujas, Doug; deLemos, Jamie L .; Bui, gato (2007). "La liberación de combustibles de la Corporación Sequoyah y el derrame de rocas de la iglesia: liberaciones nucleares no publicadas en las comunidades de indios americanos" . Revista estadounidense de salud pública . 97 (9): 1595-1600. doi : 10.2105 / ajph.2006.103044 . PMC 1963288 . PMID 17666688 .  
  80. ^ Kennedy, J. Michael (8 de enero de 1986). "Ciudad de Oklahoma reflexiona sobre el impacto del accidente fatal de la planta de combustible nuclear" . Los Angeles Times . Consultado el 12 de febrero de 2017 .
  81. ↑ a b c Yukiya Amano (26 de marzo de 2012). "Es hora de asegurar mejor los materiales radiactivos" . Washington Post .
  82. ^ "Los peores desastres nucleares" . TIME.com . 25 de marzo de 2009.
  83. ^ a b c d e f g h Turai, István; Veress, Katalin (2001). "Accidentes por radiación: ocurrencia, tipos, consecuencias, manejo médico y lecciones por aprender" . CEJOEM . Archivado desde el original el 15 de mayo de 2013 . Consultado el 1 de septiembre de 2012 .
  84. ^ "Archivo de sonido" (MP3) . Pmg.org.za . Consultado el 12 de marzo de 2019 .
  85. ^ "Investigación de una exposición accidental de pacientes de radioterapia en Panamá - Agencia Internacional de Energía Atómica" (PDF) . Pub-iaea.org . Consultado el 12 de marzo de 2019 .
  86. ^ "Hechos y detalles sobre la energía nuclear en Japón" . Archivado desde el original el 11 de septiembre de 2013. CS1 maint: discouraged parameter (link)
  87. ^ (PDF) . 6 de octubre de 2006 https://web.archive.org/web/20061006142814/http://www.nda.gov.uk/documents/assessment_of_issues_associated_with_thorp_non-restart_and_restart_options,_published_2_march_2006.pdf . Archivado desde el original (PDF) el 2006-10-06 . Consultado el 12 de marzo de 2019 . Falta o vacío |title=( ayuda )
  88. ^ "TEPCO: Comunicado de prensa - estado de la planta de la central nuclear de Fukushima Daini (a partir de las 2:00 am del 13 de marzo)" . Tepco.co.jp .
  89. ^ Proyecto de uranio WISE. "Problemas en la mina de uranio Rössing, Namibia" . Servicio Mundial de Información sobre Energía, Proyecto Uranio . Consultado el 7 de abril de 2014 .
  90. ^ Commission de Recherche et d'Information Indépendantes sur la Radioactivité. "Resultados preliminares del monitoreo de radiación CRIIRAD cerca de minas de uranio en Namibia" (PDF) . 11 de abril de 2012 . CRIIRAD . Consultado el 7 de abril de 2014 .
  91. ^ Commission de Recherche et d'Information Indépendantes sur la Radioactivité. "Informe preliminar de CRIIRAD No. 12-32b Resultados preliminares de la vigilancia de la radiación cerca de las minas de uranio en Namibia" (PDF) . 5 de abril de 2012 . Proyecto CRIIRAD EJOLT . Consultado el 7 de abril de 2014 .
  92. ^ Instituto de Investigación y Recursos Laborales. "Trabajadores de Namibia en tiempos de incertidumbre: el movimiento obrero 20 años después de la independencia" . 2009 . LaRRI . Consultado el 7 de abril de 2014 .
  93. ^ LaRRI. "Nuestro trabajo: Instituto de Investigación y Recursos Laborales" . 25 de abril de 2013 . LaRII. Archivado desde el original el 8 de abril de 2014 . Consultado el 7 de abril de 2014 .
  94. ^ Shinbdondola-Mote, Hilma (enero de 2009). "La minería de uranio en Namibia: el misterio detrás de 'radiación de bajo nivel ' " . Instituto de Investigación y Recursos Laborales (LaRRI) . Consultado el 7 de abril de 2014 .
  95. ^ Fleck, John (8 de marzo de 2013). "Nunca se suponía que ocurriera una fuga de radiación WIPP" . Diario de Albuquerque . Consultado el 28 de marzo de 2014 .
  96. ^ "Lo que sucedió en WIPP en febrero de 2014" . Departamento de Energía de EE. UU . Consultado el 28 de marzo de 2014 .
  97. Ialenti, Vincent (12 de marzo de 2019). "Los residuos se apresuran: cómo una campaña para acelerar los envíos de residuos nucleares cierra el depósito a largo plazo de WIPP". Boletín de los científicos atómicos . 74 (4): 262-275. Código Bibliográfico : 2018BuAtS..74d.262I . doi : 10.1080 / 00963402.2018.1486616 . S2CID 149512093 . SSRN 3203978 .  
  98. ^ "Galería de pruebas nucleares de Estados Unidos" . El Archivo de Armas Nucleares . 6 de agosto de 2001.
  99. ^ "Reclamaciones del sistema de compensación de exposición a la radiación hasta la fecha Resumen de reclamaciones recibidas el 15/08/2013 Todas las reclamaciones" (PDF) . Departamento de Justicia de los Estados Unidos . 16 de agosto de 2013. - actualizado regularmente
  100. ^ Base de datos sobre tráfico ilícito del OIEA (ITDB) Archivado el 5 de noviembre de 2014 en Wayback Machine p. 3.
  101. ^ "Informe del OIEA" . En foco: Chernobyl . Consultado el 31 de mayo de 2008 .
  102. ^ Bunn, Matthew. "Asegurar la bomba 2010: asegurar todos los materiales nucleares en cuatro años" (PDF) . Presidente y becarios de Harvard College . Consultado el 28 de enero de 2013 .
  103. ^ Nelson, Dean (11 de agosto de 2009). "Bases nucleares de Pakistán atacadas por al-Qa" . El telégrafo . Consultado el 6 de junio de 2018 .
  104. ^ Rhys Blakeley, "Los terroristas 'han atacado sitios nucleares de Pakistán tres veces' ", Times Online (11 de agosto de 2009).
  105. ^ "LIO | Noticias de Pretoria | LIO" . LIO . Consultado el 7 de abril de 2016 .
  106. ^ Washington Post, 20 de diciembre de 2007, artículo de opinión de Micah Zenko
  107. ^ Bunn, Matthew y Col-Gen. EP Maslin (2010). "Todas las existencias de materiales nucleares utilizables para armas en todo el mundo deben protegerse contra las amenazas terroristas globales" (PDF) . Centro Belfer de Ciencia y Asuntos Internacionales, Universidad de Harvard . Consultado el 26 de julio de 2012 .
  108. ^ "Marcando el comienzo de la era del terrorismo nuclear", por Patterson, Andrew J. MD, PhD, Medicina de cuidados críticos , v. 35, p.953-954, 2007.
  109. ^ Comisión Reguladora Nuclear, Estados Unidos; Rasmussen, Norman C. (1975). Estudio de seguridad del reactor .
  110. ^ "Meltdown - Definición y más del diccionario gratuito Merriam-Webster" . Merriam-webster.com .
  111. ^ "El accidente de criticidad en Sarov" (PDF) . Agencia Internacional de Energía Atómica. Febrero de 2001 . Consultado el 12 de febrero de 2012 .
  112. ^ "INFORME SOBRE LA MISIÓN DE DETECCIÓN DE HECHOS PRELIMINARES TRAS EL ACCIDENTE EN LA INSTALACIÓN DE PROCESAMIENTO DE COMBUSTIBLE NUCLEAR EN TOKAIMURA, JAPÓN" (PDF) . Pub.iaea.org . Consultado el 12 de marzo de 2019 .
  113. ^ "Falla la instalación de prueba crítica de Afrikantov OKBM" . En.gosnadzor.ru . Consultado el 12 de marzo de 2019 .
  114. ^ "Apagón de la estación nuclear" " " . Todas las cosas nucleares . 2011-03-17 . Consultado el 11 de mayo de 2020 .
  115. ^ "El accidente de Fukushima Daiichi. Informe del Director General" (PDF) . Agencia Internacional de Energía Atómica. 2015 . Consultado el 15 de abril de 2018 .
  116. ^ "Carretera contenedor 'radiación filtrada ' " . BBC News . 17 de febrero de 2006.
  117. ^ "Estados Unidos para limpiar el sitio radiactivo español 49 años después del accidente aéreo" . The Guardian . 19 de octubre de 2015.
  118. ^ a b "Bombas atómicas perdidas de la guerra fría" . Der Spiegel . 14 de noviembre de 2008. Archivado desde el original el 27 de junio de 2019 . Consultado el 20 de agosto de 2019 .
  119. ^ "Sobreexposición accidental de pacientes de radioterapia en Bialystok" (PDF) . Agencia Internacional de Energía Atómica. Febrero de 2004 . Consultado el 12 de febrero de 2012 .
  120. ^ Tucker, Todd (2009). América atómica: cómo una explosión mortal y un almirante temido cambiaron el curso de la historia nuclear . Nueva York: Free Press. ISBN 978-1-4165-4433-3.Ver resumen: [1]
  121. ^ Jungk, Robert. Más brillante que mil soles. 1956. p.194
  122. ^ "Resultado de la consulta de WebCite" (PDF) . Archivado desde el original (PDF) el 30 de julio de 2011. Citar utiliza un título genérico ( ayuda )
  123. ^ "Resultado de la consulta de WebCite" (PDF) . Webcitation.org . Archivado desde el original (PDF) el 30 de julio de 2011 . Consultado el 7 de abril de 2016 . Citar utiliza un título genérico ( ayuda )
  124. ^ "El accidente radiológico en Samut Prakarn" (PDF) . Agencia Internacional de Energía Atómica. 2002.
  125. ^ "El accidente radiológico en Gilan" (PDF) . Pub.iaea.org . Consultado el 12 de marzo de 2019 .
  126. ^ "Panfletos y folletos temáticos del OIEA" (PDF) . Iaea.org .
  127. ^ . 4 de marzo de 2009 https://web.archive.org/web/20090304080024/http://www.srp-uk.org/srpcdrom/p8-5.doc . Archivado desde el original el 4 de marzo de 2009 . Consultado el 12 de marzo de 2019 . Falta o vacío |title=( ayuda )
  128. ^ Ball, Roberts, Simpson; et al. (1994). "Informe de investigación n. ° 20". Centro de Gestión Ambiental y de Riesgos . Reino Unido: Universidad de East Anglia.CS1 maint: multiple names: authors list (link)
  129. ^ Hirschberg y col., Paul Scherrer Institut, 1996; en: OIEA, Desarrollo sostenible y energía nuclear, 1997
  130. ^ Accidentes severos en el sector energético, Paul Scherrer Institut, 2001.
  131. ^ Shellenberger, Michael. "Suena loco, pero Fukushima, Chernobyl y Three Mile Island muestran por qué la energía nuclear es intrínsecamente segura" . Forbes . Consultado el 17 de febrero de 2020 .
  132. ^ "El senador Reid le dice a Estados Unidos que el carbón los enferma" . 2008-07-10. Archivado desde el original el 17 de mayo de 2009 . Consultado el 18 de mayo de 2009 .
  133. ^ "¿Plantas de energía mortales? Estudio de debates sobre combustibles" . 2004-06-09 . Consultado el 18 de mayo de 2009 .
  134. ^ Scientific American, 13 de diciembre de 2007 "La ceniza de carbón es más radiactiva que los residuos nucleares" . 2009-05-18 . Consultado el 18 de mayo de 2009 .
  135. ^ a b Jacobson, Mark Z. y Delucchi, Mark A. (2010). "Proporcionar toda la energía global con energía eólica, hídrica y solar, parte I: tecnologías, recursos energéticos, cantidades y áreas de infraestructura y materiales" (PDF) . Política energética . pag. 6. [ enlace muerto ]
  136. ^ Hugh Gusterson (16 de marzo de 2011). "Las lecciones de Fukushima" . Boletín de los científicos atómicos . Archivado desde el original el 6 de junio de 2013.
  137. ↑ a b Diaz Maurin, François (26 de marzo de 2011). "Fukushima: consecuencias de problemas sistémicos en el diseño de plantas nucleares" . Semanario Económico y Político . 46 (13): 10-12.
  138. ^ James Paton (4 de abril de 2011). "La crisis de Fukushima es peor para la energía atómica que Chernobyl, dice UBS" . Bloomberg Businessweek .
  139. ^ Daniel E Whitney (2003). "Accidentes normales de Charles Perrow" (PDF) . Instituto de Tecnología de Massachusetts .
  140. ^ Benjamin K. Sovacool (enero de 2011). "Segundas reflexiones sobre la energía nuclear" (PDF) . Universidad Nacional de Singapur. pag. 8. Archivado desde el original (PDF) el 16 de enero de 2013.
  141. ^ Instituto de Tecnología de Massachusetts (2003). "El futuro de la energía nuclear" (PDF) . Web.mit.edu . pag. 48.
  142. ^ "Plantas nucleares envejecidas, reducción de costos de la industria y supervisión de seguridad reducida: una combinación peligrosa" . Boletín de los científicos atómicos . 2019-08-29 . Consultado el 18 de enero de 2021 .
  143. ^ "¿Qué tecnología tendrá un mayor impacto en el futuro de la energía? 18 expertos comparten sus conocimientos" . Disruptor diario . 2019-06-29 . Consultado el 18 de enero de 2021 .
  144. ^ Yasunari, TJ; Stohl, A .; Hayano, RS; Burkhart, JF; Eckhardt, S .; Yasunari, T. (14 de noviembre de 2011). "Deposición de cesio-137 y contaminación de suelos japoneses debido al accidente nuclear de Fukushima" . Actas de la Academia Nacional de Ciencias . 108 (49): 19530-19534. doi : 10.1073 / pnas.1112058108 . ISSN 0027-8424 . PMC 3241755 . PMID 22084074 .   
  145. ^ Contaminación por radionúclidos de suelos y aguas subterráneas en el lugar de eliminación de desechos del lago Karachai (Rusia) y el lugar del accidente de Chernobyl (Ucrania): análisis de campo y estudio de modelado . Italia: Comisión Europea. Università degli Studi di Padova. 2000.
  146. ^ a b c d Kratchman, Jessica; Bernando, Robert (enero de 2015). "Contaminación del agua de Fukushima: impactos en la costa oeste de Estados Unidos" (PDF) . Lecciones aprendidas de Japón . Comisión Reguladora Nuclear de EE . UU . Consultado el 2 de mayo de 2020 .
  147. ^ "¿Qué tan radiactivo es nuestro océano?" . www.ourradioactiveocean.org . Consultado el 11 de mayo de 2020 .
  148. ^ "OIEA apoya la descarga de agua de Fukushima Daiichi: Regulación y seguridad - World Nuclear News" . world-nuclear-news.org . Consultado el 11 de mayo de 2020 .
  149. ^ "Respuesta de la FDA al incidente de la instalación de energía nuclear de Fukushima Dai-ichi" . FDA . 2019-02-09.
  150. ^ "Fukushima: exposición a la radiación" . Asociación Nuclear Mundial . Consultado el 11 de mayo de 2020 .
  151. ↑ a b Filyushkin, IV (julio de 1996). "El accidente de Chernobyl y la reubicación de personas a largo plazo resultante". Física de la salud . 71 (1): 4–8. doi : 10.1097 / 00004032-199607000-00001 . PMID 8655328 : a través de journals.lww.com. 
  152. ^ Chernobyl: Evaluación del impacto radiológico y en la salud (Chernobyl: Then Years On ed.). Agencia de Energía Nuclear. 2002.
  153. ↑ a b Edwards, Rob (23 de marzo de 1996). "Las inundaciones de Chernobyl ponen en peligro a millones" . Nuevo científico . Consultado el 11 de mayo de 2020 .
  154. ^ Bugai, Dmitri A. (2014). "Contaminación de las aguas subterráneas tras el accidente de Chernobyl: descripción general de los datos de seguimiento, evaluación de los riesgos radiológicos y análisis de las medidas correctoras" . doi : 10.13140 / RG.2.1.1259.6248 . Cite journal requires |journal= (help)
  155. ^ "Exposición a la radiación y contaminación - lesiones; envenenamiento - Merck Manuals Professional Edition" . Edición profesional de manuales de Merck . Consultado el 6 de septiembre de 2017 .

Lectura adicional [ editar ]

  • Chernobyl: Consecuencias de la catástrofe para las personas y el medio ambiente (2009)
  • Chernobyl. Venganza del átomo pacífico. (2006)
  • Conservación Fallout: Protesta nuclear en Diablo Canyon (2006)
  • Disputando el futuro de la energía nuclear (2011)
  • Esencia de la decisión: explicando la crisis de los misiles en Cuba (1971)
  • Fallout: una tragedia nuclear estadounidense (2004)
  • Protección contra fallos (1961)
  • Fukushima: el tsunami de Japón y la historia interna de la fusión nuclear (2013)
  • Carga de cuerpo entero: Creciendo en la sombra nuclear de Rocky Flats (2012)
  • Hiroshima (1946)
  • Killing Our Own: The Disaster of America's Experience with Atomic Radiation (1982)
  • En manos mortales: una historia cautelosa de la era nuclear (2009)
  • Haciendo una matanza real: Rocky Flats y el oeste nuclear (1999)
  • Maralinga: el encubrimiento de desechos nucleares de Australia (2007)
  • Futuros no nucleares: el caso de una estrategia energética ética (1975)
  • Accidentes normales: vivir con tecnologías de alto riesgo (1984)
  • ¿Nuclear o no? ¿Tiene la energía nuclear un lugar en un futuro energético sostenible? (2007)
  • Política nuclear en América (1997)
  • Energía nuclear y medio ambiente (1976)
  • Terrorismo nuclear: la catástrofe evitable definitiva (2004)
  • Habilidades de supervivencia en la guerra nuclear (1979)
  • Armas nucleares: El camino a cero (1998)
  • Nukespeak: lenguaje nuclear, visiones y mentalidad (1982)
  • Sobre el terrorismo nuclear (2007)
  • Plutopía (2013)
  • Los límites de la seguridad (1993, Princeton University Press) por Scott Sagan

Enlaces externos [ editar ]

  • Accidentes nucleares de EE. UU. (Lutins.org) lista en línea más completa de incidentes relacionados con instalaciones y buques nucleares de EE. UU., 1950 hasta la actualidad
  • Sitio web de la Comisión Reguladora Nuclear de EE. UU. (NRC) con función de búsqueda y sala de lectura pública electrónica
  • Sitio web del Organismo Internacional de Energía Atómica con una amplia biblioteca en línea
  • Plutopía: familias nucleares, ciudades atómicas y los grandes desastres del plutonio soviéticos y estadounidenses
  • Bibliografía comentada sobre accidentes nucleares civiles de la Biblioteca digital para cuestiones nucleares de Alsos