Mapa autoorganizado


Un mapa autoorganizado ( SOM ) o un mapa de características autoorganizado ( SOFM ) es una técnica de aprendizaje automático no supervisada que se utiliza para producir una representación de baja dimensión (normalmente bidimensional) de un conjunto de datos de mayor dimensión, al tiempo que se preserva la estructura topológica del datos. Por ejemplo, un conjunto de datos con p variables medidas en nlas observaciones podrían representarse como grupos de observaciones con valores similares para las variables. Estos grupos luego podrían visualizarse como un "mapa" bidimensional de modo que las observaciones en los grupos proximales tengan valores más similares que las observaciones en los grupos distales. Esto puede hacer que los datos de alta dimensión sean más fáciles de visualizar y analizar.

Un SOM es un tipo de red neuronal artificial, pero se entrena mediante aprendizaje competitivo en lugar del aprendizaje de corrección de errores (p. ej., propagación inversa con descenso de gradiente ) utilizado por otras redes neuronales artificiales. El SOM fue presentado por el profesor finlandés Teuvo Kohonen en la década de 1980 y, por lo tanto, a veces se lo denomina mapa de Kohonen o red de Kohonen . [1] [2] El mapa o red de Kohonen es una abstracción computacionalmente conveniente basada en modelos biológicos de sistemas neuronales de la década de 1970 [3] y modelos de morfogénesis que se remontan aAlan Turing en la década de 1950. [4]

Los mapas autoorganizados, como la mayoría de las redes neuronales artificiales, funcionan de dos modos: entrenamiento y mapeo. En primer lugar, el entrenamiento utiliza un conjunto de datos de entrada (el "espacio de entrada") para generar una representación de menor dimensión de los datos de entrada (el "espacio de mapa"). En segundo lugar, el mapeo clasifica los datos de entrada adicionales utilizando el mapa generado.

En la mayoría de los casos, el objetivo del entrenamiento es representar un espacio de entrada con p dimensiones como un espacio de mapa con dos dimensiones. Específicamente, se dice que un espacio de entrada con p variables tiene p dimensiones. Un espacio de mapa consta de componentes llamados "nodos" o "neuronas", que están dispuestos como una cuadrícula hexagonal o rectangular con dos dimensiones. [5] El número de nodos y su disposición se especifican de antemano en función de los objetivos más amplios del análisis y exploración de los datos .

Cada nodo en el espacio del mapa está asociado con un vector de "peso", que es la posición del nodo en el espacio de entrada. Si bien los nodos en el espacio del mapa permanecen fijos, el entrenamiento consiste en mover los vectores de peso hacia los datos de entrada (reduciendo una métrica de distancia como la distancia euclidiana ) sin estropear la topología inducida desde el espacio del mapa. Después del entrenamiento, el mapa se puede usar para clasificar observaciones adicionales para el espacio de entrada al encontrar el nodo con el vector de peso más cercano (métrica de distancia más pequeña) al vector espacial de entrada.

El objetivo del aprendizaje en el mapa autoorganizado es hacer que diferentes partes de la red respondan de manera similar a ciertos patrones de entrada. Esto se debe en parte a cómo se maneja la información visual, auditiva u otra información sensorial en partes separadas de la corteza cerebral en el cerebro humano . [6]


Un mapa autoorganizado que muestra los patrones de votación del Congreso de EE . UU. Los datos de entrada eran una tabla con una fila para cada miembro del Congreso y columnas para ciertos votos que contenían el voto sí/no/abstención de cada miembro. El algoritmo SOM dispuso estos miembros en una cuadrícula bidimensional colocando miembros similares más juntos. La primera gráfica muestra la agrupación cuando los datos se dividen en dos grupos. El segundo gráfico muestra la distancia promedio a los vecinos: las distancias más grandes son más oscuras. El tercer gráfico predice la afiliación al partido Republicano (rojo) o Demócrata (azul). Las otras parcelascada uno superpone el mapa resultante con valores predichos en una dimensión de entrada: el rojo significa un voto pronosticado de 'sí' en ese proyecto de ley, el azul significa un voto de 'no'. La trama fue creada en Synapse .
Una ilustración del entrenamiento de un mapa autoorganizado. La mancha azul es la distribución de los datos de entrenamiento y el pequeño disco blanco es el dato de entrenamiento actual extraído de esa distribución. Al principio (izquierda), los nodos SOM se colocan arbitrariamente en el espacio de datos. Se selecciona el nodo (resaltado en amarillo) más cercano al dato de entrenamiento. Se mueve hacia el dato de entrenamiento, al igual que (en menor medida) sus vecinos en la cuadrícula. Después de muchas iteraciones, la cuadrícula tiende a aproximarse a la distribución de datos (derecha).
Proceso de entrenamiento de SOM en un conjunto de datos bidimensional
Representación cartográfica de un mapa autoorganizado ( U-Matrix ) basado en datos de artículos destacados de Wikipedia (frecuencia de palabras). La distancia es inversamente proporcional a la semejanza. Las "montañas" son bordes entre racimos. Las líneas rojas son enlaces entre artículos.
SOM unidimensional versus análisis de componentes principales (PCA) para la aproximación de datos. SOM es una línea discontinua roja con cuadrados, 20 nodos. El primer componente principal se presenta con una línea azul. Los puntos de datos son los pequeños círculos grises. Para PCA, la fracción de varianza no explicada en este ejemplo es 23,23 %, para SOM es 6,86 %. [13]
Mapas autoorganizados (SOM) de tres y ocho colores con U-Matrix.
Mapa autoorganizado (SOM) del conjunto de datos de flores de iris de Fisher con U-Matrix. Arriba a la izquierda: una imagen en color formada por las primeras tres dimensiones de los vectores de peso SOM de cuatro dimensiones. Arriba a la derecha: una imagen en pseudocolor de la magnitud de los vectores de peso SOM. Abajo a la izquierda: una matriz U (distancia euclidiana entre vectores de peso de celdas vecinas) del SOM. Abajo a la derecha: una superposición de puntos de datos (rojo: I. setosa , verde: I. versicolor y azul: I. virginica ) en la matriz U basada en la distancia euclidiana mínima entre los vectores de datos y los vectores de peso SOM.