Orion (nave espacial)


Orion (oficialmente Orion multiuso tripulación del vehículo o Orion MPCV ) es una clase de parcialmente reutilizables cápsulas espaciales para ser utilizado en la NASA 's de vuelos espaciales tripulados programas. La nave espacial consta de un Módulo de tripulación (CM) diseñado por Lockheed Martin y el Módulo de servicio europeo (ESM) fabricado por Airbus Defence and Space . Capaz de soportar una tripulación de seis personas más allá de la órbita terrestre baja , Orion puede durar hasta 21 días desacoplado y hasta seis meses atracado. Está equipado con paneles solares , un sistema de acoplamiento automatizado yinterfaces de cabina de vidrio modeladas a partir de las utilizadas en el Boeing 787 Dreamliner . Un solo motor AJ10 proporciona la propulsión primaria de la nave espacial, mientras que ocho motores R-4D-11 y seis módulos de motores de sistemas de control de reacción personalizados desarrollados por Airbus proporcionan la propulsión secundaria de la nave espacial. Aunque es compatible con otros vehículos de lanzamiento , Orion está diseñado principalmente para lanzarse sobre un cohete Space Launch System (SLS), con un sistema de escape de lanzamiento de torre .

Orión fue concebido originalmente [ ¿cuándo? ] por Lockheed Martin como una propuesta para que el Vehículo de Exploración de Tripulación (CEV) se utilice en el programa Constellation de la NASA . La propuesta de Lockheed Martin derrotó a una propuesta competitiva de Northrop Grumman , y fue seleccionada por la NASA en 2006 para ser el CEV. Originalmente diseñada con un módulo de servicio con un nuevo "motor principal Orion" y un par de paneles solares circulares, la nave espacial iba a ser lanzada sobre el cohete Ares I. Tras la cancelación del programa Constellation en 2010, Orion fue rediseñado en gran medida para su uso en la iniciativa Viaje a Marte de la NASA; más tarde llamado Luna a Marte. El SLS reemplazó el Ares I como principal vehículo de lanzamiento de Orión, y el módulo de servicio fue reemplazado con un diseño basado en la Agencia Espacial Europea 's Automated Transfer Vehicle . En 2014 se lanzó una versión de desarrollo del CM de Orion durante el Exploration Flight Test-1 , mientras que se han producido al menos cuatro artículos de prueba. A partir de 2020, se están construyendo tres naves espaciales Orion dignas de volar, y se ha pedido una adicional, [a] para su uso en el programa Artemis de la NASA ; el primero de ellos se lanzará en 2021 en Artemis 1 . El 30 de noviembre de 2020, se informó que la NASA y Lockheed Martin habían encontrado una falla con un componente en una de las unidades de datos de energía de la nave espacial Orion, pero la NASA aclaró más tarde que no espera que el problema afecte la fecha de lanzamiento de Artemis 1. [9] [10]

Interactive 3D models of the spacecraft, with the spacecraft on the right in exploded view.
Modelos interactivos en 3D de Orion, con la nave espacial completamente integrada a la izquierda y en vista de despiece a la derecha.

Orion usa la misma configuración básica que el módulo de servicio y comando de Apolo (CSM) que primero llevó a los astronautas a la Luna, pero con un diámetro aumentado, un sistema de protección térmica actualizado y una serie de otras tecnologías modernas. Será capaz de soportar misiones en el espacio profundo de larga duración con hasta 21 días de tiempo activo de la tripulación más 6 meses de vida de la nave espacial inactiva. [11] Durante el período de inactividad, el soporte vital de la tripulación sería proporcionado por otro módulo, como el Deep Space Habitat propuesto . Los sistemas de soporte vital, propulsión, protección térmica y aviónica de la nave pueden actualizarse a medida que se disponga de nuevas tecnologías. [12]

La nave espacial Orion incluye módulos de servicio y tripulación, un adaptador de nave espacial y un sistema de aborto de lanzamiento de emergencia. El Orion 's módulo de la tripulación es más grande que Apolo y puede soportar más miembros de la tripulación para misiones de corta duración o de larga duración. El módulo de servicio europeo impulsa y alimenta la nave espacial, además de almacenar oxígeno y agua para los astronautas, Orion depende de la energía solar en lugar de las celdas de combustible que permiten misiones más largas.

Módulo de tripulación (CM)

Interior de la maqueta de Orion en octubre de 2014.
Prueba del sistema de paracaídas de Orion.

El módulo de tripulación Orion (CM) es una cápsula de transporte reutilizable que proporciona un hábitat para la tripulación, proporciona almacenamiento para consumibles e instrumentos de investigación y contiene el puerto de atraque para los traslados de la tripulación. [12] [13] [14] El módulo de la tripulación es la única parte de la nave espacial que regresa a la Tierra después de cada misión y tiene una forma de cono truncado de 57,5 ° con un extremo de popa esférico romo, 5,02 metros (16 pies 6 pulgadas) en de diámetro y 3,3 metros (10 pies 10 pulgadas) de longitud, [15] con una masa de aproximadamente 8,5 toneladas métricas (19.000 libras). Fue fabricado por Lockheed Martin Corporation en Michoud Assembly Facility en Nueva Orleans . [16] Tendrá un 50% más de volumen que la cápsula Apolo y llevará de cuatro a seis astronautas. [17] Después de un extenso estudio, la NASA ha seleccionado el sistema de ablación Avcoat para el módulo de tripulación Orion. Avcoat, que se compone de fibras de sílice con una resina en un panal de fibra de vidrio y resina fenólica , se utilizó anteriormente en las misiones Apollo y en el orbitador del transbordador espacial para los primeros vuelos. [18]

El CM de Orion utilizará tecnologías avanzadas, que incluyen:

  • Sistemas de control digital de cabina de vidrio derivados de los del Boeing 787 . [19]
  • Una función de "acoplamiento automático", como las de Progress , el Vehículo de transferencia automatizada y Dragon 2 , con la posibilidad de que la tripulación de vuelo se haga cargo en caso de emergencia. La tripulación ha atracado todas las naves espaciales estadounidenses anteriores.
  • Instalaciones mejoradas para la gestión de residuos, con un inodoro en miniatura estilo camping y el "tubo de alivio" unisex utilizado en el transbordador espacial.
  • A nitrógeno / oxígeno ( N
    2
    / O
    2
    ) atmósfera mixta a nivel del mar (101,3  kPa o 14,69  psi ) o presión reducida (55,2 a 70,3 kPa o 8,01 a 10,20 psi).
  • Computadoras mucho más avanzadas [ aclaración necesaria ] que en los vehículos de la tripulación anteriores. [ cita requerida ]

El CM estará construido con una aleación de aluminio y litio . Los paracaídas de recuperación reutilizables se basarán en los paracaídas utilizados tanto en la nave espacial Apollo como en los impulsores de cohetes sólidos del transbordador espacial , y estarán construidos con tela Nomex . Los desembarques de agua serán el medio exclusivo de recuperación para el Orion CM. [20] [21]

Para permitir que Orion se acople con otros vehículos, estará equipado con el sistema de acoplamiento de la NASA . La nave espacial empleará un sistema de escape de lanzamiento (LES) junto con una "cubierta protectora de refuerzo" (hecha de fibra de vidrio ), para proteger el Orion CM de las tensiones aerodinámicas y de impacto durante los primeros 2+12 minutos de ascenso. Sus diseñadores afirman que el MPCV está diseñado para ser 10 veces más seguro durante el ascenso y el reingreso que el transbordador espacial . [22] El CM está diseñado para ser renovado y reutilizado. Además, todos los componentes de Orion se han diseñado para ser lo más modulares posible, de modo que entre el primer vuelo de prueba de la nave en 2014 y su viaje proyectado a Marte en la década de 2030, la nave espacial se puede actualizar a medida que se disponga de nuevas tecnologías. [12]

A partir de 2019, está previsto que el Monitor atmosférico de la nave espacial se utilice en el Orion CM. [23]

Módulo de servicio europeo (ESM)

Concepto artístico de una nave espacial Orion que incluye el módulo de servicio europeo con la etapa superior criogénica provisional adjunta en la parte posterior

En mayo de 2011, el director general de la ESA anunció una posible colaboración con la NASA para trabajar en un sucesor del Vehículo Automatizado de Transferencia (ATV). [24] El 21 de junio de 2012, Airbus Defence and Space anunció que se les habían adjudicado dos estudios separados, cada uno por valor de 6,5 millones de euros, para evaluar las posibilidades de utilizar la tecnología y la experiencia obtenida del trabajo relacionado con ATV y Columbus para futuras misiones. El primero examinó la posible construcción de un módulo de servicio que se utilizaría en conjunto con el Orion CM. [25] El segundo examinó la posible producción de un vehículo orbital polivalente y versátil. [26]

El 21 de noviembre de 2012, la ESA decidió desarrollar un módulo de servicio derivado de ATV para Orion. [27] El módulo de servicio está siendo fabricado por Airbus Defence and Space en Bremen , Alemania. [28] La NASA anunció el 16 de enero de 2013 que el módulo de servicio de la ESA volará primero en Artemis 1 , el lanzamiento debut del Space Launch System . [29]

Las pruebas del módulo de servicio europeo comenzaron en febrero de 2016, en la Space Power Facility . [30]

El 16 de febrero de 2017, se firmó un contrato de 200 millones de euros entre Airbus y la Agencia Espacial Europea para la producción de un segundo módulo de servicio europeo para su uso en el primer vuelo tripulado de Orion, Artemis 2 . [31]

El 26 de octubre de 2018, la primera unidad para Artemis 1 se ensambló en su totalidad en la fábrica de Airbus Defence and Space en Bremen. [32]

Lanzamiento del sistema de aborto (LAS)

En caso de una emergencia en la plataforma de lanzamiento o durante el ascenso, un sistema de suspensión de lanzamiento (LAS) separará el módulo de tripulación del vehículo de lanzamiento utilizando tres motores cohete sólidos : un motor de suspensión (AM), [33] un motor de control de actitud (ACM) y un motor de lanzamiento (JM). El AM proporciona el empuje necesario para acelerar la cápsula, mientras que el ACM se utiliza para apuntar el AM [34] y el motor de lanzamiento separa el LAS de la cápsula de la tripulación. [35] El 10 de julio de 2007, Orbital Sciences , el contratista principal de LAS, otorgó a Alliant Techsystems (ATK) un subcontrato de $ 62.5 millones para "diseñar, desarrollar, producir, probar y entregar el motor de aborto de lanzamiento", que utiliza un diseño de "flujo inverso". [36] El 9 de julio de 2008, la NASA anunció que ATK había completado la construcción de un banco de pruebas vertical en una instalación en Promontory, Utah para probar motores de aborto de lanzamiento para la nave espacial Orion. [37] Otro contratista de motores espaciales desde hace mucho tiempo, Aerojet , recibió el contrato de diseño y desarrollo del motor de desecho para el LAS. En septiembre de 2008, Aerojet , junto con los miembros del equipo Orbital Sciences , Lockheed Martin y la NASA , demostraron con éxito dos disparos de prueba a gran escala del motor de lanzamiento. Este motor se utiliza en todos los vuelos, ya que aleja la torre LAS del vehículo después de un lanzamiento exitoso y un aborto de lanzamiento. [38]

El Orion MPCV fue anunciado por la NASA el 24 de mayo de 2011. [39] Su diseño se basa en el Vehículo de Exploración de Tripulación del programa Constellation cancelado , [40] que había sido un contrato de la NASA adjudicado en 2006 a Lockheed Martin . [41] Lockheed Martin está construyendo el módulo de comando en las instalaciones de ensamblaje de Michoud , [42] mientras que Airbus Defence and Space está construyendo el módulo de servicio Orion con fondos de la Agencia Espacial Europea . [29] [43] El primer vuelo de prueba sin tripulación del MPCV (EFT-1) se lanzó sobre un cohete Delta IV Heavy el 5 de diciembre de 2014 y duró 4 horas y 24 minutos antes de aterrizar en su objetivo en el Océano Pacífico . [44] [45] [46] [47]

Planificación e historial de financiación

Para los años fiscales 2006 a 2020, Orion gastó fondos por un total de $ 18,764 millones en dólares nominales. Esto equivale a 21.477 millones de dólares ajustados a dólares de 2020 utilizando los índices de inflación New Start de la NASA. [48]

Para el año fiscal 2021, se solicitaron $ 1,401 millones [49] para el programa Orion.

Excluded from the prior Orion costs are:

  1. Most costs "for production, operations, or sustainment of additional crew capsules, despite plans to use and possibly enhance this capsule after 2021";[63] production and operations contracts were awarded going into fiscal year 2020[64]
  2. Costs of the first service module and spare parts, which are provided by ESA[65] for the test flight of Orion (about US$1 billion)[66]
  3. Costs to assemble, integrate, prepare and launch the Orion and its launcher (funded under the NASA Ground Operations Project,[67] currently about $400M[68] per year)
  4. Costs of the launcher, the SLS, for the Orion spacecraft

For 2021 to 2025, NASA estimates[69] yearly budgets for Orion from $1.4 to $1.1 billion. In late 2015, the Orion program was assessed at a 70% confidence level for its first crewed flight by 2023.[70][71][72]

There are no NASA estimates for the Orion program recurring yearly costs once operational, for a certain flight rate per year, or for the resulting average costs per flight. However, a production and operations contract[73] awarded to Lockheed Martin in 2019 indicated NASA will pay the prime contractor $900M for the first three Orion capsules and $633M for the following three.[74] In 2016, the NASA manager of exploration systems development said that Orion, SLS, and supporting ground systems should cost "US$2 billion or less" annually.[75] NASA will not provide the cost per flight of Orion and SLS, with associate administrator William H. Gerstenmaier stating "costs must be derived from the data and are not directly available. This was done by design to lower NASA's expenditures" in 2017.[76]

Ground test articles, mockups, and boilerplates

NASA and DoD personnel familiarize themselves with a Navy-built, 18,000-pound (8,200 kg) Orion mock-up in a test pool at the Naval Surface Warfare Center's Carderock Division in Potomac, Md.
The Orion Drop Test Article during a test on February 29, 2012
Test article being airlifted to the Pad Abort-1 flight test.
  • Space Vehicle Mockup Facility (SVMF) in Johnson Space Center, includes a full-scale Orion capsule mock-up for astronaut training.[77]
  • MLAS An Orion boilerplate was used in the MLAS test launch.
  • Ares-I-X The Orion Mass Simulator was used on the Ares I-X flight test.
  • Pad Abort 1 An Orion boilerplate was used for the Pad Abort 1 flight test, the LAS was fully functional, the boilerplate was recovered
  • Ascent Abort-2 An Orion boilerplate was used for the Ascent Abort 2 flight test, the LAS was fully functional, the boilerplate was discarded
  • The Boilerplate Test Article (BTA) underwent splashdown testing at the Langley Research Center. This same test article has been modified to support Orion Recovery Testing in stationary and underway recovery tests.[78] The BTA contains over 150 sensors to gather data on its test drops.[79] Testing of the 18,000-pound (8,200 kg) mockup ran from July 2011 to January 6, 2012.[80]
  • The Ground Test Article (GTA) stack, located at Lockheed Martin in Denver, is undergoing vibration testing.[81] It is made up by the Orion Ground Test Vehicle (GTV) combined with its Launch Abort System (LAS). Further testing will see the addition of service module simulator panels and Thermal Protection System (TPS) to the GTA stack.[82]
  • The Drop Test Article (DTA), also known as the Drop Test Vehicle (DTV) underwent test drops at the US Army's Yuma Proving Ground in Arizona from an altitude of 25,000 feet (7,600 m).[82] Testing began in 2007. Drogue chutes deploy around 20,000 and 15,000 feet (6,100 and 4,600 m). Testing of the staged parachutes includes the partial opening and complete failure of one of the three main parachutes. With only two chutes deployed the DTA lands at 33 feet per second (10 m/s), the maximum touchdown speed for Orion's design.[83] The drop test program has had several failures in 2007, 2008, and 2010,[84] resulting in new DTV being constructed. The landing parachute set is known as the Capsule Parachute Assembly System (CPAS).[85] With all parachutes functional, a landing speed of 17 mph (27 km/h) was achieved.[86] A third test vehicle, the PCDTV3, was successfully tested in a drop on April 17, 2012.[87]

Orion Crew Exploration Vehicle (CEV)


Orion CEV design as of 2009.

The idea for a Crew Exploration Vehicle (CEV) was announced on January 14, 2004, as part of the Vision for Space Exploration after the Space Shuttle Columbia accident.[88] The CEV effectively replaced the conceptual Orbital Space Plane (OSP), a proposed replacement for the Space Shuttle. A design competition was held, and the winner was the proposal from a consortium led by Lockheed Martin. It was later named "Orion" after the stellar constellation and mythical hunter of the same name,[89] and became part of the Constellation program under NASA administrator Sean O'Keefe.

Constellation proposed using the Orion CEV in both crew and cargo variants to support the International Space Station and as a crew vehicle for a return to the Moon. The crew/command module was originally intended to land on solid ground on the US west coast using airbags but later changed to ocean splashdown, while a service module was included for life support and propulsion.[20] With a diameter of 5 meters (16 ft 5 in) as opposed to 3.9 meters (12 ft 10 in), the Orion CEV would have provided 2.5 times greater volume than the Apollo CM.[90] The service module was originally planned to use liquid methane (LCH4) as its fuel, but switched to hypergolic propellants due to the infancy of oxygen/methane-powered rocket technologies and the goal of launching the Orion CEV by 2012.[91][92][93]

The Orion CEV was to be launched on the Ares I rocket to low Earth orbit, where it would rendezvous with the Altair lunar lander launched on a heavy-lift Ares V launch vehicle for lunar missions.

Environmental testing

NASA performed environmental testing of Orion from 2007 to 2011 at the Glenn Research Center Plum Brook Station in Sandusky, Ohio. The Center's Space Power Facility is the world's largest thermal vacuum chamber.[94]

Launch abort system (LAS) testing

ATK Aerospace successfully completed the first Orion Launch Abort System (LAS) test on November 20, 2008. The LAS motor could provide 500,000 lbf (2,200 kN) of thrust in case an emergency situation should arise on the launch pad or during the first 300,000 feet (91 km) of the rocket's climb to orbit.[95]

On March 2, 2009, a full size, full weight command module mockup (pathfinder) began its journey from the Langley Research Center to the White Sands Missile Range, New Mexico, for at-gantry launch vehicle assembly training and for LAS testing.[96] On May 10, 2010, NASA successfully executed the LAS PAD-Abort-1 test at White Sands New Mexico, launching a boilerplate (mock-up) Orion capsule to an altitude of approximately 6,000 feet (1,800 m). The test used three solid-fuel rocket motors – a main thrust motor, an attitude control motor and the jettison motor.[97]

Splashdown recovery testing

In 2009, during the Constellation phase of the program, the Post-landing Orion Recovery Test (PORT) was designed to determine and evaluate methods of crew rescue and what kind of motions the astronaut crew could expect after landing, including conditions outside the capsule for the recovery team. The evaluation process supported NASA's design of landing recovery operations including equipment, ship and crew needs.

The PORT Test used a full-scale boilerplate (mock-up) of NASA's Orion crew module and was tested in water under simulated and real weather conditions. Tests began March 23, 2009, with a Navy-built, 18,000-pound (8,200 kg) boilerplate in a test pool. Full sea testing ran April 6–30, 2009, at various locations off the coast of NASA's Kennedy Space Center with media coverage.[98]

Cancellation of Constellation program

Artist's conception of Orion (as then-designed) in lunar orbit.

On May 7, 2009, the Obama administration enlisted the Augustine Commission to perform a full independent review of the ongoing NASA space exploration program. The commission found the then current Constellation Program to be woefully under-budgeted with significant cost overruns, behind schedule by four years or more in several essential components, and unlikely to be capable of meeting any of its scheduled goals.[99][100] As a consequence, the commission recommended a significant re-allocation of goals and resources. As one of the many outcomes based on these recommendations, on October 11, 2010, the Constellation program was canceled, ending development of the Altair, Ares I, and Ares V. The Orion Crew Exploration Vehicle survived the cancellation and was transferred to be launched on the Space Launch System.[101]

Orion Multi-Purpose Crew Vehicle (MPCV)

The Orion development program was restructured from three different versions of the Orion capsule, each for a different task,[102] to the development of the MPCV as a single version capable of performing multiple tasks.[5] On December 5, 2014, a developmental Orion spacecraft was successfully launched into space and retrieved at sea after splashdown on the Exploration Flight Test-1 (EFT-1).[103][104]

Orion splashdown recovery testing

Before EFT-1 in December 2014, several preparatory vehicle recovery tests were performed, which continued the "crawl, walk, run" approach established by PORT. The "crawl" phase was performed August 12–16, 2013, with the Stationary Recovery Test (SRT).[citation needed] The Stationary Recovery Test demonstrated the recovery hardware and techniques that were to be employed for the recovery of the Orion crew module in the protected waters of Naval Station Norfolk utilizing the LPD-17 type USS Arlington as the recovery ship.[105]

The "walk" and "run" phases were performed with the Underway Recovery Test (URT). Also utilizing a LPD 17 class ship, the URT were performed in more realistic sea conditions off the coast of California in early 2014 to prepare the US Navy / NASA team for recovering the Exploration Flight Test-1 (EFT-1) Orion crew module. The URT tests completed the pre-launch test phase of the Orion recovery system.[citation needed]

EFT-1

Orion Lite

History

Orion Lite is an unofficial name used in the media for a lightweight crew capsule proposed by Bigelow Aerospace in collaboration with Lockheed Martin. It was to be based on the Orion spacecraft that Lockheed Martin was developing for NASA. It would be a lighter, less capable and cheaper version of the full Orion.[106]

The intention of designing Orion Lite would be to provide a stripped-down version of the Orion that would be available for missions to the International Space Station earlier than the more capable Orion, which is designed for longer duration missions to the Moon and Mars.[107]

Bigelow had begun working with Lockheed Martin in 2004. A few years later Bigelow signed a million-dollar contract to develop "an Orion mockup, an Orion Lite",[108] in 2009.[106]

The proposed collaboration between Bigelow and Lockheed Martin on the Orion Lite spacecraft has ended.[when?] Bigelow began work with Boeing on a similar capsule, the CST-100, which has no Orion heritage, and was selected under NASA's Commercial Crew Development (CCDev) program to transport crew to the ISS.[citation needed]

Design

Orion Lite's primary mission would be to transport crew to the International Space Station, or to private space stations such as the planned B330 from Bigelow Aerospace. While Orion Lite would have the same exterior dimensions as the Orion, there would be no need for the deep space infrastructure present in the Orion configuration. As such, the Orion Lite would be able to support larger crews of around 7 people as the result of greater habitable interior volume and the reduced weight of equipment needed to support an exclusively low-Earth-orbit configuration.[109]

Recovery

In order to reduce the weight of Orion Lite, the more durable heat shield of the Orion would be replaced with a lighter weight heat shield designed to support the lower temperatures of Earth atmospheric re-entry from low Earth orbit. Additionally, the current proposal calls for a mid-air retrieval, wherein another aircraft captures the descending Orion Lite module.[citation needed] To date, such a retrieval method has not been employed for crewed spacecraft, although it has been used with satellites.[110]

MLAS

MLAS was a test flight of the Max Launch Abort System (MLAS).

Ares I-X

Ares I-X was a test flight of the Ares rocket.

Pad Abort-1

Pad Abort-1 (PA-1) was a flight test of the Orion Launch Abort System (LAS).

"> Play media
Liftoff sequence and space entry of Orion on December 5, 2014

Exploration Flight Test-1

At 7:05 AM EST on December 5, 2014, the Orion capsule was launched atop a Delta IV Heavy rocket for its first test flight, and splashed down in the Pacific Ocean about 4.5 hours later. Although it was not crewed, the two-orbit flight was NASA's first launch of a human-rated vehicle since the retirement of the Space Shuttle fleet in 2011. Orion reached an altitude of 3,600 mi (5,800 km) and speeds of up to 20,000 mph (8,900 m/s) on a flight that tested Orion's heat shield, parachutes, jettisoning components, and on-board computers.[111] Orion was recovered by USS Anchorage and brought to San Diego, California, for its return to Kennedy Space Center in Florida.[112]

Ascent Abort-2

Ascent Abort-2 (AA-2) was a test of the Launch Abort System (LAS) of NASA's Orion spacecraft.

The test followed Orion's Pad Abort-1 test in 2010, and Exploration Flight Test-1 in 2014 in which the capsule first flew in space. It precedes an uncrewed flight of Orion around the Moon as the Artemis 1 mission, and paves the way for human use of Orion in subsequent missions of the Artemis program.

The test flight, which had been subject to several delays during Orion development, took place on July 2, 2019 at 07:00 local time (11:00 UTC). The flight was successful, and the launch abort system performed as designed.[113][114]

Artist's concept of an astronaut on an EVA taking samples from a captured asteroid; Orion in the background.

Canceled Asteroid Redirect Mission

The Asteroid Redirect Mission (ARM), also known as the Asteroid Retrieval and Utilization (ARU) mission and the Asteroid Initiative, was a space mission proposed by NASA in 2013. The Asteroid Retrieval Robotic Mission (ARRM) spacecraft would rendezvous with a large near-Earth asteroid and use robotic arms with anchoring grippers to retrieve a 4-meter boulder from the asteroid. A secondary objective was to develop the required technology to bring a small near-Earth asteroid into lunar orbit – "the asteroid was a bonus." There, it could be analyzed by the crew of the Orion EM-5 or EM-6 ARCM mission in 2026.[115]

Orion approaching the Gateway during Artemis 3

Upcoming Missions

As of 2019, all Orion missions will be launched on the Space Launch System from Kennedy Space Center Launch Complex 39B. All full scale flights will be into deep space with the first uncrewed flight of Artemis 1 entering a lunar orbit and the first crewed flight Artemis 2 going on a lunar flyby. Artemis 1 is planned to launch in 2021; however, in July 2016 a Government Accountability Office report cast doubt on the planned initial launch date and suggested that an early date may be counterproductive to the program.[116]

Proposed

A proposal curated by William H. Gerstenmaier before his 10 July 2019 reassignment[117] suggests four launches the crewed Orion spacecraft and logistical modules aboard the SLS Block 1B to the Gateway between 2024 and 2028.[118][119] The crewed Artemis 4 through 7 would launch yearly between 2025 and 2028,[120] testing in situ resource utilization and nuclear power on the lunar surface with a partially reusable lander. Artemis 7 would deliver in 2028 a crew of four astronauts to a surface lunar outpost known as the Lunar Surface Asset.[120] The Lunar Surface Asset would be launched by an undetermined launcher[120] and would be used for extended crewed lunar surface missions.[120][121][122][123] Another repair mission to the Hubble Space Telescope is also possible.[124]

Artist rendering of the Orion CEV docked to a proposed Mars Transfer Vehicle

Potential Mars missions

The Orion capsule is designed to support future missions to send astronauts to Mars, probably to take place in the 2030s. Since the Orion capsule provides only about 2.25 m3 (79 cu ft) of living space per crew member,[125] the use of an additional Deep Space Habitat module featuring propulsion will be needed for long duration missions. The complete spacecraft stack is known as the Deep Space Transport.[126] The habitat module will provide additional space and supplies, as well as facilitate spacecraft maintenance, mission communications, exercise, training, and personal recreation.[127] Some concepts for DSH modules would provide approximately 70.0 m3 (2,472 cu ft) of living space per crew member,[127] though the DSH module is in its early conceptual stage. DSH sizes and configurations may vary slightly, depending on crew and mission needs.[128] The mission may launch in the mid-2030s or late-2030s.[129]

  • List of crewed spacecraft – Wikipedia list article
  • NASA Authorization Act of 2010
  • Space capsule – Type of spacecraft
  • Space policy of the Barack Obama administration

 This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

  1. ^ NASA has ordered two additional CMs from Lockheed Martin,[7] though as of the 2019 ESA Ministerial Council, only one additional ESM has been ordered by ESA from Airbus Defence and Space.[8]
  1. ^ "Preliminary Report Regarding NASA's Space Launch System and Multi-Purpose Crew Vehicle" (PDF). NASA. January 2011. Retrieved May 25, 2011.
  2. ^ "NASA Authorization Act of 2010". Thomas.loc.gov. Retrieved November 20, 2010.
  3. ^ Bergin, Chris (July 10, 2012). "NASA ESD set key Orion requirement based on Lunar missions". NASASpaceFlight.com. Retrieved July 23, 2012.
  4. ^ Moskowitz, Clara (November 2014). "Deep Space or Bust". Scientific American. 311 (6): 20. Bibcode:2014SciAm.311f..20M. doi:10.1038/scientificamerican1214-20.
  5. ^ a b "Orion Quick facts" (PDF). NASA. August 4, 2014. Retrieved October 29, 2015.
  6. ^ "NASA Commits to Long-term Artemis Missions with Orion Production Contract". NASA. NASA. Retrieved April 18, 2020.
  7. ^ Foust, Jeff (September 24, 2019). "NASA awards long-term Orion production contract to Lockheed Martin". SpaceNews. Retrieved December 10, 2019. The Orion Production and Operations Contract includes an initial order of three Orion spacecraft, for missions Artemis 3, 4 and 5, for $2.7 billion.
  8. ^ Clark, Stephen (November 29, 2019). "Earth observation, deep space exploration big winners in new ESA budget". Spaceflight Now. Archived from the original on December 10, 2019. Retrieved December 10, 2019. ESA member states put up money for two Orion service modules at this week's summit in Seville. The power and propulsion modules will fly with NASA's Orion spacecraft carrying astronauts to the moon on the Artemis 3 and Artemis 4 missions...
  9. ^ Grush, Loren (November 30, 2020). "Component failure in NASA's deep-space crew capsule could take months to fix". The Verge. Retrieved December 3, 2020.
  10. ^ Klotz, Irene (December 7, 2020). "Issue with Orion power distribution unit "We really don't think it's going to be a big impact on the final schedule for the Artemis I flight," @NASA's Ken Bowersox tells reporters". Retrieved December 9, 2020.
  11. ^ Peterson, L. (2009). "Environmental Control and Life Support System (ECLSS)" (PDF). ntrs.nasa.gov. Ames Research Center: NASA. Archived from the original on April 7, 2014. Retrieved April 7, 2014.
  12. ^ a b c "NASA Goes 'Green': Next Spacecraft to be Reusable – Orion Capsule". Space.com.
  13. ^ "NASA - A 21st Century-Style Return to the Moon". nasa.gov.
  14. ^ Bergin, Chris. "EFT-1 Orion completes assembly and conducts FRR". NASASpaceflight.com. Retrieved November 10, 2014.
  15. ^ "NASA – Orion Crew Exploration Vehicle" (PDF) (Press release). NASA. February 7, 2009. Retrieved February 7, 2009.
  16. ^ "Lockheed to build Nasa 'Moonship'". BBC News. August 31, 2006. Retrieved March 1, 2007.
  17. ^ "NASA Names New Crew Exploration Vehicle Orion" (Press release). NASA. August 22, 2006. Retrieved March 3, 2007.
  18. ^ "NASA Selects Material for Orion Spacecraft Heat Shield" (Press release). NASA Ames Research Center. April 7, 2009. Retrieved April 16, 2009.
  19. ^ Coppinger, Rob (October 6, 2006). "NASA Orion crew vehicle will use voice controls in Boeing 787-style Honeywell smart cockpit". Flight International. Retrieved October 6, 2006.
  20. ^ a b "Orion landings to be splashdowns – KSC buildings to be demolished". NASA SpaceFlight.com. August 5, 2007. Retrieved August 5, 2007.
  21. ^ "NASA Denies Making Orion Water Landing Decision – and Deleting Touchdowns on Land". NASA Watch. August 6, 2007. Retrieved November 23, 2010.
  22. ^ "NASA Announces Key Decision For Next Deep Space Transportation System". NASA. May 24, 2011. Retrieved May 25, 2011.
  23. ^ Hill, Denise (July 23, 2019). "S.A.M. Goes to Work Aboard ISS". NASA. Retrieved July 31, 2019.
  24. ^ "US and Europe plan new spaceship". BBC News. May 5, 2011. Archived from the original on May 6, 2011. Retrieved May 14, 2011.
  25. ^ "ATV evolution studies look at exploration, debris removal". Spaceflight Now. June 21, 2012. Retrieved June 23, 2012.
  26. ^ "Airbus Defence and Space awarded two ATV evolution studies from ESA". Astrium. June 21, 2012. Archived from the original on April 3, 2013. Retrieved June 23, 2012.
  27. ^ Bergin, Chris (November 21, 2012). "UK steps up, as ESA commit to ATV Service Module on NASA's Orion". NASASpaceFlight.com. Retrieved July 15, 2014.
  28. ^ "Multi Purpose Crew Vehicle – European Service Module for NASA's Orion programme". Airbus Defence and Space. Retrieved March 7, 2016.
  29. ^ a b "NASA Signs Agreement for a European-Provided Orion Service Module". nasa.gov. January 16, 2013. Archived from the original on March 28, 2014. Retrieved March 28, 2014.
  30. ^ Cody Zoller (December 1, 2015). "NASA to begin testing Orion's European Service Module". NASA SpaceFlight. Retrieved March 7, 2016.
  31. ^ Airbus Defence and Space wins 200 million euros ESA contract for second service module for NASA's Orion crewed space capsule. Airbus Defense and Space press release. February 16, 2017.
  32. ^ "Call for media: The European Service module meets Orion". European Space Agency. October 26, 2018.
  33. ^ "Mission to the Moon: How We'll Go Back – and Stay This Time". popularmechanics.com. Archived from the original on February 3, 2008. Retrieved February 8, 2008.
  34. ^ Mika McKinnon ([email protected]) (December 4, 2014). "Meet Orion, NASA's New Deep Space Explorer". Space.io9.com. Retrieved October 31, 2016.
  35. ^ "Launch Abort System Jettison Motor | Aerojet Rocketdyne". Rocket.com. Archived from the original on January 25, 2016. Retrieved October 31, 2016.
  36. ^ "ATK Awarded Contract for Orion Launch Abort Motors". PRNewswire. Archived from the original on March 1, 2012.
  37. ^ "Orion's New Launch Abort Motor Test Stand Ready for Action". NASA.
  38. ^ Rhian, Jason (July 17, 2018). "Jettison Motor Readied For Integration Into Orion's LAS". spaceflightinsider.com. Spaceflight Insider. Retrieved July 1, 2019. The jettison motor separates the LAS from the Orion capsule on its way to orbit.
  39. ^ Wall, Mike (May 24, 2011). "NASA Unveils New Spaceship for Deep Space Exploration". Space.com. Retrieved May 24, 2011.
  40. ^ Moen, Marina M. "Feasibility of Orion Crew Module Entry on Half of Available Propellant Due to Tank Isolation Fault". American Institute of Aeronautics and Astronautics. NASA Langley Research Center. hdl:2060/20110014641.
  41. ^ "NASA Selects Lockheed Martin To Be Orion Crew Exploration Vehicle Prime Contractor" (Press release). NASA. August 31, 2006. Retrieved August 31, 2006.
  42. ^ "Michoud Assembly Facility Lockheed Martin Webpage". NASA. Retrieved November 27, 2018.
  43. ^ "ESA workhorse to power NASA's Orion spacecraft / Research / Human Spaceflight / Our Activities / ESA". Esa.int. January 16, 2013. Retrieved July 15, 2014.
  44. ^ Bergin, Chris (March 15, 2014). "EFT-1 Orion slips to December – Allows military satellite to launch first". nasaspaceflight.com. NASAspaceflight.com. Archived from the original on March 28, 2014. Retrieved March 28, 2014.
  45. ^ Clark, Stephen (March 15, 2014). "Launch schedule shakeup delays Orion to December". spaceflightnow.com. Archived from the original on March 28, 2014. Retrieved March 28, 2014.
  46. ^ "Orion Exploration Flight Test-1". aerospaceguide.net. January 11, 2014. Archived from the original on March 28, 2014. Retrieved March 28, 2014.
  47. ^ Fountain, Henry (December 5, 2014). "NASA's Orion Spacecraft Splashes Down in Pacific After Test Flight". New York Times. Retrieved December 5, 2014.
  48. ^ a b "NASA FY19 Inflation Tables - to be utilized in FY20". National Aeronautics and Space Administration. p. Inflation Table. Retrieved May 10, 2020.
  49. ^ a b "FY 2021 President's Budget Request Summary" (PDF). National Aeronautics and Space Administration. p. DEXP-4. Retrieved May 10, 2020.
  50. ^ "FY 2008 Budget Estimates" (PDF). National Aeronautics and Space Administration. p. ESMD-25. Retrieved June 7, 2016.
  51. ^ "Fiscal Year 2009 Budget Estimates" (PDF). National Aeronautics and space Administration. p. iv. Retrieved June 7, 2016.
  52. ^ a b c "Fiscal Year 2010 Budget Estimates" (PDF). National Aeronautics and Space Administration. p. v. Retrieved June 7, 2016.
  53. ^ "FY 2013 President's Budget Request Summary" (PDF). National Aeronautics and Space Administration. p. BUD-4. Retrieved June 7, 2016.
  54. ^ "FY 2014 President's Budget Request Summary" (PDF). National Aeronautics and Space Administration. p. BUD-8. Retrieved June 7, 2016.
  55. ^ "FY 2015 President's Budget Request Summary" (PDF). National Aeronautics and Space Administration. p. BUD-5. Retrieved June 7, 2016.
  56. ^ "FY 2016 President's Budget Request Summary" (PDF). National Aeronautics and space Administration. p. BUD-5. Retrieved June 7, 2016.
  57. ^ "FY 2017 Budget Estimates" (PDF). nasa.gov. National Aeronautics and Space Administration. p. BUD-4. Retrieved January 1, 2019.
  58. ^ "FY 2018 Budget Estimates" (PDF). nasa.gov. National Aeronautics and Space Administration. p. BUD-3. Retrieved January 1, 2019.
  59. ^ "Public Law 115-31, 115th Congress" (PDF). congress.gov. p. 213.
  60. ^ "2018 Consolidated Appropriations Act" (PDF). congress.gov. p. 82.
  61. ^ "H.R.1158 - 116th Congress (2019-2020): Consolidated Appropriations Act, 2020". www.congress.gov. December 20, 2019. p. 250. Retrieved January 9, 2020.
  62. ^ "H.R.1158 - 116th Congress (2021-2021): Consolidated Appropriations Act, 2021" (PDF). rules.house.gov. December 21, 2020. p. 205. Retrieved December 29, 2020.
  63. ^ "NASA Actions Needed to Improve Transparency and Assess Long Term Affordability of Human Exploration Programs" (PDF). General Accounting Office. May 2014. p. 2. Retrieved June 7, 2016.
  64. ^ "NASA Commits to Long-term Artemis Missions with Orion Production Contract". NASA.gov. Retrieved July 26, 2020.
  65. ^ Smith, Marcia (January 17, 2013). "NASA-ESA Agreement on Orion Service Module is For Only One Unit Plus Spares". spacepolicyonline.com. Retrieved June 28, 2016.
  66. ^ Clark, Stephen (December 3, 2014). "ESA member states commit funding for Orion service module". spaceflightnow.com. Retrieved June 28, 2016.
  67. ^ "NASA's Ground Systems Development and Operations Program Completes Preliminary Design Review". National Aeronautics and Space Administration. Retrieved June 28, 2016.
  68. ^ "FY 2016 President's Budget Request Summary" (PDF). National Aeronautics and Space Administration. p. BUD-5. Retrieved June 28, 2016.
  69. ^ "NASA FY 2021 Budget Estimates" (PDF). NASA.gov. Retrieved July 26, 2020.
  70. ^ J. Foust (September 16, 2015). "First Crewed Orion Mission May Slip to 2023". Space News. Retrieved September 16, 2015.
  71. ^ Clark, Stephen (September 16, 2015). "Orion spacecraft may not fly with astronauts until 2023". spaceflightnow.com. Retrieved June 7, 2016.
  72. ^ Smith, Marcia (May 1, 2014). "Mikulski "Deeply Troubled" by NASA's Budget Request; SLS Won't Use 70 Percent JCL". spacepolicyonline.com. Retrieved June 7, 2016.
  73. ^ "Orion Production and Operations Contract". govtribe.com. Retrieved July 26, 2020.
  74. ^ Berger, Eric (September 24, 2019). "After 15 years of development, Lockheed wins new cost-plus contract for Orion; Originally, NASA had hoped for a fixed-price deal". ars.technica. Retrieved July 26, 2020.
  75. ^ Berger, Eric (August 19, 2016). "How much will SLS and Orion cost to fly? Finally some answers". arstechnica.com. Retrieved January 1, 2019.
  76. ^ Berger, Eric (October 20, 2017). "NASA chooses not to tell Congress how much deep space missions cost". arstechnica.com. Retrieved January 1, 2019.
  77. ^ "NASA Extreme Makeover—Space Vehicle Mockup Facility". nasa.gov. Retrieved December 5, 2014.
  78. ^ "What Goes Up Must Come Down As Orion Crew Vehicle Development Continues". Space-travel.com. Retrieved July 15, 2014.
  79. ^ "Orion Continues to Make a Splash". Space-travel.com. Retrieved July 15, 2014.
  80. ^ "Orion Drop Test – Jan. 06, 2012". Space-travel.com. Retrieved July 15, 2014.
  81. ^ Bergin, Chris (November 6, 2011). "NASA managers approve EFT-1 flight as Orion pushes for orbital debut". NASASpaceFlight.com. Retrieved July 15, 2014.
  82. ^ a b Bergin, Chris (October 17, 2011). "Space-bound Orion taking shape – "Lunar Surface First" missions referenced". NASASpaceFlight.com. Retrieved July 15, 2014.
  83. ^ "NASA Conducts Orion Parachute Testing for Orbital Test Flight". Space-travel.com. Retrieved July 15, 2014.
  84. ^ Bergin, Chris (February 10, 2012). "Orion hoping for success with second generation parachute system". NASASpaceFlight.com. Retrieved July 15, 2014.
  85. ^ Bergin, Chris (February 26, 2012). "Orion PTV preparing for drop test on Wednesday – EFT-1 Orion progress". NASASpaceFlight.com. Retrieved July 15, 2014.
  86. ^ "NASA Conducts New Parachute Test for Orion". Space-travel.com. Retrieved July 15, 2014.
  87. ^ "Orion parachutes preparing for another milestone drop test on April 17 | NASASpaceFlight.com". www.nasaspaceflight.com. Retrieved August 26, 2015.
  88. ^ "President Bush Announces New Vision for Space Exploration Program" (Press release). White House Office of the Press Secretary. January 14, 2004. Retrieved September 1, 2006.
  89. ^ "Orion Spacecraft – Nasa Orion Spacecraft". aerospaceguide.net.
  90. ^ "NASA Names New Crew Exploration Vehicle Orion" (Press release). NASA. August 22, 2006. Retrieved April 17, 2010.
  91. ^ Handlin, Daniel; Bergin, Chris (October 11, 2006). "NASA sets Orion 13 for Moon Return". NASAspaceflight.com. Retrieved March 3, 2007.
  92. ^ Handlin, Daniel; Bergin, Chris (July 22, 2006). "NASA makes major design changes to CEV". NASAspaceflight.com. Retrieved March 3, 2007.
  93. ^ "NASA Names Orion Contractor". NASA. August 31, 2006. Retrieved September 5, 2006.
  94. ^ "NASA Glenn To Test Orion Crew Exploration Vehicle". SpaceDaily.
  95. ^ "NASA: Constellation Abort Test November 2008". Nasa.gov. December 11, 2008. Retrieved November 20, 2010.
  96. ^ "NASA Orion LAS Pathfinder". Nasa.gov. Retrieved November 20, 2010.
  97. ^ "NASA Completes Test of Orion Crew Capsule". foxnews.com. May 6, 2010. Retrieved April 6, 2013.
  98. ^ "NASA Orion PORT Test". Nasa.gov. March 25, 2009. Retrieved November 20, 2010.
  99. ^ Augustine Commission Final Report Published 22 Oct. 2009. Retrieved 14 Dec. 2014
  100. ^ NASA in Obama's Hands Information Addict Website, by Nathaniel Downes. Published 18 June 2012. Retrieved 14 Dec 2014
  101. ^ "Today – President Signs NASA 2010 Authorization Act". Universetoday.com. Retrieved November 20, 2010.
  102. ^ What is NASA's Constellation Program? archived from the original the original Sciences 360 Website, By Tenebris. Discussion of multiple version development of Orion capsule. Published Nov. 17, 2009. Retrieved July 5, 2014
  103. ^ "Orion Spacecraft Complete". NASA. October 30, 2014. Retrieved October 30, 2014.
  104. ^ Fountain, Henry (December 5, 2014). "NASA's Orion Spacecraft Splashes Down in Pacific After Test Flight". The New York Times. Retrieved December 5, 2014.
  105. ^ "NASA & US Navy Test Demonstrates Water Recovery of Orion Crew Capsule". Universetoday.com. Retrieved July 15, 2014.
  106. ^ a b Klamper, Amy (August 14, 2009). "Nevada Company Pitches 'Lite' Concept for NASA's New Spaceship". space.com. Retrieved October 17, 2020.
  107. ^ Klamper, Amy (August 14, 2009). "Company pitches 'lite' spaceship to NASA". NBC News. Retrieved September 7, 2009.
  108. ^ Bigelow still thinks big, The Space Review, 2010-11-01, accessed 2010-11-02. "[In October 2010] Bigelow revealed that he had been working with Lockheed Martin on a capsule concept in the 2004–2005 period. 'We engaged in a million-dollar contract a couple years after that with Lockheed, and they created for us an Orion mockup, an Orion Lite.'
  109. ^ Space Hotel Visionary Proposes Modified "Orion Lite" Spaceship for NASA: Bigelow Airspace's concept is for low Earth-orbit missions only, Popular Science, Jeremy Hsu, 14 August 2009
  110. ^ "Discoverer 14 – NSSDC ID: 1960-010A". NASA.
  111. ^ "NASA's New Orion Spacecraft Completes First Spaceflight Test". NASA.gov. Retrieved December 9, 2014.
  112. ^ "Orion Off-loaded for Trip Back to Florida". NASA.gov. Retrieved December 9, 2014.
  113. ^ Cawley, James (July 2, 2019). "Launch Abort System Demonstrates Ability to Pull Astronauts to Safety". nasa.gov. NASA. Retrieved July 2, 2019.
  114. ^ Strickland, Ashley (July 2, 2019). "NASA tests abort system for the Orion spacecraft that will carry humans to the moon in 2024". cnn.com. CNN. Retrieved July 2, 2019.
  115. ^ Jeff Foust (June 14, 2017). "NASA closing out Asteroid Redirect Mission". Space News. Retrieved September 9, 2017.
  116. ^ Berger, Eric (July 28, 2016). "A new, independent review of the Orion spacecraft is pretty damning". Ars Technica. Retrieved July 28, 2016.
  117. ^ Davenport, Christion (July 10, 2019). "Shakeup at NASA as space agency scrambles to meet Trump moon mandate". Washington Post. Retrieved July 10, 2019.
  118. ^ Berger 2019, "Developed by the agency's senior human spaceflight manager, Bill Gerstenmaier, this plan is everything Pence asked for—an urgent human return, a Moon base, a mix of existing and new contractors."
  119. ^ Foust 2019, "After Artemis 3, NASA would launch four additional crewed missions to the lunar surface between 2025 and 2028. Meanwhile, the agency would work to expand the Gateway by launching additional components and crew vehicles and laying the foundation for an eventual moon base."
  120. ^ a b c d "America to the Moon 2024" (PDF).
  121. ^ Berger 2019, "This decade-long plan, which entails 37 launches of private and NASA rockets, as well as a mix of robotic and human landers, culminates with a "Lunar Surface Asset Deployment" in 2028, likely the beginning of a surface outpost for long-duration crew stays."
  122. ^ Berger 2019, [Illustration] "NASA's "notional" plan for a human return to the Moon by 2024, and an outpost by 2028."
  123. ^ Independent report concludes 2033 human Mars mission is not feasible. Jeff Foust, Space News. 18 April 2019.
  124. ^ Foust, Jeff (June 15, 2020). "Hugging Hubble longer". The Space Review. Retrieved June 16, 2020.
  125. ^ "Preliminary Report Regarding NASA's Space Launch System and Multi-Purpose Crew Vehicle" (PDF). NASA. January 2011. Retrieved June 18, 2011.
  126. ^ NASA Unveils the Keys to Getting Astronauts to Mars and Beyond. Neel V. Patel, The Inverse. April 4, 2017.
  127. ^ a b Habitat for Long Duration Deep Space Missions Preliminary design proposal for DSH by Rucker & Thompson. Published 5 May 2012, retrieved 8 Dec. 2014
  128. ^ 2012 X-Hab Academic Innovation Challenge Progress Update Nasa DSH design news update. Published June 21, 2012, retrieved 8 Dec. 2014
  129. ^ [1]
  130. ^ Kremer, Ken (March 30, 2010). "3 Welds to Go for 1st Orion Pathfinder Vehicle". Universe Today. Archived from the original on March 10, 2020. Retrieved March 10, 2020. ...the very first pathfinder Orion manned capsule – the Crew Module – known as the Ground Test Article (GTA) [...] The GTA is the first full-sized, flight-like test article for Orion.
  131. ^ Bergin, Chris (November 14, 2011). "EFT-1 Orion receives hatch door – Denver Orion ready for Modal Testing". NASASpaceFlight.com. Archived from the original on March 10, 2020. Retrieved March 10, 2020. As much as the Service Module (SM) design is still undergoing evaluation – which includes discussions about utilizing hardware from the European Space Agency's ATV (Automated Transfer Vehicle) – the test vehicle includes an Orion Ground Test Article (GTA), in a Launch Abort Vehicle (LAV) configuration, with installed ogives and a mock SM.
  132. ^ Dryden Flight Research Center (May 6, 2010). "Orion Pad Abort 1 Test a Spectacular Success". National Aeronautics and Space Administration (NASA). Archived from the original on March 10, 2020. Retrieved March 10, 2020. The 500,000-lb. thrust abort motor rocketed the boilerplate crew module and its launch abort stack away from launch pad 32E at White Sands...
  133. ^ Pearlman, Robert (May 7, 2010). "NASA's Launch Abort Test Builds on 50 Years of Astronaut Escape Systems". Space.com. Archived from the original on March 10, 2020. Retrieved March 10, 2020. The Pad Abort-1 (PA1) flight test, which flew a boilerplate 16-foot (4.9-meter) wide, 18,000-pound (8,160-kg) Orion capsule under a nearly 45-foot (13.7-meter)long launch abort system (LAS) tower [...] The flight lasted about 135 seconds from launch until the module touched down...
  134. ^ Dunn, Marcia (December 6, 2014). "NASA launches new Orion spacecraft and new era (w/ video)". Tampa Bay Times. Archived from the original on March 10, 2020. Retrieved March 10, 2020. Friday's Orion — serial number 001 — lacked seats, cockpit displays and life-support equipment, but brought along bundles of toys and memorabilia...
  135. ^ a b Davis, Jason (December 5, 2014). "Orion Returns to Earth after Successful Test Flight". The Planetary Society. Archived from the original on March 10, 2020. Retrieved March 10, 2020. As impressive as this flight was, this was just serial number 001 of Orion," he said. "Serial number 002—that one is going to be on the Space Launch System.
  136. ^ Clark, Stephen (July 1, 2019). "Critical abort test of NASA's Orion crew capsule set for Tuesday". Spaceflight Now. Archived from the original on March 10, 2020. Retrieved March 10, 2020. "So 20 seconds after the LAS (launch abort system) jettisons from the crew module, we start ejecting, so the first pair comes out 20 seconds after the LAS is jettisoned, and then every 10 seconds until all 12 are ejected." The capsule is expected to tumble after the abort system jettisons, and it will impact the sea at 300 mph (480 kilometers per hour) around 7 miles (11 kilometers) offshore, and is designed to sink to the ocean floor, according to Reed.
  137. ^ Sloss, Philip (October 25, 2019). "NASA conducting data deep dive following July's Orion ascent abort test". NASASpaceFlight.com. Archived from the original on March 10, 2020. Retrieved March 10, 2020. The Ascent Abort-2 test used a ballistic missile to accelerate a production-design LAS with a Crew Module shaped, highly-instrumented test lab to carefully picked flight condition where a full LAS abort sequence was executed. [...] impact with the water destroyed the test article.
  138. ^ a b c Vuong, Zen (December 3, 2014). "JPL joins NASA's first agency-wide social media event to highlight Thursday's Orion flight test". Pasadena Star-News. Archived from the original on March 10, 2020. Retrieved March 10, 2020. Orion 002, 003 and 004 will become lessons that will further humanity in its quest to inhabit Mars and become Earth-independent. [...] "Orion tail number 003 has a special place in my heart," he said. "Four of my astronauts are going to climb into it and have an adventure of a lifetime...
  139. ^ Orion Window Panel Complete for Front-Row View on Artemis Moon Mission

  • Official website
  • ESA Photo Gallery
  • Mission concept for combined Orion/Sample return