De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Grupo de cetonas

En química , un cetona / k i t n / es un grupo funcional con la estructura R 2 C = O, donde R puede ser una variedad de que contienen carbono sustituyentes . Las cetonas contienen un grupo carbonilo (un doble enlace carbono-oxígeno). La cetona más simple es la acetona (R = R '= metilo ), con la fórmula CH 3 C (O) CH 3 . Muchas cetonas son de gran importancia en biología e industria. Los ejemplos incluyen muchos azúcares ( cetosas ), muchos esteroides (p. Ej.,testosterona ) y el disolvente acetona . [1] [ página necesaria ]

Nomenclatura y etimología [ editar ]

La palabra cetona se deriva de Aketon , una antigua palabra alemana para 'acetona'. [2] [3]

De acuerdo con las reglas de la nomenclatura de la IUPAC , los nombres de las cetonas se derivan cambiando el sufijo -ane del alcano original por -anona . Normalmente, la posición del grupo carbonilo se indica mediante un número, pero los nombres tradicionales no sistemáticos todavía se utilizan generalmente para las cetonas más importantes, por ejemplo, acetona y benzofenona . Estos nombres no sistemáticos se consideran nombres IUPAC retenidos, [4] aunque algunos libros de texto de introducción a la química usan nombres sistemáticos como "2-propanone" o "propan-2-one" para la cetona más simple ( C H 3 −C O −CH 3) en lugar de "acetona".

Los nombres derivados de las cetonas se obtienen escribiendo por separado los nombres de los dos grupos alquilo unidos al grupo carbonilo, seguidos de "cetona" como palabra separada. Los nombres de los grupos alquilo se escriben en orden de complejidad creciente: por ejemplo, metiletilcetona. De acuerdo con las reglas de la nomenclatura IUPAC , los grupos alquilo se escriben alfabéticamente, es decir, etilmetilcetona. Cuando los dos grupos alquilo son iguales, se añade el prefijo "di-" antes del nombre del grupo alquilo. Las posiciones de otros grupos se indican con letras griegas , siendo el carbono α el átomo adyacente al grupo carbonilo.

Aunque se usa con poca frecuencia, oxo es la nomenclatura IUPAC para el grupo oxo (= O) y se usa como prefijo cuando la cetona no tiene la prioridad más alta. Sin embargo, también se utilizan otros prefijos. Para algunos productos químicos comunes (principalmente en bioquímica), ceto se refiere al grupo funcional cetona .

Estructura y propiedades [ editar ]

Cetonas representativas, desde la izquierda: acetona , un disolvente común; oxaloacetato , un intermediario en el metabolismo de los azúcares ; acetilacetona en su forma (mono) enólica (el enol resaltado en azul); ciclohexanona , precursor del nailon ; muscone , un aroma animal; y tetraciclina , un antibiótico.

El carbono de la cetona se describe a menudo como "sp 2 hibridado ", una descripción que incluye tanto su estructura electrónica como molecular. Las cetonas son trigonales planas alrededor del carbono cetónico, con ángulos de enlace C-C-O y C-C-C de aproximadamente 120 °. Las cetonas se diferencian de los aldehídos en que el grupo carbonilo (CO) está unido a dos carbonos dentro de una estructura carbonada . En los aldehídos, el carbonilo está unido a un carbono y un hidrógeno y se encuentran en los extremos de las cadenas de carbono. Las cetonas también son distintas de otros grupos funcionales que contienen carbonilo , tales como ácidos carboxílicos , ésteres y amidas . [5]

El grupo carbonilo es polar porque la electronegatividad del oxígeno es mayor que la del carbono. Por tanto, las cetonas son nucleófilas en oxígeno y electrófilas en carbono. Debido a que el grupo carbonilo interactúa con el agua mediante enlaces de hidrógeno , las cetonas son típicamente más solubles en agua que los compuestos de metileno relacionados. Las cetonas son aceptores de enlaces de hidrógeno. Las cetonas no suelen ser donantes de enlaces de hidrógeno y no pueden formar enlaces de hidrógeno entre sí. Debido a su incapacidad para servir como donantes y aceptores de enlaces de hidrógeno, las cetonas tienden a no "autoasociarse" y son más volátiles que los alcoholes y ácidos carboxílicos de pesos moleculares comparables.. Estos factores se relacionan con la omnipresencia de las cetonas en perfumería y como disolventes.

Clases de cetonas [ editar ]

Las cetonas se clasifican sobre la base de sus sustituyentes. Una clasificación amplia subdivide las cetonas en derivados simétricos y asimétricos, dependiendo de la equivalencia de los dos sustituyentes orgánicos unidos al centro carbonilo. La acetona y la benzofenona (C 6 H 5 C (O) C 6 H 5 ) son cetonas simétricas. La acetofenona (C 6 H 5 C (O) CH 3 ) es una cetona asimétrica.

Dicetonas [ editar ]

Se conocen muchos tipos de dicetonas, algunas con propiedades inusuales. El más simple es el diacetilo (CH 3 C (O) C (O) CH 3 ), que alguna vez se usó como saborizante de mantequilla en las palomitas de maíz . La acetilacetona (pentano-2,4-diona) es virtualmente un nombre inapropiado (nombre inapropiado) porque esta especie existe principalmente como el monoenol CH 3 C (O) CH = C (OH) CH 3 . Su enolato es un ligando común en la química de coordinación .

Cetonas insaturadas [ editar ]

Las cetonas que contienen unidades de alqueno y alquino a menudo se denominan cetonas insaturadas. El miembro más utilizado de esta clase de compuestos es la metilvinilcetona , CH 3 C (O) CH = CH 2 , que es útil en la reacción de anulación de Robinson . Para que no haya confusión, una cetona en sí misma es un sitio de insaturación; es decir, puede hidrogenarse .

Cetonas cíclicas [ editar ]

Muchas cetonas son cíclicas. La clase más simple tiene la fórmula (CH 2 ) n CO, donde n varía de 2 para ciclopropanona a los adolescentes. Existen derivados más grandes. La ciclohexanona, una cetona cíclica simétrica, es un intermedio importante en la producción de nailon. La isoforona , derivada de la acetona, es una cetona asimétrica insaturada que es la precursora de otros polímeros. Muscone , 3-metilpentadecanona, es una feromona animal . Otra cetona cíclica es la ciclobutanona , que tiene la fórmula C 4 H 6 O.

Tautomerización de ceto-enol [ editar ]

Tautomería ceto-enólica. 1 es la forma ceto; 2 es el enol.

Las cetonas que tienen al menos un hidrógeno alfa , experimentan tautomerización ceto-enólica ; el tautómero es un enol . La tautomerización está catalizada por ácidos y bases. Por lo general, la forma cetogénica es más estable que el enol. Este equilibrio permite la preparación de cetonas mediante la hidratación de alquinos .

Propiedades ácido / base de las cetonas [ editar ]

Los enlaces CH adyacentes al carbonilo en las cetonas son más ácidos ( p K a ≈ 20) que los enlaces CH en el alcano (p K a ≈ 50). Esta diferencia refleja la estabilización por resonancia del ion enolato que se forma tras la desprotonación . La acidez relativa del α-hidrógeno es importante en las reacciones de enolización de cetonas y otros compuestos carbonílicos. La acidez del α-hidrógeno también permite que las cetonas y otros compuestos carbonílicos reaccionen como nucleófilos en esa posición, con una base estequiométrica y catalítica. Usando bases muy fuertes como diisopropilamida de litio (LDA, p K ade ácido conjugado ~ 36) en condiciones de no equilibrio (-78 ° C, 1,1 equiv LDA en THF, cetona añadida a la base), el enolato cinético menos sustituido se genera selectivamente, mientras que las condiciones que permiten el equilibrio (temperatura más alta, base añadido a la cetona, usando bases débiles o insolubles, por ejemplo, NaOEt en EtOH, o NaH) proporciona el enolato termodinámico más sustituido .

Las cetonas también son bases débiles, que experimentan protonación en el oxígeno del carbonilo en presencia de ácidos de Brønsted . Los iones de cetonio (es decir, cetonas protonadas) son ácidos fuertes, con valores de p K a estimados entre –5 y –7. [6] [7] Aunque los ácidos que se encuentran en la química orgánica rara vez son lo suficientemente fuertes como para protonar completamente las cetonas, la formación de concentraciones de equilibrio de cetonas protonadas es, no obstante, un paso importante en los mecanismos de muchas reacciones orgánicas comunes, como la formación de un acetal, por ejemplo. Ácidos tan débiles como el catión piridinio (como el que se encuentra en el tosilato de piridinio) con ap K ade 5.2 pueden servir como catalizadores en este contexto, a pesar de la constante de equilibrio altamente desfavorable para la protonación ( K eq <10 −10 ).

Caracterización [ editar ]

Un aldehído se diferencia de una cetona en que tiene un átomo de hidrógeno unido a su grupo carbonilo, lo que hace que los aldehídos sean más fáciles de oxidar. Las cetonas no tienen un átomo de hidrógeno unido al grupo carbonilo y, por lo tanto, son más resistentes a la oxidación. Se oxidan solo por agentes oxidantes poderosos que tienen la capacidad de romper los enlaces carbono-carbono.

Espectroscopia [ editar ]

Las cetonas y los aldehídos se absorben fuertemente en el espectro infrarrojo cerca de 1700 cm -1 . La posición exacta del pico depende de los sustituyentes.

Mientras que la espectroscopia de RMN de 1 H generalmente no es útil para establecer la presencia de una cetona, los espectros de RMN de 13 C exhiben señales algo en el campo de 200 ppm dependiendo de la estructura. Estas señales suelen ser débiles debido a la ausencia de efectos nucleares Overhauser . Dado que los aldehídos resuenan en cambios químicos similares , se emplean múltiples experimentos de resonancia para distinguir definitivamente aldehídos y cetonas.

Pruebas orgánicas cualitativas [ editar ]

Las cetonas dan resultados positivos en la prueba de Brady , la reacción con 2,4-dinitrofenilhidrazina para dar la correspondiente hidrazona. Las cetonas se pueden distinguir de los aldehídos dando un resultado negativo con el reactivo de Tollens o con la solución de Fehling . Las metilcetonas dan resultados positivos para la prueba de yodoformo . [8] Las cetonas también dan resultados positivos cuando se tratan con m -dinitrobenceno en presencia de hidróxido de sodio diluido para dar una coloración violeta.

Síntesis [ editar ]

Existen muchos métodos para la preparación de cetonas en laboratorios académicos y a escala industrial. Los organismos también producen cetonas de diversas formas; consulte la sección sobre bioquímica a continuación.

En la industria, el método más importante probablemente implica la oxidación de hidrocarburos , a menudo con aire. Por ejemplo, anualmente se producen mil millones de kilogramos de ciclohexanona por oxidación aeróbica del ciclohexano . La acetona se prepara por oxidación al aire de cumeno .

Para aplicaciones sintéticas orgánicas especializadas o de pequeña escala , las cetonas a menudo se preparan por oxidación de alcoholes secundarios :

R 2 CH (OH) + O → R 2 C = O + H 2 O

Los oxidantes fuertes típicos (fuente de "O" en la reacción anterior) incluyen permanganato de potasio o un compuesto de Cr (VI) . Las condiciones más suaves utilizan el periodinano de Dess-Martin o los métodos de Moffatt-Swern .

Se han desarrollado muchos otros métodos, entre los que se incluyen: [9]

  • Por hidrólisis de haluro geminal . [10]
  • Por hidratación de alquinos . [11] Estos procesos ocurren a través de enoles y requieren la presencia de un ácido y HgSO 4 . La tautomerización subsiguiente enol-ceto da una cetona. Esta reacción siempre produce una cetona, incluso con un alquino terminal, siendo la única excepción la hidratación del acetileno , que produce acetaldehído .
  • De Weinreb Amides utilizando reactivos organometálicos estequiométricos.
  • Las cetonas aromáticas se pueden preparar en la acilación de Friedel-Crafts , [12] la reacción de Houben-Hoesch relacionada , [13] y el reordenamiento de Fries . [11]
  • La ozonólisis y las secuencias de dihidroxilación / oxidativa relacionadas, escinden los alquenos para dar aldehídos o cetonas, dependiendo del patrón de sustitución de alquenos. [14]
  • En el reordenamiento de Kornblum-DeLaMare, las cetonas se preparan a partir de peróxidos y base.
  • En la ciclación de Ruzicka , las cetonas cíclicas se preparan a partir de ácidos dicarboxílicos .
  • En la reacción de Nef , las cetonas se forman por hidrólisis de sales de compuestos nitro secundarios . [15]
  • En el acoplamiento de Fukuyama , las cetonas se forman a partir de un tioéster y un compuesto orgánico de zinc.
  • Por reacción de un cloruro de ácido con compuestos de organocadmio o compuestos de organocobre .
  • La reacción de Dakin-West proporciona un método eficaz para la preparación de ciertas metilcetonas a partir de ácidos carboxílicos. [dieciséis]
  • Las cetonas también se pueden preparar mediante la reacción de reactivos de Grignard con nitrilos , seguida de hidrólisis. [17]
  • Por descarboxilación de anhídrido carboxílico .
  • Las cetonas se pueden preparar a partir de halocetonas en deshalogenación reductora de halocetonas .
  • En la descarboxilación cetónica se preparan cetonas simétricas a partir de ácidos carboxílicos. [11] [18]
  • Oxidación de aminas con cloruro de hierro (III) . [19]
  • Hidrólisis de amidas secundarias insaturadas , [20] ésteres de β - cetoácidos , [11] o β- dicetonas .
  • Transposición catalizada por ácido de 1,2-dioles . [11]

Reacciones [ editar ]

La reacción de Haller-Bauer ocurre entre una cetona no enolizable y una base amida fuerte. En este ejemplo prototípico que involucra benzofenona, el intermedio tetraédrico expulsa el anión fenilo para dar benzamida y benceno como productos orgánicos.

Las cetonas participan en muchas reacciones orgánicas . Las reacciones más importantes se derivan de la susceptibilidad del carbono carbonilo hacia la adición nucleofílica y la tendencia de los enolatos a sumarse a los electrófilos. Las adiciones nucleofílicas incluyen en orden aproximado de su generalidad: [9]

  • Con agua (hidratación) da dioles geminales , que generalmente no se forman en cantidades apreciables (u observables)
  • Con un acetiluro para dar el α- hidroxialquino
  • Con amoniaco o una amina primaria se obtiene una imina.
  • Con amina secundaria da una enamina
  • Con reactivos de Grignard y organolitio para dar, después del tratamiento acuoso, un alcohol terciario
  • Con alcoholes o alcóxidos para dar el hemicetal o su base conjugada. Con un diol al cetal . Esta reacción se emplea para proteger las cetonas.
  • Con amida de sodio que da como resultado la ruptura del enlace C – C con formación de la amida RCONH 2 y el alcano o areno R'H, una reacción llamada reacción de Haller-Bauer. [21]
  • Con agentes oxidantes fuertes para dar ácidos carboxílicos .
  • La adición electrofílica , la reacción con un electrófilo da un catión estabilizado por resonancia.
  • Con iluros de fosfonio en la reacción de Wittig para dar los alquenos
  • Con tioles para dar el tioacetal
  • Con hidrazina o derivados 1-disustituidos de hidrazina para dar hidrazonas .
  • Con un hidruro metálico se obtiene una sal de alcóxido metálico, cuya hidrólisis da el alcohol, un ejemplo de reducción de cetonas.
  • Con halógenos para formar una α- halocetona , una reacción que procede a través de un enol (ver Reacción de haloformo )
  • Con agua pesada para dar una cetona α- deuterada
  • Fragmentación en la reacción fotoquímica de Norrish
  • Reacción de 1,4-aminodicetonas a oxazoles por deshidratación en la síntesis de Robinson-Gabriel
  • En el caso de las aril-alquil cetonas, con azufre y una amina se obtienen amidas en la reacción de Willgerodt.
  • Con hidroxilamina para producir oximas.
  • Con agentes reductores para formar alcoholes secundarios
  • Con peroxiácidos para formar ésteres en la oxidación de Baeyer-Villiger

Bioquímica [ editar ]

Las cetonas son de naturaleza generalizada. La formación de compuestos orgánicos en la fotosíntesis se produce a través de la cetona ribulosa-1,5-bisfosfato . Muchos azúcares son cetonas, conocidas colectivamente como cetosas . La cetosa más conocida es la fructosa ; existe como un hemicetal cíclico , que enmascara el grupo funcional cetona. La síntesis de ácidos grasos se realiza a través de cetonas. El acetoacetato es un intermedio del ciclo de Krebs que libera energía de los azúcares y los carbohidratos. [22]

En medicina, la acetona , el acetoacetato y el beta-hidroxibutirato se denominan colectivamente cuerpos cetónicos y se generan a partir de carbohidratos , ácidos grasos y aminoácidos en la mayoría de los vertebrados , incluidos los humanos. Los cuerpos cetónicos se elevan en la sangre ( cetosis ) después del ayuno, incluida una noche de sueño; tanto en sangre como en orina en caso de inanición ; en hipoglucemia , por causas distintas al hiperinsulinismo ; en varios errores innatos del metabolismo , e intencionalmente inducidos a través de una dieta cetogénicay en cetoacidosis (generalmente debido a diabetes mellitus ). Aunque la cetoacidosis es característica de la diabetes tipo 1 descompensada o no tratada , también puede ocurrir cetosis o incluso cetoacidosis en la diabetes tipo 2 en algunas circunstancias.

Aplicaciones [ editar ]

Las cetonas se producen a gran escala en la industria como disolventes, precursores de polímeros y productos farmacéuticos. En términos de escala, las cetonas más importantes son acetona , metiletilcetona y ciclohexanona . [23] También son comunes en bioquímica, pero menos que en química orgánica en general. La combustión de hidrocarburos es un proceso de oxidación incontrolado que produce cetonas y muchos otros tipos de compuestos.

Toxicidad [ editar ]

Aunque es difícil generalizar sobre la toxicidad de una clase tan amplia de compuestos, las cetonas simples, en general, no son muy tóxicas. Esta característica es una de las razones de su popularidad como disolventes. Las excepciones a esta regla son las cetonas insaturadas como la metilvinilcetona con LD 50 de 7 mg / kg (oral). [23]

Ver también [ editar ]

  • Dicetona
  • Cuerpos cetónicos
  • Tiocetona
  • Tricetona
  • Ninguno

Referencias [ editar ]

  1. ^ Smith, Michael B .; March, Jerry (2007), Química orgánica avanzada: reacciones, mecanismos y estructura (6a ed.), Nueva York: Wiley-Interscience, ISBN 978-0-471-72091-1
  2. ^ Harper, Douglas. "cetona" . Diccionario de etimología en línea .
  3. ^ La palabra "cetona" fue acuñada en 1848 por el químico alemán Leopold Gmelin . Ver: Leopold Gmelin, ed., Handbuch der organischen Chemie: Organische Chemie im Allgemeinen … (Manual de química orgánica: Química orgánica en general…), 4ª ed., (Heidelberg, (Alemania): Karl Winter, 1848), volumen 1 , pag. 40. De la página 40: "Zu diesen Syndesmiden scheinen auch diejenigen Verbindungen zu gehören, die als Acetone im Allegemeinen ( ¿cetona? ) Bezeichnet werden". (A estas sindesmidas *, también parecen pertenecer esos compuestos, que en general se denominan acetonas ( ¿cetonas? ) ") [* Nota: En 1844, el químico francés Auguste Laurentsugirió una nueva nomenclatura para los compuestos orgánicos. Una de sus nuevas clases de compuestos fue "sindesmidas", que eran compuestos formados por la combinación de dos o más moléculas orgánicas más simples (del griego σύνδεσμος ( syndesmos , unión) + -ide (que indica un grupo de compuestos relacionados)). Por ejemplo, la acetona podría formarse mediante la destilación en seco de acetatos metálicos, por lo que la acetona era la sindesmida de dos iones acetato. Ver: Laurent, Auguste (1844) "Classification chimique", Comptes rendus , 19  : 1089-1100; ver especialmente p. 1097.
  4. ^ Lista de nombres IUPAC retenidos Nombres IUPAC retenidos Enlace
  5. ^ McMurry, John E. (1992), Química orgánica (3.a ed.), Belmont: Wadsworth, ISBN 0-534-16218-5
  6. ^ Evans, David A. (4 de noviembre de 2005). "Tabla Evans pKa" (PDF) . Sitio web del grupo Evans . Consultado el 14 de junio de 2018 .
  7. ^ Smith, Michael B. (2013). Química orgánica avanzada de marzo (7ª ed.). Hoboken, Nueva Jersey: Wiley. págs. 314–315. ISBN 978-0-470-46259-1.
  8. ^ Mendham, J .; Denney, RC; Barnes, JD; Thomas, MJK (2000), Análisis químico cuantitativo de Vogel (6a ed.), Nueva York: Prentice Hall, ISBN 0-582-22628-7
  9. ^ a b Smith, Michael B .; March, Jerry (2007), Química orgánica avanzada: reacciones, mecanismos y estructura (6a ed.), Nueva York: Wiley-Interscience, ISBN 978-0-471-72091-1
  10. ^ Marvel, CS; Sperry, WM (1928). "Benzofenona". Síntesis orgánicas . 8 : 26. doi : 10.15227 / orgsyn.008.0026 .
  11. ^ a b c d e Furniss, Brian; Hannaford, Antony; Smith, Peter; Tatchell, Austin (1996). Libro de texto de química orgánica práctica de Vogel (5ª ed.). Londres: Longman Science & Technical. págs. 612–623, 976–977, 982–983. ISBN 9780582462366.
  12. ^ Allen, CFH; Barker, NOSOTROS (1932). "Desoxibenzoína". Síntesis orgánicas . 12 : 16. doi : 10.15227 / orgsyn.012.0016 .
  13. ^ Gulati, KC; Seth, SR; Venkataraman, K. (1935). "Floroacetofenona". Síntesis orgánicas . 15 : 70. doi : 10.15227 / orgsyn.015.0070 .
  14. ^ Tietze, Lutz F .; Bratz, Matthias (1993). "Mesoxalatos de dialquilo por ozonólisis de benzalmalonatos de dialquilo: mesoxalato de dimetilo". Síntesis orgánicas . 71 : 214. doi : 10.15227 / orgsyn.071.0214 .
  15. ^ Heinzelman, RV (1955). "o-metoxifenilacetona". Síntesis orgánicas . 35 : 74. doi : 10.15227 / orgsyn.035.0074 .
  16. ^ Wiley, Richard H .; Borum, OH (1953). "3-acetamido-2-butanona". Síntesis orgánicas . 33 : 1. doi : 10.15227 / orgsyn.033.0001 .
  17. ^ Moffett, RB; Shriner, RL (1941). "ω-Metoxiacetofenona". Síntesis orgánicas . 21 : 79. doi : 10.15227 / orgsyn.021.0079 .
  18. ^ Thorpe, JF; Kon, GAR (1925). "Ciclopentanona". Síntesis orgánicas . 5 : 37. doi : 10.15227 / orgsyn.005.0037 .
  19. ^ Fieser, Louis F. (1937). "1,2-naftoquinona". Síntesis orgánicas . 17 : 68. doi : 10.15227 / orgsyn.017.0068 .
  20. ^ Herbst, RM; Shemin, D. (1939). "Ácido fenilpirúvico". Síntesis orgánicas . 19 : 77. doi : 10.15227 / orgsyn.019.0077 .
  21. ^ Reacción de Haller-Bauer . homeip.net
  22. ^ Nelson, DL; Cox, MM (2000) Lehninger, Principios de bioquímica . 3ª Ed. Vale la pena publicar: Nueva York. ISBN 1-57259-153-6 . 
  23. ^ a b Siegel, Hardo; Eggersdorfer, Manfred (2000). "Cetonas". Enciclopedia de química industrial de Ullmann . doi : 10.1002 / 14356007.a15077 (inactivo el 19 de enero de 2021). ISBN 9783527306732.Mantenimiento de CS1: DOI inactivo a partir de enero de 2021 ( enlace )

Enlaces externos [ editar ]

  • Medios relacionados con las cetonas en Wikimedia Commons