Maglev


Maglev (derivado de la levitación magnética ) es un sistema de transporte ferroviario que utiliza dos juegos de imanes : uno para repeler y empujar el tren fuera de la vía , y otro para mover el tren elevado hacia adelante, aprovechando la falta de fricción. . A lo largo de ciertas rutas de "alcance medio" (generalmente de 320 a 640 km [200 a 400 mi]), el maglev puede competir favorablemente con los trenes y aviones de alta velocidad .

Serie L0 en la pista de pruebas SCMaglev en la prefectura de Yamanashi , Japón
Transrapid 09 en las instalaciones de prueba de Emsland en Baja Sajonia, Alemania
Un viaje completo en el tren maglev Transrapid de Shanghai

Con la tecnología de levitación magnética, solo hay una parte móvil: el tren en sí. El tren viaja a lo largo de una guía de imanes que controlan la estabilidad y la velocidad del tren. La propulsión y la levitación no requieren partes móviles. Esto está en marcado contraste con las unidades eléctricas múltiples que pueden tener varias docenas de piezas por bogie. Por lo tanto, los trenes Maglev son más silenciosos y suaves que los trenes convencionales y tienen el potencial de alcanzar velocidades mucho más altas. [1]

Los vehículos maglev han establecido varios récords de velocidad y los trenes maglev pueden acelerar y desacelerar mucho más rápido que los trenes convencionales; la única limitación práctica es la seguridad y la comodidad de los pasajeros. La energía necesaria para la levitación no suele ser un gran porcentaje del consumo total de energía de un sistema de levitación magnética de alta velocidad. [2] Superar la resistencia , que hace que todo transporte terrestre consuma más energía a velocidades más altas, requiere la mayor cantidad de energía. Se ha propuesto la tecnología Vactrain como un medio para superar esta limitación. Los sistemas de maglev han sido mucho más costosos de construir que los sistemas de trenes convencionales, aunque la construcción más simple de los vehículos de maglev los hace más baratos de fabricar y mantener. [ cita requerida ]

El tren maglev de Shanghai , también conocido como Shanghai Transrapid , tiene una velocidad máxima de 430 km / h (270 mph). La línea es el tren maglev de alta velocidad operativo más rápido, diseñado para conectar el aeropuerto internacional de Shanghai Pudong y las afueras del centro de Pudong , Shanghai . Cubre una distancia de 30,5 km (19 millas) en poco más de 8  minutos. Por primera vez, el lanzamiento generó un gran interés público y la atención de los medios, impulsando la popularidad del modo de transporte. [3] A pesar de más de un siglo de investigación y desarrollo, los sistemas de transporte de levitación magnética ya están operativos en solo tres países (Japón, Corea del Sur y China). [ cita requerida ] Los beneficios incrementales de la tecnología maglev a menudo se han considerado difíciles de justificar contra el costo y el riesgo, especialmente cuando existe una línea de tren de alta velocidad convencional existente o propuesta con capacidad de transporte de pasajeros adicional, como en el tren de alta velocidad en Europa , High Speed ​​2 en el Reino Unido y Shinkansen en Japón.

A finales de la década de 1940, el ingeniero eléctrico británico Eric Laithwaite , profesor del Imperial College de Londres , desarrolló el primer modelo de trabajo de tamaño completo del motor de inducción lineal . Se convirtió en profesor de ingeniería eléctrica pesada en el Imperial College en 1964, donde continuó con su exitoso desarrollo del motor lineal. [4] Dado que los motores lineales no requieren contacto físico entre el vehículo y la guía, se convirtieron en un accesorio común en los sistemas de transporte avanzados en las décadas de 1960 y 1970. Laithwaite se unió a uno de esos proyectos, el aerodeslizador con orugas , aunque el proyecto se canceló en 1973. [5]

El motor lineal también era naturalmente adecuado para su uso con sistemas de levitación magnética. A principios de la década de 1970, Laithwaite descubrió una nueva disposición de imanes, el río magnético , que permitía que un solo motor lineal produjera tanto elevación como empuje hacia adelante, lo que permitía construir un sistema maglev con un solo juego de imanes. Trabajando en la División de Investigación de Ferrocarriles Británicos en Derby , junto con equipos de varias empresas de ingeniería civil, el sistema de "flujo transversal" se convirtió en un sistema de trabajo.

El primer transportador de personas comercial de levitación magnética se llamó simplemente " MAGLEV " y se inauguró oficialmente en 1984 cerca de Birmingham , Inglaterra. Operó en una sección elevada de 600 m (2.000 pies) de vía de monorraíl entre el aeropuerto de Birmingham y la estación de tren internacional de Birmingham , funcionando a velocidades de hasta 42 km / h (26 mph). El sistema se cerró en 1995 debido a problemas de confiabilidad. [6]

Primera patente de levitación magnética

Se otorgaron patentes de transporte de alta velocidad a varios inventores en todo el mundo. [7] Las primeras patentes estadounidenses para un tren propulsado por motor lineal fueron otorgadas al inventor alemán Alfred Zehden . El inventor recibió la patente estadounidense 782,312 (14 de febrero de 1905) y la patente estadounidense RE12700 (21 de agosto de 1907). [nota 1] En 1907, FS Smith desarrolló otro sistema de transporte electromagnético temprano. [8] En 1908, el alcalde de Cleveland , Tom L. Johnson, presentó una patente para un "ferrocarril de alta velocidad" sin ruedas levitado por un campo magnético inducido. [9] Conocido en broma como "Greased Lightning", el automóvil suspendido operaba en una pista de prueba de 90 pies en el sótano de Johnson "absolutamente silencioso [ly] y sin la menor vibración". [10] Una serie de patentes alemanas para trenes de levitación magnética propulsados ​​por motores lineales fueron otorgados a Hermann Kemper entre 1937 y 1941. [nota 2] Uno de los primeros trenes de levitación magnética se describió en la patente estadounidense 3.158.765 , "Sistema magnético de transporte", de GR Polgreen (25 de agosto de 1959). El primer uso de "maglev" en una patente de los Estados Unidos fue en "Sistema de guía de levitación magnética" [11] de Canadian Patents and Development Limited.

Nueva York, Estados Unidos, 1968

En 1959, mientras estaba retrasado en el tráfico en el puente Throgs Neck , James Powell , un investigador del Laboratorio Nacional Brookhaven (BNL), pensó en utilizar un transporte levitado magnéticamente. [12] Powell y su colega de BNL Gordon Danby elaboraron un concepto de levitación magnética utilizando imanes estáticos montados en un vehículo en movimiento para inducir fuerzas de elevación y estabilización electrodinámicas en bucles de formas especiales, como bobinas en forma de 8 en una guía. [13] [14] Estos fueron patentados en 1968-1969.

Japón, 1969-presente

Japón opera dos trenes maglev desarrollados de forma independiente. Uno es HSST (y su descendiente, la línea Linimo ) de Japan Airlines y el otro, que es más conocido, es SCMaglev de Central Japan Railway Company .

El desarrollo de este último comenzó en 1969. Los trenes Maglev en la pista de pruebas de Miyazaki alcanzaron regularmente los 517 km / h (321 mph) en 1979. Después de un accidente que destruyó el tren, se seleccionó un nuevo diseño. En Okazaki , Japón (1987), el SCMaglev se utilizó para pruebas de conducción en la exposición de Okazaki. Las pruebas en Miyazaki continuaron durante la década de 1980, antes de trasladarse a una pista de prueba mucho más larga, de 20 km (12 millas) de largo, en Yamanashi en 1997. Desde entonces, la pista se ha ampliado a casi 43 km (27 millas). El actual récord mundial de velocidad de 603 km / h (375 mph) para trenes tripulados se estableció allí en 2015.

El desarrollo del HSST comenzó en 1974. En Tsukuba , Japón (1985), el HSST-03 ( Linimo ) se hizo popular en la Exposición Mundial de Tsukuba , a pesar de su baja velocidad máxima de 30 km / h (19 mph). En Saitama , Japón (1988), el HSST-04-1 fue revelado en la exposición de Saitama en Kumagaya . Su velocidad más rápida registrada fue de 300 km / h (190 mph). [15]

La construcción de una nueva línea de levitación magnética de alta velocidad, la Chuo Shinkansen , comenzó en 2014. Se está construyendo ampliando la pista de pruebas SCMaglev en Yamanashi en ambas direcciones. Actualmente se desconoce la fecha de finalización, y la estimación más reciente de 2027 ya no es posible debido al rechazo de un permiso de construcción por parte del gobierno local [16]

Hamburgo, Alemania, 1979

Transrapid 05 fue el primer tren maglev con propulsión de estator largo con licencia para el transporte de pasajeros. En 1979, se abrió una pista de 908 m (2979 pies) en Hamburgo para la primera Exposición Internacional de Transporte (IVA 79). El interés fue suficiente para que las operaciones se ampliaran tres meses después de finalizada la exposición, habiendo transportado a más de 50.000 pasajeros. Fue reensamblado en Kassel en 1980.

Ramenskoye, Moscú, URSS, 1979

Coche experimental TP-01 (ТП-01) en Ramenskoye construido en 1979
Coche experimental TP-05 (ТП-05) en Ramenskoye construido en 1986

En 1979, la URSS ciudad de Ramenskoye ( región de Moscú ) construyó un sitio de prueba experimental para llevar a cabo experimentos con los coches en suspensión magnética. El sitio de prueba consistió en una rampa de 60 metros que luego se extendió a 980 metros. [17] Desde finales de la década de 1970 hasta la de 1980 se construyeron cinco prototipos de automóviles que recibieron designaciones de TP-01 (ТП-01) a TP-05 (ТП-05). [18] Se suponía que los primeros coches alcanzaban una velocidad de 100 km / h.

La construcción de una vía de levitación magnética utilizando la tecnología de Ramenskoye comenzó en la República Socialista Soviética de Armenia en 1987 [19] y estaba prevista su finalización en 1991. Se suponía que la vía conectaría las ciudades de Ereván y Sevan a través de la ciudad de Abovyan . [20] La velocidad de diseño original era de 250 km / h, que luego se redujo a 180 km / h. [21] Sin embargo, el terremoto de Spitak en 1988 y la Primera Guerra de Nagorno-Karabaj hicieron que el proyecto se congelara. Al final, el paso elevado se construyó solo parcialmente. [22]

A principios de la década de 1990, el tema de levitación magnética fue continuado por el Centro de Investigación en Ingeniería "TEMP" (ИНЦ "ТЭМП") [23], esta vez por orden del gobierno de Moscú . El proyecto se denominó V250 (В250). La idea era construir un tren maglev de alta velocidad para conectar Moscú con el aeropuerto de Sheremetyevo . El tren estaría formado por vagones de 64 plazas y funcionaría a velocidades de hasta 250 km / h. [18] En 1993, debido a la crisis financiera , el proyecto fue abandonado. Sin embargo, desde 1999 el centro de investigación "TEMP" participó como co-desarrollador en la creación de los motores lineales para el sistema de monorraíl de Moscú .

Birmingham, Reino Unido, 1984–1995

La lanzadera Birmingham International Maglev

El primer sistema comercial de levitación magnética del mundo fue una lanzadera de levitación magnética de baja velocidad que se extendió entre la terminal del aeropuerto del aeropuerto internacional de Birmingham y la cercana estación de tren internacional de Birmingham entre 1984 y 1995. [24] Su longitud de vía era de 600 m (2000 pies), y trenes que levitaban a una altitud de 15 mm [0,59 pulgadas], levitaban mediante electroimanes y se propulsaban con motores lineales de inducción. [25] Operó durante 11 años y fue inicialmente muy popular entre los pasajeros, [ cita requerida ] pero los problemas de obsolescencia con los sistemas electrónicos lo hicieron progresivamente poco confiable [ cita requerida ] a medida que pasaban los años, lo que llevó a su cierre en 1995. Uno de los originales Los coches ahora se exhiben en Railworld en Peterborough, junto con el vehículo de tren flotante RTV31 . Otro se exhibe en el Museo Nacional del Ferrocarril en York.

Existían varias condiciones favorables cuando se construyó el enlace:

  • El vehículo de British Rail Research tenía 3 toneladas y la extensión al vehículo de 8 toneladas fue fácil
  • La energía eléctrica estaba disponible
  • El aeropuerto y los edificios ferroviarios eran adecuados para plataformas terminales.
  • Solo se requirió un cruce sobre una vía pública y no se involucraron pendientes pronunciadas
  • La tierra era propiedad del ferrocarril o del aeropuerto.
  • Las industrias y los consejos locales apoyaron
  • Se proporcionó algo de financiación gubernamental y, debido al trabajo compartido, el costo por organización fue bajo

Después de que el sistema se cerró en 1995, la vía guía original permaneció inactiva [26] hasta 2003, cuando se abrió un sistema de transporte por cable de reemplazo , el transportador de personas AirRail Link Cable Liner. [27] [28]

Emsland, Alemania, 1984–2012

Transrapid en las instalaciones de prueba de Emsland

Transrapid, una compañía alemana de levitación magnética, tenía una pista de prueba en Emsland con una longitud total de 31,5 km (19,6 millas). La línea de vía única discurría entre Dörpen y Lathen con bucles de giro en cada extremo. Los trenes circulaban regularmente a una velocidad de hasta 420 km / h (260 mph). Los pasajeros que pagaban fueron transportados como parte del proceso de prueba. La construcción de la instalación de prueba comenzó en 1980 y terminó en 1984.

En 2006, ocurrió el accidente del tren maglev de Lathen , matando a 23 personas. Se descubrió que fue causado por un error humano al implementar controles de seguridad. Desde 2006 no se transportaron pasajeros. A fines de 2011 venció la licencia de operación y no se renovó, y a principios de 2012 se otorgó el permiso de demolición de sus instalaciones, incluida la vía y la fábrica. [29]

Vancouver, Canadá y Hamburgo, Alemania, 1986–88

HSST-03 en el parque Okazaki Minami

En Vancouver, Canadá, el HSST-03 de HSST Development Corporation ( Japan Airlines y Sumitomo Corporation ) se exhibió en la Expo 86 , [30] y corrió en una pista de prueba de 400 m (0.25 millas) que proporcionó a los huéspedes un viaje en una sola coche a lo largo de un tramo corto de la pista en el recinto ferial. [31] Fue retirado después de la feria. Se mostró en la Aoi Expo en 1987 y ahora está en exhibición estática en Okazaki Minami Park.

Berlín, Alemania, 1984–1992

En Berlín Occidental , el M-Bahn se construyó en 1984. Era un sistema de levitación magnética sin conductor con una pista de 1,6 km (1,0 millas) que conectaba tres estaciones. Las pruebas con el tráfico de pasajeros comenzaron en agosto de 1989 y la operación regular comenzó en julio de 1991. Aunque la línea siguió en gran medida una nueva alineación elevada, terminó en la estación de U-Bahn de Gleisdreieck , donde tomó el control de una plataforma no utilizada para una línea que anteriormente corría Berlín Este . Tras la caída del Muro de Berlín , se pusieron en marcha planes para reconectar esta línea (la actual U2). La deconstrucción de la línea M-Bahn comenzó solo dos meses después de que comenzara el servicio regular y se completó en febrero de 1992.

Corea del Sur, 1993-presente

El aeropuerto de Incheon Maglev de Corea del Sur , el cuarto maglev de funcionamiento comercial del mundo [32]

En 1993, Corea del Sur completó el desarrollo de su propio tren maglev, mostrado en la Taejŏn Expo '93 , que se desarrolló aún más en un maglev completo capaz de viajar hasta 110 km / h (68 mph) en 2006. Este El modelo final se incorporó en el aeropuerto de Incheon Maglev, que se inauguró el 3 de febrero de 2016, lo que convierte a Corea del Sur en el cuarto país del mundo en operar su propio maglev de desarrollo propio después del aeropuerto internacional de Birmingham del Reino Unido, [33] Berlín M-Bahn de Alemania, [34 ] y Japón 's Linimo . [35] Conecta el aeropuerto internacional de Incheon con la estación de Yongyu y el complejo de ocio en la isla de Yeongjong . [36] Se ofrece una transferencia a la Metropolitana Metro de Seúl, en AREX 's estación de Aeropuerto Internacional de Incheon y se ofrece de forma gratuita a cualquier persona que viaje, que opera 9 entre el  de la mañana y 6  de la tarde con intervalos de 15 minutos. [37]

El sistema de levitación magnética fue desarrollado conjuntamente por el Instituto de Maquinaria y Materiales de Corea del Sur (KIMM) y Hyundai Rotem . [38] [39] [40] Tiene 6,1 km (3,8 millas) de largo, seis estaciones y una velocidad de funcionamiento de 110 km / h (68 mph). [41]

Están previstas dos etapas más de 9,7 km (6 millas) y 37,4 km (23,2 millas). Una vez completado, se convertirá en una línea circular.

En la imaginación del público, "maglev" a menudo evoca el concepto de una vía de monorraíl elevada con un motor lineal . Los sistemas de maglev pueden ser monorraíl o de doble riel (el SCMaglev MLX01, por ejemplo, utiliza una vía similar a una trinchera) y no todos los trenes de monorraíl son maglev. Algunos sistemas de transporte ferroviario incorporan motores lineales pero utilizan el electromagnetismo solo para la propulsión , sin levitar el vehículo. Estos trenes tienen ruedas y no son maglev. [nota 3] Las vías de Maglev, monorraíl o no, también se pueden construir a nivel o bajo tierra en túneles. Por el contrario, las vías que no son de levitación magnética, monorraíl o no, también pueden ser elevadas o subterráneas. Algunos trenes de levitación magnética incorporan ruedas y funcionan como vehículos lineales con ruedas propulsadas por motor a velocidades más lentas, pero levitan a velocidades más altas. Este suele ser el caso de los trenes de levitación magnética con suspensión electrodinámica . Los factores aerodinámicos también pueden influir en la levitación de dichos trenes.

MLX01 Maglev tren superconductor imán bogie

Los dos tipos principales de tecnología de levitación magnética son:

  • La suspensión electromagnética (EMS), los electroimanes controlados electrónicamente en el tren lo atraen a una vía magnéticamente conductora (generalmente de acero).
  • La suspensión electrodinámica (EDS) utiliza electroimanes superconductores o fuertes imanes permanentes que crean un campo magnético, que induce corrientes en los conductores metálicos cercanos cuando hay un movimiento relativo, lo que empuja y tira del tren hacia la posición de levitación diseñada en la vía guía.

Suspensión electromagnética (EMS)

La suspensión electromagnética (EMS) se utiliza para hacer levitar el Transrapid en la vía, de modo que el tren pueda ser más rápido que los sistemas de transporte público con ruedas [42] [43]

En los sistemas de suspensión electromagnética (EMS), el tren levita sobre un riel de acero mientras que los electroimanes , unidos al tren, se orientan hacia el riel desde abajo. El sistema está normalmente dispuesto en una serie de brazos en forma de C, con la parte superior del brazo unida al vehículo y el borde interior inferior que contiene los imanes. El carril se sitúa dentro de la C, entre los bordes superior e inferior.

La atracción magnética varía inversamente con el cuadrado de la distancia, por lo que cambios menores en la distancia entre los imanes y el riel producen fuerzas muy variables. Estos cambios en la fuerza son dinámicamente inestables: una ligera divergencia de la posición óptima tiende a crecer, lo que requiere sofisticados sistemas de retroalimentación para mantener una distancia constante de la pista (aproximadamente 15 mm [0,59 pulg.]). [44] [45]

La principal ventaja de los sistemas de levitación magnética suspendidos es que funcionan a todas las velocidades, a diferencia de los sistemas electrodinámicos, que solo funcionan a una velocidad mínima de unos 30 km / h (19 mph). Esto elimina la necesidad de un sistema de suspensión de baja velocidad por separado y puede simplificar el diseño de la pista. En el lado negativo, la inestabilidad dinámica exige tolerancias de vía finas, lo que puede contrarrestar esta ventaja. A Eric Laithwaite le preocupaba que para cumplir con las tolerancias requeridas, el espacio entre los imanes y el riel tendría que aumentarse hasta el punto en que los imanes serían irrazonablemente grandes. [46] En la práctica, este problema se abordó mediante sistemas de retroalimentación mejorados, que admiten las tolerancias requeridas.

Suspensión electrodinámica (EDS)

La suspensión EDS del SCMaglev japonés es impulsada por los campos magnéticos inducidos a ambos lados del vehículo por el paso de los imanes superconductores del vehículo.
Propulsión EDS Maglev a través de bobinas de propulsión

En suspensión electrodinámica (EDS), tanto la vía guía como el tren ejercen un campo magnético, y el tren es levitado por la fuerza repulsiva y atractiva entre estos campos magnéticos. [47] En algunas configuraciones, el tren solo puede levitar mediante fuerza repulsiva. En las primeras etapas del desarrollo de levitación magnética en la pista de pruebas de Miyazaki, se utilizó un sistema puramente repulsivo en lugar del posterior sistema EDS repulsivo y atractivo. [48] El campo magnético es producido por imanes superconductores (como en JR – Maglev) o por una serie de imanes permanentes (como en Inductrack ). La fuerza repulsiva y atractiva en la pista es creada por un campo magnético inducido en cables u otras tiras conductoras en la pista.

Una ventaja importante de los sistemas de levitación magnética EDS es que son dinámicamente estables: los cambios en la distancia entre la pista y los imanes crean fuerzas fuertes para devolver el sistema a su posición original. [46] Además, la fuerza de atracción varía de manera opuesta, proporcionando los mismos efectos de ajuste. No se necesita ningún control de retroalimentación activo.

Sin embargo, a velocidades lentas, la corriente inducida en estas bobinas y el flujo magnético resultante no es lo suficientemente grande como para hacer levitar el tren. Por esta razón, el tren debe tener ruedas o algún otro tipo de tren de aterrizaje para sostener el tren hasta que alcance la velocidad de despegue. Dado que un tren puede detenerse en cualquier lugar, debido a problemas de equipo, por ejemplo, toda la vía debe poder soportar el funcionamiento tanto a baja como a alta velocidad.

Otro inconveniente es que el sistema EDS crea naturalmente un campo en la pista en la parte delantera y trasera de los imanes de elevación, que actúa contra los imanes y crea un arrastre magnético. Esto generalmente es solo una preocupación a bajas velocidades, y es una de las razones por las que JR abandonó un sistema puramente repulsivo y adoptó el sistema de levitación de la pared lateral. [48] A velocidades más altas, dominan otros modos de arrastre. [46]

Sin embargo, la fuerza de arrastre puede usarse en beneficio del sistema electrodinámico, ya que crea una fuerza variable en los rieles que puede usarse como un sistema reaccionario para impulsar el tren, sin la necesidad de una placa de reacción separada, como en la mayoría de los motores lineales. sistemas. Laithwaite dirigió el desarrollo de tales sistemas de "flujo transversal" en su laboratorio del Imperial College. [46] Alternativamente, las bobinas de propulsión en la vía guía se utilizan para ejercer una fuerza sobre los imanes en el tren y hacer que el tren avance. Las bobinas de propulsión que ejercen una fuerza sobre el tren son efectivamente un motor lineal: una corriente alterna a través de las bobinas genera un campo magnético que varía continuamente y que avanza a lo largo de la vía. La frecuencia de la corriente alterna está sincronizada para coincidir con la velocidad del tren. El desplazamiento entre el campo ejercido por los imanes en el tren y el campo aplicado crea una fuerza que mueve el tren hacia adelante.

Pistas

El término "maglev" se refiere no solo a los vehículos, sino también al sistema ferroviario, diseñado específicamente para la levitación magnética y la propulsión. Todas las implementaciones operativas de la tecnología de levitación magnética hacen un uso mínimo de la tecnología de trenes de ruedas y no son compatibles con las vías de ferrocarril convencionales . Debido a que no pueden compartir la infraestructura existente, los sistemas de levitación magnética deben diseñarse como sistemas independientes. El sistema de levitación magnética SPM es interoperable con vías férreas de acero y permitiría que los vehículos de levitación magnética y los trenes convencionales operen en las mismas vías. [46] MAN en Alemania también diseñó un sistema de levitación magnética que funcionaba con rieles convencionales, pero nunca se desarrolló por completo. [ cita requerida ]

Evaluación

Cada implementación del principio de levitación magnética para viajes en tren conlleva ventajas y desventajas.

Ni Inductrack ni Superconducting EDS pueden levitar vehículos en reposo, aunque Inductrack proporciona levitación a una velocidad mucho menor; Se requieren ruedas para estos sistemas. Los sistemas EMS no tienen ruedas.

Los maglevs alemán Transrapid, japonés HSST (Linimo) y coreano Rotem EMS levitan en un punto muerto, con electricidad extraída de la vía guía utilizando rieles eléctricos para los dos últimos, y de forma inalámbrica para Transrapid. Si la energía de la vía guía se pierde en movimiento, el Transrapid aún puede generar levitación hasta una velocidad de 10 km / h (6.2 mph), [ cita requerida ] usando la energía de las baterías a bordo. Este no es el caso de los sistemas HSST y Rotem.

Propulsión

Los sistemas EMS como HSST / Linimo pueden proporcionar tanto levitación como propulsión utilizando un motor lineal integrado. Pero los sistemas EDS y algunos sistemas EMS como Transrapid levitan pero no se propulsan. Estos sistemas necesitan alguna otra tecnología para la propulsión. Un motor lineal (bobinas de propulsión) montado en la pista es una solución. En distancias largas, los costos de las bobinas pueden ser prohibitivos.

Estabilidad

El teorema de Earnshaw muestra que ninguna combinación de imanes estáticos puede estar en equilibrio estable. [55] Por lo tanto, se requiere un campo magnético dinámico (variable en el tiempo) para lograr la estabilización. Los sistemas EMS se basan en la estabilización electrónica activa que mide constantemente la distancia del rodamiento y ajusta la corriente del electroimán en consecuencia. Los sistemas EDS se basan en campos magnéticos cambiantes para crear corrientes, que pueden dar estabilidad pasiva.

Because maglev vehicles essentially fly, stabilisation of pitch, roll and yaw is required. In addition to rotation, surge (forward and backward motions), sway (sideways motion) or heave (up and down motions) can be problematic.

Superconducting magnets on a train above a track made out of a permanent magnet lock the train into its lateral position. It can move linearly along the track, but not off the track. This is due to the Meissner effect and flux pinning.

Guidance system

Some systems use Null Current systems (also sometimes called Null Flux systems).[47][56] These use a coil that is wound so that it enters two opposing, alternating fields, so that the average flux in the loop is zero. When the vehicle is in the straight ahead position, no current flows, but any moves off-line create flux that generates a field that naturally pushes/pulls it back into line.

Proposed technology enhancements

Evacuated tubes

Some systems (notably the Swissmetro system) propose the use of vactrains—maglev train technology used in evacuated (airless) tubes, which removes air drag. This has the potential to increase speed and efficiency greatly, as most of the energy for conventional maglev trains is lost to aerodynamic drag.[57]

One potential risk for passengers of trains operating in evacuated tubes is that they could be exposed to the risk of cabin depressurization unless tunnel safety monitoring systems can repressurize the tube in the event of a train malfunction or accident though since trains are likely to operate at or near the Earth's surface, emergency restoration of ambient pressure should be straightforward. The RAND Corporation has depicted a vacuum tube train that could, in theory, cross the Atlantic or the USA in around 21 minutes.[58]

Rail-Maglev Hybrid

The Polish startup Nevomo (previously Hyper Poland) is developing a system for modifying existing railway tracks into a maglev system, on which conventional wheel-rail trains, as well maglev vehicles can travel.[59] Vehicles on this so-called ‘magrail’ system will be able to reach speeds of up to 300 km/h at significantly lower infrastructure costs than stand-alone maglev lines. Similar to proposed Vactrain systems, magrail is designed to allow a later-stage upgrade with a vacuum cover which will enable vehicles to reach speeds of up to 600 km/h due to reduced air pressure, making the system similar to a hyperloop, but without the necessity for dedicated infrastructure corridors.[60]

Energy use

Energy for maglev trains is used to accelerate the train. Energy may be regained when the train slows down via regenerative braking. It also levitates and stabilises the train's movement. Most of the energy is needed to overcome air drag. Some energy is used for air conditioning, heating, lighting and other miscellany.

At low speeds the percentage of power used for levitation can be significant, consuming up to 15% more power than a subway or light rail service.[61] For short distances the energy used for acceleration might be considerable.

The force used to overcome air drag increases with the square of the velocity and hence dominates at high speed. The energy needed per unit distance increases by the square of the velocity and the time decreases linearly. However power increases by the cube of the velocity. For example, 2.37 times as much power is needed to travel at 400 km/h (250 mph) than 300 km/h (190 mph), while drag increases by 1.77 times the original force. [62]

Aircraft take advantage of lower air pressure and lower temperatures by cruising at altitude to reduce energy consumption but unlike trains need to carry fuel on board. This has led to the suggestion of conveying maglev vehicles through partially evacuated tubes.

Comparison with conventional trains

Maglev transport is non-contact and electric powered. It relies less or not at all on the wheels, bearings and axles common to wheeled rail systems.[63]

  • Speed: Maglev allows higher top speeds than conventional rail, but experimental wheel-based high-speed trains have demonstrated similar speeds.
  • Maintenance: Maglev trains currently in operation have demonstrated the need for minimal guideway maintenance. Vehicle maintenance is also minimal (based on hours of operation, rather than on speed or distance traveled). Traditional rail is subject to mechanical wear and tear that increases rapidly with speed, also increasing maintenance.[63] For example: the wearing down of brakes and overhead wire wear have caused problems for the Fastech 360 rail Shinkansen. Maglev would eliminate these issues.
  • Weather: Maglev trains are little affected by snow, ice, severe cold, rain or high winds. However, they have not operated in the wide range of conditions that traditional friction-based rail systems have operated. Maglev vehicles accelerate and decelerate faster than mechanical systems regardless of the slickness of the guideway or the slope of the grade because they are non-contact systems.[63]
  • Track: Maglev trains are not compatible with conventional track, and therefore require custom infrastructure for their entire route. By contrast conventional high-speed trains such as the TGV are able to run, albeit at reduced speeds, on existing rail infrastructure, thus reducing expenditure where new infrastructure would be particularly expensive (such as the final approaches to city terminals), or on extensions where traffic does not justify new infrastructure. John Harding, former chief maglev scientist at the Federal Railroad Administration, claimed that separate maglev infrastructure more than pays for itself with higher levels of all-weather operational availability and nominal maintenance costs. These claims have yet to be proven in an intense operational setting and they do not consider the increased maglev construction costs.
  • Efficiency: Conventional rail is probably more efficient at lower speeds. But due to the lack of physical contact between the track and the vehicle, maglev trains experience no rolling resistance, leaving only air resistance and electromagnetic drag, potentially improving power efficiency.[64] Some systems, however, such as the Central Japan Railway Company SCMaglev use rubber tires at low speeds, reducing efficiency gains.[citation needed]
  • Weight: The electromagnets in many EMS and EDS designs require between 1 and 2 kilowatts per ton.[65] The use of superconductor magnets can reduce the electromagnets' energy consumption. A 50-ton Transrapid maglev vehicle can lift an additional 20 tons, for a total of 70 tons, which consumes 70–140 kW (94–188 hp).[citation needed] Most energy use for the TRI is for propulsion and overcoming air resistance at speeds over 100 mph (160 km/h).[citation needed]
  • Weight loading: High-speed rail requires more support and construction for its concentrated wheel loading. Maglev cars are lighter and distribute weight more evenly.[66]
  • Noise: Because the major source of noise of a maglev train comes from displaced air rather than from wheels touching rails, maglev trains produce less noise than a conventional train at equivalent speeds. However, the psychoacoustic profile of the maglev may reduce this benefit: a study concluded that maglev noise should be rated like road traffic, while conventional trains experience a 5–10 dB "bonus", as they are found less annoying at the same loudness level.[67][68][69]
  • Magnet reliability: Superconducting magnets are generally used to generate the powerful magnetic fields to levitate and propel the trains. These magnets must be kept below their critical temperatures (this ranges from 4.2 K to 77 K, depending on the material). New alloys and manufacturing techniques in superconductors and cooling systems have helped address this issue.
  • Control systems: No signalling systems are needed for high-speed rail, because such systems are computer controlled. Human operators cannot react fast enough to manage high-speed trains. High-speed systems require dedicated rights of way and are usually elevated. Two maglev system microwave towers are in constant contact with trains. There is no need for train whistles or horns, either.
  • Terrain: Maglevs are able to ascend higher grades, offering more routing flexibility and reduced tunneling.[70] However, their high speed and greater need for control make it difficult for a maglev to merge with complex terrain, such as a curved hill. Traditional trains, on the other hand, are able to curve alongside a mountain top or meander through a forest.

Comparison with aircraft

Differences between airplane and maglev travel:

  • Efficiency: For maglev systems the lift-to-drag ratio can exceed that of aircraft (for example Inductrack can approach 200:1 at high speed, far higher than any aircraft). This can make maglevs more efficient per kilometer. However, at high cruising speeds, aerodynamic drag is much larger than lift-induced drag. Jets take advantage of low air density at high altitudes to significantly reduce air drag. Hence despite their lift-to-drag ratio disadvantage, they can travel more efficiently at high speeds than maglev trains that operate at sea level.[citation needed]
  • Routing: Maglevs offer competitive journey times for distances of 800 km (500 mi) or less. Additionally, maglevs can easily serve intermediate destinations.
  • Availability: Maglevs are little affected by weather.[citation needed]
  • Travel time: Maglevs do not face the extended security protocols faced by air travelers nor is time consumed for taxiing, or for queuing for take-off and landing.[citation needed]

The Shanghai maglev demonstration line cost US$1.2 billion to build in 2004.[71] This total includes capital costs such as right-of-way clearing, extensive pile driving, on-site guideway manufacturing, in-situ pier construction at 25 m (82 ft) intervals, a maintenance facility and vehicle yard, several switches, two stations, operations and control systems, power feed system, cables and inverters, and operational training. Ridership is not a primary focus of this demonstration line, since the Longyang Road station is on the eastern outskirts of Shanghai. Once the line is extended to South Shanghai Train station and Hongqiao Airport station, which may not happen because of economic reasons, ridership was expected to cover operation and maintenance costs and generate significant net revenue.[according to whom?]

The South Shanghai extension was expected to cost approximately US$18 million per kilometre. In 2006, the German government invested $125 million in guideway cost reduction development that produced an all-concrete modular design that is faster to build and is 30% less costly. Other new construction techniques were also developed that put maglev at or below price parity with new high-speed rail construction.[72]

The United States Federal Railroad Administration, in a 2005 report to Congress, estimated cost per mile of between US$50 million and US$100 million.[73] The Maryland Transit Administration (MTA) Environmental Impact Statement estimated a pricetag at US$4.9 billion for construction, and $53 million a year for operations of its project.[74]

The proposed Chuo Shinkansen maglev in Japan was estimated to cost approximately US$82 billion to build, with a route requiring long tunnels. A Tokaido maglev route replacing the current Shinkansen would cost 1/10 the cost, as no new tunnel would be needed, but noise pollution issues made this infeasible.[citation needed][neutrality is disputed]

The Japanese Linimo HSST, cost approximately US$100 million/km to build.[75] Besides offering improved operation and maintenance costs over other transit systems, these low-speed maglevs provide ultra-high levels of operational reliability and introduce little noise[verification needed] and generate zero air pollution into dense urban settings.

As more maglev systems are deployed, experts expect construction costs to drop by employing new construction methods and from economies of scale.[76]

The highest-recorded maglev speed is 603 km/h (375 mph), achieved in Japan by JR Central's L0 superconducting maglev on 21 April 2015,[77] 28 km/h (17 mph) faster than the conventional TGV wheel-rail speed record. However, the operational and performance differences between these two very different technologies is far greater. The TGV record was achieved accelerating down a 72.4 km (45 mi) slight decline, requiring 13 minutes. It then took another 77.25 km (48 mi) for the TGV to stop, requiring a total distance of 149.65 km (93 mi) for the test.[78] The MLX01 record, however, was achieved on the 18.4 km (11.4 mi) Yamanashi test track – 1/8 the distance.[79] No maglev or wheel-rail commercial operation has actually been attempted at speeds over 500 km/h (310 mph).

History of maglev speed records

Test tracks

AMT test track – Powder Springs, Georgia (USA)

A second prototype system in Powder Springs, Georgia, USA, was built by American Maglev Technology, Inc. The test track is 610 m (2,000 ft) long with a 168.6 m (553 ft) curve. Vehicles are operated up to 60 km/h (37 mph), below the proposed operational maximum of 97 km/h (60 mph). A June 2013 review of the technology called for an extensive testing program to be carried out to ensure the system complies with various regulatory requirements including the American Society of Civil Engineers (ASCE) People Mover Standard. The review noted that the test track is too short to assess the vehicles' dynamics at the maximum proposed speeds.[82]

FTA's UMTD program, USA

In the US, the Federal Transit Administration (FTA) Urban Maglev Technology Demonstration program funded the design of several low-speed urban maglev demonstration projects. It assessed HSST for the Maryland Department of Transportation and maglev technology for the Colorado Department of Transportation. The FTA also funded work by General Atomics at California University of Pennsylvania to evaluate the MagneMotion M3 and of the Maglev2000 of Florida superconducting EDS system. Other US urban maglev demonstration projects of note are the LEVX in Washington State and the Massachusetts-based Magplane.

San Diego, California USA

General Atomics has a 120 m (390 ft) test facility in San Diego, that is used to test Union Pacific's 8 km (5 mi) freight shuttle in Los Angeles. The technology is "passive" (or "permanent"), using permanent magnets in a Halbach array for lift and requiring no electromagnets for either levitation or propulsion. General Atomics received US$90 million in research funding from the federal government. They are also considering their technology for high-speed passenger services.[83]

SCMaglev, Yamanashi Japan

Japan has a demonstration line in Yamanashi prefecture where test train SCMaglev L0 Series Shinkansen reached 603 km/h (375 mph), faster than any wheeled trains.[77]

These trains use superconducting magnets, which allow for a larger gap, and repulsive/attractive-type electrodynamic suspension (EDS).[47][84] In comparison, Transrapid uses conventional electromagnets and attractive-type electromagnetic suspension (EMS).[85][86]

On 15 November 2014, The Central Japan Railway Company ran eight days of testing for the experimental maglev Shinkansen train on its test track in Yamanashi Prefecture. One hundred passengers covered a 42.8 km (26.6 mi) route between the cities of Uenohara and Fuefuki, reaching speeds of up to 500 km/h (310 mph).[87]

Sengenthal, Germany

Max Bögl, a German construction company has built a testtrack in Sengenthal, Bavaria, Germany. In appearance, it's more like the German M-Bahn than the Transrapid system.[88] The vehicle tested on the track is patented in the US by Max Bögl.[89]

Southwest Jiaotong University, China

On 31 December 2000, the first crewed high-temperature superconducting maglev was tested successfully at Southwest Jiaotong University, Chengdu, China. This system is based on the principle that bulk high-temperature superconductors can be levitated stably above or below a permanent magnet. The load was over 530 kg (1,170 lb) and the levitation gap over 20 mm (0.79 in). The system uses liquid nitrogen to cool the superconductor.[90][91][92]

Operational systems

Shanghai Maglev (2003)

A maglev train coming out of the Pudong International Airport

The Shanghai Maglev Train, also known as the Transrapid, has a top speed of 430 km/h (270 mph). The line is the fastest, first commercially successful, operational Maglev train designed to connect Shanghai Pudong International Airport and the outskirts of central Pudong, Shanghai. It covers a distance of 30.5 km (19.0 mi) in 7 or 8 minutes.[3]

In January 2001, the Chinese signed an agreement with Transrapid to build an EMS high-speed maglev line to link Pudong International Airport with Longyang Road Metro station on the southeastern edge of Shanghai. This Shanghai Maglev Train demonstration line, or Initial Operating Segment (IOS), has been in commercial operations since April 2004[93] and now operates 115 daily trips (up from 110 in 2010) that traverse the 30 km (19 mi) between the two stations in 7 or 8 minutes, achieving a top speed of 431 km/h (268 mph) and averaging 266 km/h (165 mph).[94] On a 12 November 2003 system commissioning test run, it achieved 501 km/h (311 mph), its designed top cruising speed. The Shanghai maglev is faster than Birmingham technology and comes with on-time—to the second—reliability greater than 99.97%.[95]

Plans to extend the line to Shanghai South Railway Station and Hongqiao Airport on the northwestern edge of Shanghai are on hold. After the Shanghai–Hangzhou Passenger Railway became operational in late 2010, the maglev extension became somewhat redundant and may be cancelled.

Linimo (Tobu Kyuryo Line, Japan) (2005)

Linimo train approaching Banpaku Kinen Koen, towards Fujigaoka Station in March 2005

The commercial automated "Urban Maglev" system commenced operation in March 2005 in Aichi, Japan. The Tobu Kyuryo Line, otherwise known as the Linimo line, covers 9 km (5.6 mi). It has a minimum operating radius of 75 m (246 ft) and a maximum gradient of 6%. The linear-motor magnetically levitated train has a top speed of 100 km/h (62 mph). More than 10 million passengers used this "urban maglev" line in its first three months of operation. At 100 km/h, it is sufficiently fast for frequent stops, has little or no noise impact on surrounding communities, can navigate short radius rights of way, and operates during inclement weather. The trains were designed by the Chubu HSST Development Corporation, which also operates a test track in Nagoya.[96]

Daejeon Expo Maglev (2008)

The first maglev test trials using electromagnetic suspension opened to public was HML-03, made by Hyundai Heavy Industries for the Daejeon Expo in 1993, after five years of research and manufacturing two prototypes, HML-01 and HML-02.[97][98][99] Government research on urban maglev using electromagnetic suspension began in 1994.[99] The first operating urban maglev was UTM-02 in Daejeon beginning on 21 April 2008 after 14 years of development and one prototype; UTM-01. The train runs on a 1 km (0.6 mi) track between Expo Park and National Science Museum[100][101] which has been shortened with the redevelopment of Expo Park. The track currently ends at the street parallel to the science museum. Meanwhile, UTM-02 conducted the world's first-ever maglev simulation.[102][103] However, UTM-02 is still the second prototype of a final model. The final UTM model of Rotem's urban maglev, UTM-03, was scheduled to debut at the end of 2014 in Incheon's Yeongjong island where Incheon International Airport is located.[104]

Incheon Airport Maglev (2016)

The Incheon Airport Maglev began commercial operation on 3 February 2016.[32] It was developed and built domestically. Compared to Linimo, it has a more futuristic design thanks to it being lighter with construction costs cut to half.[105] It connects Incheon International Airport with Yongyu Station, cutting journey time.[106]

Changsha Maglev (2016)

Changsha Maglev Train arriving at Langli Station

The Hunan provincial government launched the construction of a maglev line between Changsha Huanghua International Airport and Changsha South Railway Station, covering a distance of 18.55 km. Construction started in May 2014 and was completed by the end of 2015.[107][108] Trial runs began on 26 December 2015 and trial operations started on 6 May 2016.[109] As of 13 June 2018 the Changsha maglev had covered a distance of 1.7 million km and carried nearly 6 million passengers. The next generation of this vehicle is in production, and is capable of running at a top speed of 160 km/h.[110]

Beijing S1 Line (2017)

Beijing has built China's second low-speed maglev line, S1 Line, Beijing Subway, using technology developed by National University of Defense Technology. The line was opened on 30 December 2017. The line operates at speeds up to 100 km/h.[111]

Chūō Shinkansen (Japan)

The Chūō Shinkansen route (bold yellow and red line) and existing Tōkaidō Shinkansen route (thin blue line)

The Chuo Shinkansen is a high-speed maglev line in Japan. Construction began in 2014, commercial operations was expected to start by 2027.[112] The 2027 target was given up in July 2020.[113] The Linear Chuo Shinkansen Project aims to connect Tokyo and Osaka by way of Nagoya, the capital city of Aichi, in approximately one hour, less than half the travel time of the fastest existing bullet trains connecting the three metropolises.[114] The full track between Tokyo and Osaka was originally expected to be completed in 2045, but the operator is now aiming for 2037.[115][116][117]

The L0 Series train type is undergoing testing by the Central Japan Railway Company (JR Central) for eventual use on the Chūō Shinkansen line. It set a manned world speed record of 603 km/h (375 mph) on 21 April 2015.[77] The trains are planned to run at a maximum speed of 505 km/h (314 mph),[118] offering journey times of 40 minutes between Tokyo (Shinagawa Station) and Nagoya, and 1 hour 7 minutes between Tokyo and Osaka (Shin-Ōsaka Station).[119]

Fenghuang Maglev (China)

Fenghuang Maglev (凤凰磁浮) is a medium- to low-speed maglev line in Fenghuang County, Xiangxi, Hunan province, China. The line will operate at speeds up to 100 km/h. The first phase is 9.12 km with 4 stations (and 2 more reserved station). The first phase will open in 2021 and will connect the Fenghuang railway station on Zhangjiajie–Jishou–Huaihua high-speed railway with the Fenghuang Folklore Garden.[120]

Qingyuan Maglev (China)

Qingyuan Maglev (清远磁浮旅游专线) is a medium- to low-speed maglev line in Qingyuan, Guangdong province, China. The line will operate at speeds up to 100 km/h.[121] The first phase is 8.1 km with 3 stations (and 1 more reserved station).[121] The first phase will open in October 2020[122] and will connect the Yinzhan railway station on Guangzhou–Qingyuan intercity railway with the Qingyuan Chimelong Theme Park.[123] In the long term the line will be 38.5 km.[124]

Many maglev systems have been proposed in North America, Asia and Europe.[125] Many are in the early planning stages or were explicitly rejected.

Australia

Sydney-Illawarra

A maglev route was proposed between Sydney and Wollongong.[126] The proposal came to prominence in the mid-1990s. The Sydney–Wollongong commuter corridor is the largest in Australia, with upwards of 20,000 people commuting each day. Current trains use the Illawarra line, between the cliff face of the Illawarra escarpment and the Pacific Ocean, with travel times about 2 hours. The proposal would cut travel times to 20 minutes.

Melbourne
The proposed Melbourne maglev connecting the city of Geelong through Metropolitan Melbourne's outer suburban growth corridors, Tullamarine and Avalon domestic in and international terminals in under 20 min. and on to Frankston, Victoria, in under 30 min.

In late 2008, a proposal was put forward to the Government of Victoria to build a privately funded and operated maglev line to service the Greater Melbourne metropolitan area in response to the Eddington Transport Report that did not investigate above-ground transport options.[127][128] The maglev would service a population of over 4 million[citation needed] and the proposal was costed at A$8 billion.

However, despite road congestion and Australia's highest roadspace per capita,[citation needed] the government dismissed the proposal in favour of road expansion including an A$8.5 billion road tunnel, $6 billion extension of the Eastlink to the Western Ring Road and a $700 million Frankston Bypass.

Canada

Toronto Zoo: Edmonton-based Magnovate has proposed a new ride and transportation system at the Toronto Zoo reviving the Toronto Zoo Domain Ride system, which was closed following two severe accidents in 1994. The Zoo's board unanimously approved the proposal on 29 November 2018.

The company will construct and operate the $25 million system on the former route of the Domain Ride (known locally as the Monorail, despite not being considered one) at zero cost to the Zoo and operate it for 15 years, splitting the profits with the Zoo. The ride will serve a single-directional loop around Zoo grounds, serving five stations and likely replacing the current Zoomobile tour tram service. Planned to be operational by 2022 at the earliest, this will become the first commercially operating maglev system in North America should it be approved.[129]

China

Beijing – Guangzhou line

A maglev test line linking Xianning in Hubei Province and Changsha in Hunan Province will start construction in 2020. The test line is about 200 km (120 mi) in length and might be part of Beijing – Guangzhou maglev in long-term planning.[130][131] In 2021, the Guangdong government proposed a Maglev line between Hong Kong and Guangzhou via Shenzhen and beyond to Beijing.[132][133]

Other proposed lines

Shanghai – Hangzhou

China planned to extend the existing Shanghai Maglev Train,[134] initially by around 35 km (22 mi) to Shanghai Hongqiao Airport and then 200 km (120 mi) to the city of Hangzhou (Shanghai-Hangzhou Maglev Train). If built, this would be the first inter-city maglev rail line in commercial service.

The project was controversial and repeatedly delayed. In May 2007 the project was suspended by officials, reportedly due to public concerns about radiation from the system.[135] In January and February 2008 hundreds of residents demonstrated in downtown Shanghai that the line route came too close to their homes, citing concerns about sickness due to exposure to the strong magnetic field, noise, pollution and devaluation of property near to the lines.[136][137] Final approval to build the line was granted on 18 August 2008. Originally scheduled to be ready by Expo 2010,[138] plans called for completion by 2014. The Shanghai municipal government considered multiple options, including building the line underground to allay public fears. This same report stated that the final decision had to be approved by the National Development and Reform Commission.[139]

In 2007 the Shanghai municipal government was considering building a factory in Nanhui district to produce low-speed maglev trains for urban use.[140]

Shanghai – Beijing

A proposed line would have connected Shanghai to Beijing, over a distance of 1,300 km (800 mi), at an estimated cost of £15.5 billion.[141] No projects had been revealed as of 2014.[142]

Germany

On 25 September 2007, Bavaria announced a high-speed maglev-rail service from Munich to its airport. The Bavarian government signed contracts with Deutsche Bahn and Transrapid with Siemens and ThyssenKrupp for the €1.85 billion project.[143]

On 27 March 2008, the German Transport minister announced the project had been cancelled due to rising costs associated with constructing the track. A new estimate put the project between €3.2–3.4 billion.[144]

Hong Kong

The Express Rail Link, previously known as the Regional Express, connect Kowloon with the territory's border with China, explored different technologies and designs in its planning stage, between maglev and conventional high-speed railway, and if the latter was chosen, between a dedicated new route and sharing the tracks with the existing West Rail. Finally conventional highspeed with dedicated new route was chosen. The final phase, which connects Shenzhen-Futian to Hong Kong (West Kowloon) was inaugurated on 22 September 2018. It opened for public on Sunday 23 September 2018.

India

Mumbai – Delhi
A project was presented to then Indian railway minister (Mamata Banerjee) by an American company to connect Mumbai and Delhi. Then Prime Minister Manmohan Singh said that if the line project was successful the Indian government would build lines between other cities and also between Mumbai Central and Chhatrapati Shivaji International Airport.[145]
Mumbai – Nagpur
The State of Maharashtra approved a feasibility study for a maglev train between Mumbai and Nagpur, some 1,000 km (620 mi) apart.[146]
Chennai – Bangalore – Mysore
A detailed report was to be prepared and submitted by December 2012 for a line to connect Chennai to Mysore via Bangalore at a cost $26 million per kilometre, reaching speeds of 350 km/h.[147]

Italy

A first proposal was formalized in April 2008, in Brescia, by journalist Andrew Spannaus who recommended a high-speed connection between Malpensa airport to the cities of Milan, Bergamo and Brescia.[148]

In March 2011, Nicola Oliva proposed a maglev connection between Pisa airport and the cities of Prato and Florence (Santa Maria Novella train station and Florence Airport).[149][150] The travelling time would be reduced from the typical 1 hour 15 minutes to around 20 minutes.[151] The second part of the line would be a connection to Livorno, to integrate maritime, aerial and terrestrial transport systems.[152][153]

Iran

In May 2009, Iran and a German company signed an agreement to use maglev to link Tehran and Mashhad. The agreement was signed at the Mashhad International Fair site between Iranian Ministry of Roads and Transportation and the German company. The 900 km (560 mi) line possibly could reduce travel time between Tehran and Mashhad to about 2.5 hours.[154] Munich-based Schlegel Consulting Engineers said they had signed the contract with the Iranian ministry of transport and the governor of Mashad. "We have been mandated to lead a German consortium in this project," a spokesman said. "We are in a preparatory phase." The project could be worth between €10 billion and €12 billion, the Schlegel spokesman said.[155]

Malaysia/Singapore

A Consortium led by UEM Group Bhd and ARA Group, proposed maglev technology to link Malaysian cities to Singapore. The idea was first mooted by YTL Group. Its technology partner then was said to be Siemens. High costs sank the proposal. The concept of a high-speed rail link from Kuala Lumpur to Singapore resurfaced. It was cited as a proposed "high impact" project in the Economic Transformation Programme (ETP) that was unveiled in 2010.[156] Approval has been given for the Kuala Lumpur–Singapore high-speed rail project, but not using maglev technology.[citation needed]

Philippines

Philtram Consortium's Cebu Monorail project will be initially built as a monorail system. In the future, it will be upgraded to a patented maglev technology named Spin-Induced Lenz's Law Magnetic Levitation Train.[157]

Switzerland

SwissRapide: The SwissRapide AG together with the SwissRapide Consortium was planning and developing the first maglev monorail system for intercity traffic between the country's major cities. SwissRapide was to be financed by private investors. In the long-term, the SwissRapide Express was to connect the major cities north of the Alps between Geneva and St. Gallen, including Lucerne and Basel. The first projects were Bern – Zurich, Lausanne – Geneva as well as Zurich – Winterthur. The first line (Lausanne – Geneva or Zurich – Winterthur) could go into service as early as 2020.[158][159]

Swissmetro: An earlier project, Swissmetro AG envisioned a partially evacuated underground maglev (a vactrain). As with SwissRapide, Swissmetro envisioned connecting the major cities in Switzerland with one another. In 2011, Swissmetro AG was dissolved and the IPRs from the organisation were passed onto the EPFL in Lausanne.[160]

United Kingdom

London – Glasgow: A line[161] was proposed in the United Kingdom from London to Glasgow with several route options through the Midlands, Northwest and Northeast of England. It was reported to be under favourable consideration by the government.[162] The approach was rejected in the Government White Paper Delivering a Sustainable Railway published on 24 July 2007.[163] Another high-speed link was planned between Glasgow and Edinburgh but the technology remained unsettled.[164][165][166]

United States

Washington, D.C. to New York City: Using Superconducting Maglev (SCMAGLEV) technology developed by the Central Japan Railway Company, the Northeast Maglev would ultimately connect major Northeast metropolitan hubs and airports traveling more than 480 kilometers per hour (300 miles per hour),[167] with a goal of one-hour service between Washington, D.C. and New York City.[168] The Federal Railroad Administration and Maryland Department of Transportation are currently preparing an Environmental Impact Statement (EIS) to evaluate the potential impacts of constructing and operating the system's first leg between Washington, DC and Baltimore, Maryland with an intermediate stop at BWI Airport.[169]

Union Pacific freight conveyor: Plans are under way by American railroad operator Union Pacific to build a 7.9 km (4.9 mi) container shuttle between the Ports of Los Angeles and Long Beach, with UP's intermodal container transfer facility. The system would be based on "passive" technology, especially well-suited to freight transfer as no power is needed on board. The vehicle is a chassis that glides to its destination. The system is being designed by General Atomics.[83]

California-Nevada Interstate Maglev: High-speed maglev lines between major cities of southern California and Las Vegas are under study via the California-Nevada Interstate Maglev Project.[170] This plan was originally proposed as part of an I-5 or I-15 expansion plan, but the federal government ruled that it must be separated from interstate public work projects.

After the decision, private groups from Nevada proposed a line running from Las Vegas to Los Angeles with stops in Primm, Nevada; Baker, California; and other points throughout San Bernardino County into Los Angeles. Politicians expressed concern that a high-speed rail line out of state would carry spending out of state along with travelers.

The Pennsylvania Project: The Pennsylvania High-Speed Maglev Project corridor extends from the Pittsburgh International Airport to Greensburg, with intermediate stops in Downtown Pittsburgh and Monroeville. This initial project was claimed to serve approximately 2.4 million people in the Pittsburgh metropolitan area. The Baltimore proposal competed with the Pittsburgh proposal for a US$90 million federal grant.[171]

San Diego-Imperial County airport: In 2006, San Diego commissioned a study for a maglev line to a proposed airport located in Imperial County. SANDAG claimed that the concept would be an "airports [sic] without terminals", allowing passengers to check in at a terminal in San Diego ("satellite terminals"), take the train to the airport and directly board the airplane. In addition, the train would have the potential to carry freight. Further studies were requested although no funding was agreed.[172]

Orlando International Airport to Orange County Convention Center: In December 2012, the Florida Department of Transportation gave conditional approval to a proposal by American Maglev to build a privately run 14.9 mi (24 km), 5-station line from Orlando International Airport to Orange County Convention Center. The Department requested a technical assessment and said there would be a request for proposals issued to reveal any competing plans. The route requires the use of a public right of way.[173] If the first phase succeeded American Maglev would propose two further phases (of 4.9 and 19.4 mi [7.9 and 31.2 km]) to carry the line to Walt Disney World.[174]

San Juan – Caguas: A 16.7 mi (26.9 km) maglev project was proposed linking Tren Urbano's Cupey Station in San Juan with two proposed stations in the city of Caguas, south of San Juan. The maglev line would run along Highway PR-52, connecting both cities. According to American Maglev project cost would be approximately US$380 million.[175][176][177]

Two incidents involved fires. A Japanese test train in Miyazaki, MLU002, was completely consumed by a fire in 1991.[178]

On 11 August 2006, a fire broke out on the commercial Shanghai Transrapid shortly after arriving at the Longyang terminal. People were evacuated without incident before the vehicle was moved about 1 kilometre to keep smoke from filling the station. NAMTI officials toured the SMT maintenance facility in November 2010 and learned that the cause of the fire was "thermal runaway" in a battery tray. As a result, SMT secured a new battery vendor, installed new temperature sensors and insulators and redesigned the trays.[citation needed]

On 22 September 2006, a Transrapid train collided with a maintenance vehicle on a test/publicity run in Lathen (Lower Saxony / north-western Germany).[179][180] Twenty-three people were killed and ten were injured; these were the first maglev crash fatalities. The accident was caused by human error. Charges were brought against three Transrapid employees after a year-long investigation.[181]

Safety becomes an ever greater concern with high-speed public transport due to the potentially large impact force and number of casualties. In the case of maglev trains, an incident could result from human error, including loss of power, or factors outside human control, such as ground movement, for example, caused by an earthquake.

  • Bombardier Advanced Rapid Transit – Transit systems using Linear induction motors
  • Ground effect train
  • Hyperloop
  • Land speed record for rail vehicles
  • Launch loop would be a maglev system for launching to orbit or escape velocity
  • Mass driver
  • Nagahori Tsurumi-ryokuchi Line
  • Oleg Tozoni worked on a published non-linearly stabilised maglev design
  • StarTram – a maglev launch system
  • Transfer table
  • Electromagnetic suspension

  1. ^ Zehden describes a geometry in which the linear motor is used below a steel beam, giving partial levitation of the vehicle. These patents were later cited by Electromagnetic apparatus generating a gliding magnetic field by Jean Candelas (U.S. Patent 4,131,813), Air cushion supported, omnidirectionally steerable, traveling magnetic field propulsion device by Harry A. Mackie (U.S. Patent 3,357,511) and Two-sided linear induction motor especially for suspended vehicles by Schwarzler et al. (U.S. Patent 3,820,472)
  2. ^ These German patents would be GR643316 (1937), GR44302 (1938), GR707032 (1941).
  3. ^ This is the case with the Moscow Monorail—currently the only non-maglev linear motor-propelled monorail train in active service.

  1. ^ K.C.Coates. "High-speed rail in the United Kingdom" (PDF). High-speed rail in the United Kingdom. Archived from the original (PDF) on 19 September 2011. Retrieved 13 December 2012.
  2. ^ Transrapid Archived 27 September 2013 at the Wayback Machine uses more power for air conditioning
  3. ^ a b Michael, Gebicki (27 November 2014). "What's the world's fastest passenger train". Stuff.co.nz. Retrieved 24 December 2014.
  4. ^ Radford, Tim (11 October 1999). "Nasa takes up idea pioneered by Briton – Magnetic levitation technology was abandoned by government". The Guardian. London.
  5. ^ "Obituary for the late Professor Eric Laithwaite" Archived 25 August 2010 at the Wayback Machine, Daily Telegraph, 6 December 1997.
  6. ^ "The magnetic attraction of trains". BBC News. 9 November 1999. Retrieved 28 November 2010.
  7. ^ U.S. Patent 3,736,880, 21 January 1972. Page 10 Column 1 Line 15 to Page 10 Column 2 Line 25.
  8. ^ U.S. Patent 859,018, 2 July 1907.
  9. ^ U.S. Patent 1,090,213, 17 March 1914
  10. ^ Johnson, Tom L.. My Story. B. W. Huebsch, 1911; reprint Kent State University Press 1993. pg. xlv-xlvi
  11. ^ U.S. Patent 3,858,521; 26 March 1973.
  12. ^ Muller, Christopher (23 January 1997). "Magnetic Levitation for Transportation". railserve.com.
  13. ^ "Brookhaven Lab Retirees Win Benjamin Franklin Medal For Their Invention of Magnetically Levitated Trains". Brookhaven National Laboratory. 18 April 2000.
  14. ^ US3,470,828 Granted 17 October 1969.
  15. ^ Sanchanta, Mariko (26 January 2010). "High-Speed Rail Approaches Station". WSJ.
  16. ^ "JR Central gives up on opening new maglev train service in 2027". Kyodo News. 3 July 2020.
  17. ^ "Дорога на магнитном подвесе: второе дыхание в России?", РЖД-Партнёр, 2009-10-01
  18. ^ a b Тим Скоренко: «Советский маглев: 25 лет под целлофаном» in Популярная Механика, May 2015 Nr. 5 (151), pp. 52-56
  19. ^ The unknown Russian monorail
  20. ^ "Юные красноярские железнодорожники разработали модель поезда на магнитной подушке". newslab.ru. Retrieved 15 October 2018.
  21. ^ Советский маглев: будущее, которое не случилось
  22. ^ "Как маглев до Еревана не "доехал". Армения могла стать первой в СССР республикой с магнитным монорельсом". Центр поддержки русско-армянских стратегических и общественных инициатив. 19 February 2017. Retrieved 15 October 2018.
  23. ^ http://erc-temp.ru/ ОАО Инженерно-научный центр «ТЭМП»
  24. ^ "The magnetic attraction of trains". BBC News. 9 November 1999.
  25. ^ Maglev, A film for The People Mover Group
  26. ^ "New plan aims to bring the Maglev back". Birmingham Mail. Archived from the original on 22 May 2011. Retrieved 1 September 2006.
  27. ^ "AirRail Shuttle Birmingham International Airport". DCC Doppelmayr. Archived from the original on 31 May 2011. Retrieved 16 July 2008.
  28. ^ "Birmingham International Airport People Mover". Arup. Archived from the original on 29 November 2007. Retrieved 11 July 2008.
  29. ^ Transrapid-Teststrecke vor dem Abriss, NDR (in German) Archived 6 July 2012 at the Wayback Machine
  30. ^ "Japanese Maglev System – HSST -History of Development". Archived from the original on 17 October 2015. Retrieved 23 April 2015.
  31. ^ "A Few Views of Expo 86 in Vancouver, BC". Archived from the original on 27 May 2015. Retrieved 23 April 2015.
  32. ^ a b https://www.koreatimes.co.kr/www/news/nation/2016/02/116_197061.html
  33. ^ Hamer, Mick (15 March 1984). "Birmingham maglev off to flying start". New Scientist. pp. 25–27. Retrieved 14 June 2016.
  34. ^ Sponseller, Michael (December 1988). "Magnetic train". Popular Science. pp. 97–98. Retrieved 14 June 2016.
  35. ^ http://news.mk.co.kr/newsRead.php?no=94104&year=2016
  36. ^ "KBS WORLD". Retrieved 26 September 2010.
  37. ^ "인천공항 자기부상철도 3일 개통…무료로 운행한다". 2 February 2016.
  38. ^ "Maglev Train to Debut at Incheon in 2012". 26 June 2007. Retrieved 26 September 2010.
  39. ^ "Webzine". Hyundai Rotem.
  40. ^ "Magnetic levitation train to operate in July". Retrieved 3 October 2014.
  41. ^ "Railway Gazette: Airport maglev demonstration line". Retrieved 26 September 2010.
  42. ^ "High-Tech for 'Flying on the Ground'" (PDF). Transrapid International. Retrieved 28 December 2014. Cite journal requires |journal= (help)
  43. ^ "Hong Kong Physics World – Maglev". Hong Kong Physics World. Retrieved 28 December 2014.
  44. ^ Tsuchiya, M. Ohsaki, H. (September 2000). "Characteristics of electromagnetic force of EMS-type maglev vehicle using bulk superconductors". IEEE Transactions on Magnetics. 36 (5): 3683–3685. Bibcode:2000ITM....36.3683T. doi:10.1109/20.908940.CS1 maint: multiple names: authors list (link)
  45. ^ R. Goodall (September 1985). "The theory of electromagnetic levitation". Physics in Technology. 16 (5): 207–213. Bibcode:1985PhTec..16..207G. doi:10.1088/0305-4624/16/5/I02.
  46. ^ a b c d e "Maglev: How they're Getting Trains off the Ground", Popular Science, December 1973 p. 135.
  47. ^ a b c "Principle of Maglev". Railway Technical Research Institute. Retrieved 25 May 2012.
  48. ^ a b He, J.L.; Rote, D.M.; Coffey, H.T. (31 August 2012). "Study of Japanese Electrodynamic-Suspension Maglev Systems". Osti.gov. doi:10.2172/10150166. OSTI 10150166. Retrieved 4 November 2012. Cite journal requires |journal= (help)
  49. ^ Ireson, Nelson (14 November 2008). "Dutch university working on affordable electromagnetic suspension". MotorAuthority.com. Archived from the original on 29 September 2009. Retrieved 7 September 2009.
  50. ^ Ogawa, Keisuke (30 October 2006). "Hitachi Exhibits Electromagnetic Suspension System". techon.nikkeibp.co.jp.
  51. ^ Marc T. Thompson; Richard D. Thornton (May 1999). "Flux-Canceling Electrodynamic Maglev Suspension: Part II Test Results and Scaling Laws" (PDF). IEEE Transactions on Magnetics. 35 (3): 1964–1975. doi:10.1109/20.764894.
  52. ^ Cotsalas, Valerie (4 June 2000). "It Floats! It Speeds! It's a Train!". The New York Times.
  53. ^ "A New Approach for Magnetically Levitating Trains – and Rockets". llnl.gov. Retrieved 7 September 2009.
  54. ^ Richard F. Post (January 2000). "MagLev: A New Approach". Scientific American. Archived from the original on 9 March 2005.
  55. ^ Gibbs, Philip & Geim, Andre. "Is Magnetic Levitation Possible?". High Field Magnet Laboratory. Archived from the original on 30 May 2007. Retrieved 8 September 2009.
  56. ^ "How maglev works: Learning to levitate". Maglev 2000. Retrieved 7 September 2009.
  57. ^ "Trans-Atlantic MagLev". Retrieved 1 September 2009.
  58. ^ "The Very High Speed Transit System". RAND. 1972. Retrieved 29 September 2011.
  59. ^ "Magrail: The Brilliant Mix of Maglev and Traditional Rail". maglev.net. 24 March 2020. Retrieved 24 August 2020.
  60. ^ "Hyper Poland - Questions and Answers". Hyper Poland. Retrieved 24 August 2020.
  61. ^ "Beijing Maglev". Maglev.net. Retrieved 4 November 2012.
  62. ^ "Can magnetically levitating trains run at 3,000 km/h?".
  63. ^ a b c "-Maglev Technology Explained". North American Maglev Transport Institute. 1 January 2011. Archived from the original on 27 July 2011.
  64. ^ "Transrapid claims to use a quarter less power at 200 km/h than the InterCityExpress". Transrapid. Archived from the original on 22 July 2009. Retrieved 7 September 2009.
  65. ^ "Tagungsband.doc" (PDF). Archived from the original (PDF) on 2 October 2011. Retrieved 29 September 2011.
  66. ^ "Conventional High-Speed Rail Vs. Magnetically Levitated Trains: Was M…". archive.is. 25 June 2014. Retrieved 6 March 2021.
  67. ^ Vos, Joos (April 2004). "Annoyance caused by the sounds of a magnetic levitation train". The Journal of the Acoustical Society of America. 115 (4): 1597–1608. Bibcode:2004ASAJ..115.1597V. doi:10.1121/1.1650330. PMID 15101639. Retrieved 23 May 2008.
  68. ^ Gharabegian, Areq (November 2000). "Maglev—A super fast train". The Journal of the Acoustical Society of America. 108 (5): 2527. Bibcode:2000ASAJ..108R2527G. doi:10.1121/1.4743350. Retrieved 23 May 2008.
  69. ^ "Maglevs in Action". North American Maglev Transport Institute. 1 January 2011. Archived from the original on 27 July 2011.
  70. ^ Alan Kandel (22 November 2011). "Conventional High-Speed Rail Vs. Magnetically Levitated Trains: Was Maglev Ever In Contention?".
  71. ^ Antlauf, Walter; Bernardeau, François; Coates, Kevin (November 2004). "Fast Track". Civil Engineering Magazine. Archived from the original on 8 May 2006. Retrieved 22 December 2017.
  72. ^ "Modular Guideway Manufacturing " North American Maglev Transport Institute". Namti.org. Archived from the original on 19 September 2011. Retrieved 29 September 2011.
  73. ^ "Report to Congress: Costs and Benefits of Magnetic Levitation (PDF)". Federal Railway Administration. US Department of Transportation.
  74. ^ "Baltimore-Washington Maglev – Environmental impact statement" (PDF). Baltimore-Washington Maglev. Archived from the original (PDF) on 26 March 2009. Retrieved 8 September 2009.
  75. ^ Nagoya builds Maglev Metro Archived 29 January 2007 at the Wayback Machine, International Railway Journal, May 2004.
  76. ^ pattont (30 January 2011). "Cost Data – HSM vs. Existing Modes " North American Maglev Transport Institute". Namti.org. Archived from the original on 19 September 2011. Retrieved 29 September 2011.
  77. ^ a b c d "Japan's maglev train breaks world speed record with 600 km/h test run". The Guardian. United Kingdom: Guardian News and Media Limited. 21 April 2015. Retrieved 21 April 2015.
  78. ^ "TGV's 357Mph Demo Proves HSM's Superiority " North American Maglev Transport Institute". Namti.org. Archived from the original on 11 December 2015. Retrieved 29 September 2011.
  79. ^ "Piloted maglev breaks world speed record". The Japan Times Online. The Japan Times Ltd. 3 October 1997. Retrieved 11 December 2014.
  80. ^ "The Superconducting Maglev Sets a Guinness World Record for Attaining 581 km/h in a Manned Test Run". Central Japan Railway Company. 1 March 2004. Archived from the original on 25 June 2009.
  81. ^ Barrow, Keith (17 April 2015). "Japan breaks maglev speed record". IRJ. Retrieved 20 July 2016.
  82. ^ "American Maglev Technology (AMT) Assessment" (PDF). 5 June 2013. Archived from the original (PDF) on 19 March 2014.
  83. ^ a b "Freight maglev on test". Railway Gazette International. 9 February 2009. Archived from the original on 20 May 2010.
  84. ^ "Central Japan Railway Company Data Book 2011" (PDF). Central Japan Railway Company. p. 24. Retrieved 25 May 2012.
  85. ^ "Japan's maglev train sets speed record". CTVglobemedia Publishing Inc. 2 December 2003. Archived from the original on 6 December 2003. Retrieved 16 February 2009.
  86. ^ "Overview of Maglev R&D". Railway Technical Research Institute. Archived from the original on 5 March 2009. Retrieved 2 November 2009.
  87. ^ "BBC – Homepage". bbc.com.
  88. ^ "Nord Bayern 20160618".
  89. ^ "Patent US 20150040791 A1".
  90. ^ Wang, Jiasu; Wang, Suyu; Zheng, Jun (17 July 2009). "Recent Development of High Temperature Superconducting Maglev System in China". IEEE Transactions on Applied Superconductivity. Ieeexplore.ieee.org. 19 (3): 2142–2147. Bibcode:2009ITAS...19.2142W. doi:10.1109/TASC.2009.2018110. S2CID 33412702.
  91. ^ [20] Wang Jiasu, Wang Suyu, Zeng Youwen, Huang Haiyu, Luo Fang, Xu Zhipei, Tang Qixue, Lin Guobin, Zhang Cuifang, Ren Zhongyou, Zhao Guomin, Zhu Degui, Wang Shaohua, Jiang He, Zhu Min, Deng Changyan, Hu Pengfei, Li Chaoyong, Liu Fang, Lian Jisan, Wang Xiaorong, Wang Lianghui, Shen Xuming, Dong Xiaogang. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C, 2002, 378-381: 809-814
  92. ^ Jia-su Wang; Su-Yu Wang (2016). "High Temperature Superconducting Magnetic Levitation". Beijing University Press. Cite journal requires |journal= (help)
  93. ^ [1] Archived 9 August 2012 at the Wayback Machine
  94. ^ "Shanghai Maglev Train (431 km/h) – High Definition Video". shanghaichina.ca.
  95. ^ (7-minute real time video of the maglev reaching 432 km/h in only 3 minutes)
  96. ^ "Nagoya builds Maglev Metro". International Railway Journal. May 2004. Archived from the original on 29 January 2007.
  97. ^ "Musharraf's Relative Lands Another Super Duper Project of the Future". The South Asia Tribune. 12 May 2005. Archived from the original on 16 January 2008. Retrieved 27 October 2008.
  98. ^ "Urban maglev opportunity". Railway Gazette International. 5 September 2008. Retrieved 27 October 2008.
  99. ^ a b "Rotem Business Activities, Maglev". Rotem-Hyundai. 27 October 2008. Retrieved 27 October 2008.
  100. ^ "Korea launches maglev train". Korea.net. 21 April 2008. Archived from the original on 25 July 2009. Retrieved 27 October 2008.
  101. ^ "First run of the Maglev". Hankyoreh. 21 April 2008. Retrieved 27 October 2008.
  102. ^ "Maglev train simulation hits the tracks". Scientific Computing World. 20 August 2008. Retrieved 27 October 2008.
  103. ^ "Archived copy". Archived from the original on 26 January 2009. Retrieved 27 October 2008.CS1 maint: archived copy as title (link) CS1 maint: unfit URL (link)
  104. ^ "Exports surge ahead". International Railway Journal. 1 July 2008. Retrieved 27 October 2008.
  105. ^ http://www.kihoilbo.co.kr/?mod=news&act=articleView&idxno=638809
  106. ^ "Incheon Airport maglev unveiled". Railway Gazette. 20 May 2014. Retrieved 9 January 2015.
  107. ^ "Changsha Maglev Line Completes Investment over 490 Million Yuan". Retrieved 29 December 2014.
  108. ^ Changsha to Construct Maglev Train Archived 16 January 2014 at the Wayback Machine, 2014-01-09
  109. ^ Long, Hongtao (6 May 2016). "Trial operation of magnetic levitation line in Changsha to start". People's Daily Online. Retrieved 6 May 2016.
  110. ^ "CRRC unit delivers 160 km/h maglev train for commuters". Retrieved 23 July 2018.
  111. ^ "唐车造北京S1线磁浮列车开始以100km/H载客运行 - 中国日报网".
  112. ^ "JR Tokai begins building maglev stations". The Japan Times. Retrieved 2 January 2015.
  113. ^ "JR Central gives up on opening new maglev train service in 2027". Kyodo. 3 July 2020. Retrieved 20 December 2020.
  114. ^ "JR Tokai gives maglev estimates to LDP; in favor of shortest route". The Japan Times. 19 June 2009. Archived from the original on 12 July 2009. Retrieved 8 July 2009.
  115. ^ "25 Tokyo-Nagoya maglev debut eyed". The Japan Times. 27 April 2007. Archived from the original on 29 September 2007. Retrieved 27 April 2007.
  116. ^ "Go Ahead for Japanese Maglev". Maglev.net. Retrieved 28 June 2011.
  117. ^ "10-year countdown begins for launch of Tokyo-Nagoya maglev service". The Japan Times Online. 9 January 2017. Retrieved 25 November 2017.
  118. ^ JR東海:リニア時速500キロ、試験再開-通勤圏拡大で激変も [JR Central: Maglev testing at 500 km/h resumes – Expanded commuter area to create major upheavals]. Bloomberg (in Japanese). Japan: Bloomberg LP. 29 August 2013. Retrieved 12 February 2015.
  119. ^ "JR Tokai unveils a model for the new high-speed maglev train 'L0′". Daily Onigiri. DailyOnigiri.com. 4 November 2010. Retrieved 17 January 2013.
  120. ^ "凤凰磁浮线开工建设". 7 August 2019.
  121. ^ a b "清远市磁浮旅游专线正式开工建设,为国内首条中低速磁浮旅游专线!". 30 December 2017.
  122. ^ "清远磁浮旅游专线预计于2020年10月全线通车". 21 June 2019.
  123. ^ "清远磁浮旅游专线进行预可行性评估". 17 April 2017.
  124. ^ "中国自主研发设计,全球首条智能化磁浮轨排生产线实现量产". 14 March 2019.
  125. ^ Vantuono, William (1 July 1994). "Maglev is ready. Are we?". Railway Age.
  126. ^ Christodoulou, Mario (2 August 2008). "Maglev train reappears on agenda". Illawara Mercury.
  127. ^ Watters, Martin (30 July 2008). "Plans to build Geelong-Melbourne-Frankston monorail". Herald Sun. Australia.
  128. ^ "Melbourne Concepts – Maglev's relevance". Windana Research. Archived from the original on 12 May 2013. Retrieved 7 September 2009.
  129. ^ "Toronto Zoo meglev train floats closer to reality as board approves proposal". Toronto Star. 29 November 2018.
  130. ^ "时速600公里的京广磁悬浮高铁,明年将要开建了". Retrieved 7 October 2019. 该条磁悬浮试验线长度约200公里,连接湖北省咸宁市和湖南省长沙市 (The maglev test line is about 200 km in length and will link Xianning city in Hubei Province with Changsha city in Hunan Province)
  131. ^ "时速600公里!"超级列车"或落地湖北!武汉2小时到广州". 27 September 2019.
  132. ^ "2 New Routes Proposed for Maglev Trains in China".
  133. ^ "China lays out maglev plans from Beijing and Shanghai to Guangzhou".
  134. ^ McGrath, Dermot (20 January 2003). "China Awaits High-Speed 'Maglev'". Wired.
  135. ^ "China maglev project suspended amid radiation concerns". Xinhua. 26 May 2007. Archived from the original on 4 November 2012.
  136. ^ "Hundreds protest Shanghai maglev rail extension". Reuters. 12 January 2008.
  137. ^ Kurtenbach, Elaine (14 January 2008). "Shanghai Residents Protest Maglev Train". Fox News. Archived from the original on 13 September 2009.
  138. ^ "Maglev railway to link Hangzhou, Shanghai". Xinhua. 6 April 2006.
  139. ^ "Maglev finally given approval". Shanghai Daily. 18 August 2008.
  140. ^ "Green light for maglev factory". Shanghai Daily. 22 November 2007.
  141. ^ "China claims train blue riband". Retrieved 27 December 2014.
  142. ^ "Shanghai welcomes high speed train". CNN business. Retrieved 27 December 2014.
  143. ^ "Germany to build maglev railway". BBC News. 25 September 2007.
  144. ^ Heller, Gernot (27 March 2008). "Germany scraps Munich Transrapid as cost spirals". Reuters.
  145. ^ "Mumbai to Delhi: 3 hours by train". Express India. 14 June 2005. Archived from the original on 11 February 2010. Retrieved 24 January 2009.
  146. ^ "6 routes identified for MagLev". The Times of India. India. 22 June 2007.
  147. ^ "Bullet train may connect Mysore-Bangalore in 1hr 30 mins Photos". Yahoo! India Finance. 20 April 2012. Retrieved 4 November 2012.
  148. ^ "L'EIR propone un "Maglev lombardo" per Milano Expo". movisol.org.
  149. ^ Mar.Lar. "Un Maglev toscano per avvicinare Pisa". il Tirreno. Archived from the original on 10 July 2012.
  150. ^ "Archived copy". Archived from the original on 18 May 2016. Retrieved 14 November 2014.CS1 maint: archived copy as title (link)
  151. ^ Per Peretola spunta una soluzione: il trena a levitazione magnetica
  152. ^ "Prato chiede il Maglev per la Toscana".
  153. ^ Regione Toscana: Aeroporti: Firenze; Oliva(Pd), Maglev Per Superare Stallo
  154. ^ "No Operation". Presstv.ir. Archived from the original on 21 May 2011. Retrieved 29 September 2011.
  155. ^ "UPDATE 2-ThyssenKrupp, Siemens unaware of Iran train deal". News.alibaba.com. 30 May 2009. Retrieved 29 September 2011.
  156. ^ "At what cost high-speed rail". thesundaily.my.
  157. ^ Guardo, Jose. "Philtram monorail PPT". Retrieved 5 May 2021.
  158. ^ "Lausanne en 10 minutes" (PDF) (in French). GHI. 3 March 2011. Retrieved 20 May 2011.
  159. ^ "In 20 Minuten von Zürich nach Bern" (PDF). Neue Zürcher Zeitung (in German). 20 June 2009. Retrieved 20 May 2011.
  160. ^ "Swissmetro.ch". Swissmetro.ch. Retrieved 29 September 2011.
  161. ^ "Factbook" (PDF). 500kmh. October 2007. Retrieved 13 December 2012.
  162. ^ "Shanghai-style Maglev train may fly on London line". China View. 7 June 2005. Archived from the original on 16 June 2009.
  163. ^ "Government's five-year plan". Railway Magazine. Vol. 153 no. 1277. September 2007. pp. 6–7.
  164. ^ "UK Ultraspeed". Retrieved 23 May 2008.
  165. ^ Wainwright, Martin (9 August 2005). "Hovertrain to cut London-Glasgow time to two hours". The Guardian. UK. Retrieved 23 May 2008.
  166. ^ Blitz, James (31 August 2006). "Japan inspires Tories' land of rising green tax". Financial Times. Retrieved 23 May 2008.
  167. ^ Zakrzewski, Cat (11 July 2019). Northeast Maglev’s Ian Rainey describes how high-speed rail would transform the Northeast region. The Washington Post (News). Event occurs at 1:41. Retrieved 9 September 2020.
  168. ^ Greenwood, Arin (16 July 2012). "High Speed 'Maglev' Rail Has Billionaire Supporter". HuffPost. Retrieved 26 June 2020.
  169. ^ Valerio, Mike. "A 311 MPH floating train could link DC & Baltimore – neighbors, the NSA & a nation in gridlock take notice". WUSA. Archived from the original on 2 September 2020. Retrieved 9 September 2020.
  170. ^ Persch, Jasmin Aline (25 June 2008). "America's fastest train moves ahead". NBC News. Retrieved 31 July 2008.
  171. ^ "The Pennsylvania Project". Retrieved 25 September 2007.
  172. ^ "SANDAG: San Diego Maglev project". Retrieved 23 May 2008.
  173. ^ "Orlando MagLev Plan Gets Tentative Approval". WYNC. 17 December 2012.
  174. ^ "American Maglev Technology (AMT) Assessment Phase I: Data Collection, Data Development, Meetings and Recommendations" (PDF). December 2011.
  175. ^ "Marietta Company Ready to Send Maglev Technology Abroad". Globalatlanta.com. Retrieved 29 September 2011.
  176. ^ "William Miranda Torres pide apoyo para financiar tren en Caguas". Primerahora.com. Retrieved 29 September 2011.
  177. ^ casiano communications (19 May 2011). "Inteco looks at 'maglev' train system". caribbeanbusiness.pr. Archived from the original on 6 April 2012. Retrieved 29 September 2011.
  178. ^ Vranich, Joseph (1 May 1992). "High speed hopes soar". Railway Age.
  179. ^ "Several Dead in Transrapid Accident". Spiegel Online. 22 September 2006.
  180. ^ "23 dead in German maglev train accident". M&C Europe. 22 September 2006. Archived from the original on 11 October 2007.
  181. ^ "German prosecutor charges three Transrapid employees over year-old disaster". AFX News. 30 September 2007. Archived from the original on 4 June 2011.

  • Heller, Arnie (June 1998). "A New Approach for Magnetically Levitating Trains—and Rockets". Science & Technology Review.
  • Henry H. Kolm; Richard D. Thornton (October 1973). "Electromagnetic Flight". Scientific American. Springer Nature. 229 (4): 17–25. Bibcode:1973SciAm.229d..17K. doi:10.1038/scientificamerican1073-17.
  • Hood, Christopher P. (2006). Shinkansen – From Bullet Train to Symbol of Modern Japan. Routledge. ISBN 0-415-32052-6.
  • Moon, Francis C. (1994). Superconducting Levitation Applications to Bearings and Magnetic Transportation. Wiley-VCH. ISBN 0-471-55925-3.
  • Rossberg, Ralf Roman (1983). Radlos in die Zukunft? Die Entwicklung neuer Bahnsysteme. Orell Füssli Verlag. ASIN B002ROWD5M.
  • Rossberg, Ralf Roman (1993). Radlos in die Zukunft? Die Entwicklung neuer Bahnsysteme. Orell Fuessli Verlag. ISBN 978-3-280-01503-2.
  • Simmons, Jack; Biddle, Gordon (1997). The Oxford Companion to British Railway History: From 1603 to the 1990s. Oxford: Oxford University Press. p. 303. ISBN 0-19-211697-5.

  • United States Federal Railroad Administration
  • US MagneticGlide
  • The International Maglev Board Maglev professionals' info platform for all maglev transport systems and related technologies.
  • Maglev Net – Maglev News and Information
  • Japanese Railway Technical Research Institute (RTRI)
  • Magnetic Levitation at Curlie
  • Magnetic Levitation for Transportation