Tornillo


Un tornillo y un perno (ver Diferenciación entre perno y tornillo a continuación) son tipos similares de sujetadores típicamente hechos de metal y caracterizados por una cresta helicoidal , conocida como rosca macho (rosca externa). Los tornillos y pernos se utilizan para sujetar materiales mediante el acoplamiento de la rosca del tornillo con una rosca hembra similar (rosca interna) en la parte correspondiente.

Una variedad de tornillos
Un perno (con una tuerca ) y un tornillo

Los tornillos a menudo son autorroscantes (también conocidos como autorroscantes) donde la rosca corta el material cuando se gira el tornillo, creando una rosca interna que ayuda a juntar los materiales sujetos y evitar que se salgan. Hay muchos tornillos para una variedad de materiales; los que se sujetan comúnmente con tornillos incluyen madera, láminas de metal y plástico.

Un tornillo es una combinación de máquinas simples ; es, en esencia, un plano inclinado envuelto alrededor de un eje central, pero el plano inclinado (rosca) también llega a un borde afilado alrededor del exterior, que actúa como una cuña cuando empuja hacia material sujetado, y el eje y la hélice también forman una cuña en forma de punta. Algunas roscas de tornillo están diseñadas para acoplarse con una rosca complementaria, conocida como rosca hembra ( rosca interna), a menudo en forma de tuerca u objeto que tiene la rosca interna formada en ella. Otras roscas de tornillo están diseñadas para cortar una ranura helicoidal en un material más suave a medida que se inserta el tornillo. Los usos más comunes de los tornillos son para sujetar objetos juntos y colocarlos.

Un tornillo para madera: a) cabeza; b) vástago sin rosca; c) vástago roscado; d) propina.

Un tornillo suele tener una cabeza en un extremo que permite girarlo con una herramienta. Las herramientas comunes para atornillar incluyen destornilladores y llaves . La cabeza suele ser más grande que el cuerpo del tornillo, lo que evita que el tornillo sea clavado a una profundidad mayor que la longitud del tornillo y proporciona una superficie de apoyo . Hay excepciones. Los pernos de carro tienen una cabeza abovedada que no está diseñada para ser accionada. Los tornillos de fijación a menudo tienen una cabeza más pequeña que el diámetro exterior del tornillo. Los tornillos de fijación sin cabeza también se denominan tornillos prisioneros. Los pernos en J tienen una cabeza en forma de J que no está diseñada para ser clavada, sino que generalmente está hundida en el concreto, lo que permite su uso como perno de anclaje . La parte cilíndrica del tornillo desde la parte inferior de la cabeza hasta la punta se conoce como vástago ; puede estar completamente roscado o parcialmente roscado. [1] La distancia entre cada hilo se llama "paso". [2]

La mayoría de los tornillos se aprietan mediante rotación en el sentido de las agujas del reloj , lo que se denomina rosca a la derecha ; [3] [4] un dispositivo mnemónico común para recordar esto cuando se trabaja con tornillos o pernos es "right-tighty, zurdo-flojo". Si los dedos de la mano derecha están enrollados alrededor de un hilo de la mano derecha, se moverá en la dirección del pulgar cuando se gire en la misma dirección en que se enrollan los dedos. Los tornillos con rosca a la izquierda se utilizan en casos excepcionales, donde las cargas tenderían a aflojar un sujetador a la derecha, o cuando se requiere la no intercambiabilidad con sujetadores a la derecha. Por ejemplo, cuando el tornillo estará sujeto a un par de torsión en sentido antihorario (que funcionaría para deshacer una rosca a la derecha), un tornillo con rosca a la izquierda sería una opción adecuada. El pedal del lado izquierdo de una bicicleta tiene una rosca a la izquierda.

De manera más general, un tornillo puede significar cualquier dispositivo helicoidal, como una abrazadera, un micrómetro , la hélice de un barco o una bomba de agua de tornillo de Arquímedes .

Un perno de carro con una tuerca cuadrada
Un perno estructural con tuerca hexagonal y arandela

No existe una distinción universalmente aceptada entre un tornillo y un perno. Una distinción simple que a menudo es cierta, aunque no siempre, es que un perno pasa a través de un sustrato y toma una tuerca en el otro lado, mientras que un tornillo no toma tuerca porque se enrosca directamente en el sustrato (un tornillo se atornilla en algo , una perno atornilla varias cosas juntas ). Por lo tanto, como regla general, cuando se compra un paquete de "tornillos", no se espera que se incluyan tuercas, pero los pernos a menudo se venden con tuercas a juego. Parte de la confusión sobre esto probablemente se deba a diferencias regionales o dialécticas. El Manual de maquinaria describe la distinción de la siguiente manera:

Un perno es un sujetador con rosca externa diseñado para la inserción a través de orificios en piezas ensambladas, y normalmente está diseñado para apretarse o soltarse apretando una tuerca. Un tornillo es un sujetador de rosca externa que puede insertarse en los orificios de las piezas ensambladas, acoplarse con una rosca interna preformada o formar su propia rosca, y apretarse o soltarse apretando la cabeza. Un sujetador con rosca externa que no se puede girar durante el ensamblaje y que se puede apretar o soltar solo apretando una tuerca es un perno. (Ejemplo: pernos de cabeza redonda, pernos de riel, pernos de arado). Un sujetador con rosca externa que tiene forma de rosca que prohíbe el ensamblaje con una tuerca que tiene una rosca recta de longitud de paso múltiple es un tornillo. (Ejemplo: tornillos para madera, tornillos roscadores) [5]

Esta distinción es consistente con ASME B18.2.1 y algunas definiciones de diccionario para tornillo [6] [7] y perno . [8] [9] [10]

Sin embargo, el problema de qué es un tornillo y qué es un perno no se resuelve por completo con la distinción del Manual de maquinaria debido a los términos confusos, la naturaleza ambigua de algunas partes de la distinción y las variaciones de uso. [11] [ verificación fallida ] Algunos de estos problemas se analizan a continuación:

Tornillos para madera

Los primeros tornillos para madera se fabricaban a mano, con una serie de limas, cinceles y otras herramientas de corte, y estos se pueden detectar fácilmente al observar el espaciado y la forma irregulares de las roscas, así como las marcas de las limas que quedan en la cabeza del tornillo. y en la zona entre hilos. Muchos de estos tornillos tenían un extremo romo, careciendo por completo de la punta afilada cónica en casi todos los tornillos para madera modernos. [12] Con el tiempo, los tornos se utilizaron para fabricar tornillos para madera, y la primera patente se registró en 1760 en Inglaterra. [12] Durante la década de 1850 , se desarrollaron herramientas de estampación para proporcionar un hilo más uniforme y consistente. Los tornillos hechos con estas herramientas tienen valles redondeados con roscas afiladas y rugosas. [13] [14] Algunos tornillos para madera se fabricaron con troqueles de corte ya a fines del siglo XVIII (posiblemente incluso antes de 1678, cuando el contenido del libro se publicó por primera vez en partes). [15]

Una vez que las máquinas de torneado de tornillos fueron de uso común, la mayoría de los tornillos para madera disponibles comercialmente se produjeron con este método. Estos tornillos para madera cortados son casi invariablemente ahusados, e incluso cuando el vástago ahusado no es obvio, se pueden distinguir porque las roscas no se extienden más allá del diámetro del vástago. Es mejor instalar estos tornillos después de perforar un orificio piloto con una broca cónica. La mayoría de los tornillos para madera modernos, excepto los de latón, se forman en máquinas laminadoras de roscas. Estos tornillos tienen un diámetro constante, roscas con un diámetro mayor que el vástago y son más fuertes porque el proceso de laminación no corta la veta del metal.

Tornillos de máquina

Las normas ASME especifican una variedad de "tornillos de máquina" [16] en diámetros que van hasta 0,75 pulg. (19,05 mm). Estos sujetadores se usan a menudo como pernos con tuercas, pero también a menudo se introducen en orificios roscados (sin tuercas). Pueden considerarse un tornillo o un perno según la distinción del Manual de maquinaria . En la práctica, tienden a estar disponibles principalmente en tamaños más pequeños y los tamaños más pequeños se denominan tornillos o, de manera menos ambigua, tornillos de máquina, aunque algunos tipos de tornillos de máquina pueden denominarse pernos de estufa.

Tornillos de cabeza hexagonal

La norma ASME B18.2.1-1996 especifica tornillos de cabeza hexagonal cuyo rango de tamaño es de 0,25 a 3 pulg. (6,35 a 76,20 mm) de diámetro . Estos sujetadores son muy similares a los pernos hexagonales. Se diferencian principalmente en que se fabrican con tolerancias más estrictas que los pernos correspondientes. El Manual de maquinaria se refiere entre paréntesis a estos sujetadores como "Pernos hexagonales terminados". [17] Razonablemente, estos sujetadores pueden denominarse pernos, pero según el documento del gobierno de EE. UU. Distinguir pernos de tornillos , el gobierno de EE. UU. Podría clasificarlos como tornillos debido a la tolerancia más estricta. [18] En 1991, en respuesta a una afluencia de sujetadores falsificados, el Congreso aprobó la PL 101-592 [19] "Ley de calidad de sujetadores". Esto resultó en la reescritura de las especificaciones por parte del comité ASME B18. B18.2.1 [20] fue reescrito y, como resultado, eliminaron los "Pernos hexagonales terminados" y los renombró como "Tornillo hexagonal", un término que había existido en el uso común mucho antes, pero que ahora también se codificaba como un nombre oficial para el estándar ASME B18.

Pernos de orejeta y pernos de cabeza

Estos términos se refieren a sujetadores que están diseñados para enroscarse en un orificio roscado que forma parte del ensamblaje y, por lo tanto, según la distinción del Manual de máquinas, serían tornillos. Aquí los términos comunes están en desacuerdo con la distinción del Manual de Maquinaria . [21] [22]

Tornillo de tracción

Tornillo de retraso, también llamado tornillo de retraso

Los tirafondos (EE. UU.) O los tirafondos (Reino Unido, Australia y Nueva Zelanda) (también denominados tirafondos o tirafondos , aunque es un nombre inapropiado ) son tornillos grandes para madera. La cabeza es típicamente un hexágono externo. Los tirafondos métricos de cabeza hexagonal están cubiertos por DIN 571. Los tirafondos en pulgadas de cabeza cuadrada y hexagonal están cubiertos por ASME B18.2.1. Un tirafondo típico puede variar en diámetro de 4 a 20 mm o # 10 a 1,25 pulg. (4,83 a 31,75 mm), y longitudes de 16 a 200 mm o 14 a 6 pulg. (6,35 a 152,40 mm) o más, con las roscas gruesas de un tornillo para madera o un tornillo para chapa (pero más grande).

Los materiales suelen ser sustrato de acero al carbono con una capa de zinc galvanizado (para resistencia a la corrosión). El recubrimiento de zinc puede ser brillante (galvanizado), amarillo (galvanizado) o gris mate galvanizado por inmersión en caliente . Los tirafondos se utilizan para unir estructuras de madera, para colocar pies de maquinaria en pisos de madera y para otras aplicaciones de carpintería pesada. El retraso modificador atributivo provino de un uso principal temprano de tales sujetadores: la sujeción de retrasos como duelas de barril y otras partes similares. [23]

Estos sujetadores son "tornillos" de acuerdo con los criterios del Manual de maquinaria , y el término obsoleto "perno de retraso" ha sido reemplazado por "tornillo de retraso" en el Manual . [24] Sin embargo, para muchos comerciantes, son "tornillos", porque son grandes, con cabezas hexagonales o cuadradas.

Estándares del gobierno de Estados Unidos

El gobierno federal de los Estados Unidos hizo un esfuerzo por formalizar la diferencia entre un perno y un tornillo, porque se aplican aranceles diferentes a cada uno. [25] El documento no parece tener un efecto significativo en el uso común y no elimina la naturaleza ambigua de la distinción entre tornillos y pernos para algunos sujetadores roscados. El documento también refleja (aunque probablemente no se originó) una confusión significativa del uso de la terminología que difiere entre la comunidad legal / estatutaria / regulatoria y la industria de los sujetadores. La redacción legal / estatutaria / reglamentaria usa los términos "grueso" y "fino" para referirse al rigor del rango de tolerancia , refiriéndose básicamente a "alta calidad" o "baja calidad", pero esta es una mala elección de términos. , porque esos términos en la industria de los sujetadores tienen un significado diferente (refiriéndose a la inclinación del paso de la hélice ).

Problema histórico

Las antiguas normas USS y SAE definían los tornillos de casquete como sujetadores con vástagos roscados a la cabeza y los pernos como sujetadores con vástagos parcialmente sin roscar. [26] La relación de esta regla con la idea de que un perno por definición toma una tuerca es clara (porque se esperaba que la sección sin rosca del vástago, que se llama agarre , pasara a través del sustrato sin enroscarse en él). Esta es ahora una distinción obsoleta, aunque los pernos grandes a menudo tienen secciones de vástago sin rosca.

Aunque no hay razón para considerar obsoleta esta definición, porque está lejos de ser claro que "un perno por definición lleva una tuerca". Usando un "perno" de entrenador como ejemplo (y ha sido un "perno" durante mucho tiempo). Originalmente no estaba destinado a recibir una nuez, pero tenía un vástago. Su propósito no era atravesar todo el sustrato, sino solo una pieza, mientras que la parte roscada se mordía en la otra para dibujar y sujetar los materiales entre sí. El perno de 'carro' se derivó de esto y se empleó más para acelerar la fabricación que para lograr una función diferente. El perno de carro atraviesa ambas piezas de material y emplea una tuerca para proporcionar la fuerza de sujeción. Sin embargo, ambos siguen siendo tornillos.

Vocabulario controlado versus lenguaje natural

Las distinciones anteriores se aplican en el vocabulario controlado de las organizaciones de normalización . Sin embargo, a veces existen diferencias entre el vocabulario controlado y el uso del lenguaje natural de las palabras por parte de maquinistas, mecánicos de automóviles y otros. Estas diferencias reflejan la evolución lingüística moldeada por el cambio de tecnología a lo largo de los siglos . Las palabras perno y tornillo han existido desde antes de que existiera la combinación moderna de tipos de sujetadores, y el uso natural de esas palabras ha evolucionado de forma retroactiva en respuesta al cambio tecnológico. (Es decir, el uso de palabras como nombres de objetos cambia a medida que cambian los objetos). Los sujetadores sin rosca predominaron hasta el advenimiento del corte de tornillos práctico y económico a principios del siglo XIX. El significado básico de la palabra tornillo ha implicado durante mucho tiempo la idea de una rosca de tornillo helicoidal, pero el tornillo de Arquímedes y la barrena de tornillo (como un sacacorchos) precedieron al sujetador.

La palabra perno también es una palabra muy antigua, y se usó durante siglos para referirse a las varillas de metal que atravesaban el sustrato para sujetarse del otro lado, a menudo por medios no roscados (remachado, soldadura por forja, clavado, acuñamiento, etc. ). La conexión de este sentido con el sentido de un cerrojo de puerta o el cerrojo de ballesta es evidente. En el siglo XIX, los pernos sujetos a través de roscas de tornillo a menudo se llamaban pernos de tornillo en contraposición a los pernos de apriete .

En el uso común, la distinción (no rigurosa) es a menudo que los tornillos son más pequeños que los pernos y que los tornillos generalmente son cónicos, mientras que los pernos no. Por ejemplo, los pernos de culata se denominan "pernos" (al menos en el uso norteamericano) a pesar de que, según algunas definiciones, deberían llamarse "tornillos". Su tamaño y su similitud con un perno que tomaría una tuerca parecen anular lingüísticamente cualquier otro factor en esta proclividad natural a la elección de palabras.

Otras distinciones

Los pernos se han definido como sujetadores con cabeza que tienen roscas externas que cumplen con una especificación exacta y uniforme de roscas de pernos (como rosca métrica ISO M, MJ, estándar de rosca unificada UN, UNR y UNJ) de manera que pueden aceptar una tuerca no cónica . Luego, los tornillos se definen como sujetadores con cabeza, roscados externamente que no cumplen con la definición anterior de pernos. [ cita requerida ] Estas definiciones de tornillo y perno eliminan la ambigüedad de la distinción del manual de Maquinaria . Y es por eso, quizás, que algunas personas los favorecen. Sin embargo, no cumplen con el uso común de las dos palabras ni cumplen con las especificaciones formales.

Una posible distinción es que un tornillo está diseñado para cortar su propia rosca; no tiene necesidad de acceder o exponerse al lado opuesto del componente al que se sujeta. Esta definición de tornillo se refuerza aún más al considerar los desarrollos de sujetadores como los tornillos Tek, con cabezas redondas o hexagonales, para revestimiento de techos, tornillos autoperforantes y autorroscantes para diversas aplicaciones de sujeción de metal, tornillos de listón de techo para reforzar la conexión entre el listón del techo y la viga, tornillos de la plataforma, etc. Por otro lado, un perno es la parte macho de un sistema de fijación diseñado para ser aceptado por un dado (o tuerca) pre-equipado con exactamente el mismo diseño de rosca. [ cita requerida ]

Tipos de tornillos y pernos

Los sujetadores roscados tienen un vástago cónico o un vástago no cónico. Los sujetadores con vástagos cónicos están diseñados para introducirse en un sustrato directamente o en un orificio piloto en un sustrato. Se forman hilos de acoplamiento en el sustrato a medida que se introducen estos sujetadores. Los sujetadores con un vástago no ahusado generalmente están diseñados para acoplarse con una tuerca o para introducirse en un orificio roscado.

Sujetadores con vástago cónico

Fasteners with a non-tapered shank

Fasteners with built in washers

A fastener with a built in washer is called a SEM or SEMS, short for pre-asSEMbled.[41][42] It could be fitted on either a tapered or non-tapered shank.

Other threaded fasteners

Superbolt, or multi-jackbolt tensioner

A superbolt, or multi-jackbolt tensioner is an alternative type of fastener that retrofits or replaces existing nuts, bolts, or studs. Tension in the bolt is developed by torquing individual jackbolts, which are threaded through the body of the nut and push against a hardened washer. Because of this, the amount of torque required to achieve a given preload is reduced. Installation and removal of any size tensioner is achieved with hand tools, which can be advantageous when dealing with large diameter bolting applications.

Bone screws

The field of screws and other hardware for internal fixation within the body is huge and diverse. Like prosthetics, it integrates the industrial and medicosurgical fields, causing manufacturing technologies (such as machining, CAD/CAM, and 3D printing) to intersect with the art and science of medicine. Like aerospace and nuclear power, this field involves some of the highest technology for fasteners, as well as some of the highest prices, for the simple reason that performance, longevity, and quality have to be excellent in such applications. Bone screws tend to be made of stainless steel or titanium, and they often have high-end features such as conical threads, multistart threads, cannulation (hollow core), and proprietary screw drive types (some not seen outside of these applications).

List of abbreviations for types of screws

These abbreviations have jargon currency among fastener specialists (who, working with many screw types all day long, have need to abbreviate repetitive mentions). The smaller basic ones can be built up into the longer ones; for example, knowing that "FH" means "flat head", it may be possible to parse the rest of a longer abbreviation containing "FH".

These abbreviations are not universally standardized across corporations; each corporation can coin their own. The more obscure ones may not be listed here.

The extra spacing between linked terms below helps the reader to see the correct parsing at a glance.

Screws and bolts are usually made of steel. Where great resistance to weather or corrosion is required, like in very small screws or medical implants, materials such as stainless steel, brass, titanium, bronze, silicon bronze or monel may be used.

Galvanic corrosion of dissimilar metals can be prevented (using aluminum screws for double-glazing tracks for example) by a careful choice of material. Some types of plastic, such as nylon or polytetrafluoroethylene (PTFE), can be threaded and used for fastenings requiring moderate strength and great resistance to corrosion or for the purpose of electrical insulation.

Often a surface coating is used to protect the fastener from corrosion (e.g. bright zinc plating for steel screws), to impart a decorative finish (e.g. japanning) or otherwise alter the surface properties of the base material.

Selection criteria of the screw materials include: size, required strength, resistance to corrosion, joint material, cost and temperature.

The numbers stamped on the head of the bolt are referred to the grade of the bolt used in certain application with the strength of a bolt. High-strength steel bolts usually have a hexagonal head with an ISO strength rating (called property class) stamped on the head. And the absence of marking/number indicates a lower grade bolt with low strength. The property classes most often used are 5.8, 8.8, and 10.9. The number before the point is the ultimate tensile strength in MPa divided by 100. The number after the point is the multiplier ratio of yield strength to ultimate tensile strength. For example, a property class 5.8 bolt has a nominal (minimum) ultimate tensile strength of 500 MPa, and a tensile yield strength of 0.8 times ultimate tensile strength or 0.8 (500) = 400 MPa.

Ultimate tensile strength is the tensile stress at which the bolt fails. Tensile yield strength is the stress at which the bolt will yield in tension across the entire section of the bolt and receive a permanent set (an elongation from which it will not recover when the force is removed) of 0.2% offset strain. Proof strength is the usable strength of the fastener. Tension testing of a bolt up to the proof load should not cause permanent set of the bolt and should be conducted on actual fasteners rather than calculated.[43] If a bolt is tensioned beyond the proof load, it may behave in plastic manner due to yielding in the threads and the tension preload may be lost due to the permanent plastic deformations. When elongating a fastener prior to reaching the yield point, the fastener is said to be operating in the elastic region; whereas elongation beyond the yield point is referred to as operating in the plastic region of the bolt material. If a bolt is loaded in tension beyond its proof strength, the yielding at the net root section of the bolt will continue until the entire section is begins to yield and it has exceeded its yield strength. If tension increases, the bolt fractures at its ultimate strength.

Mild steel bolts have property class 4.6, which is 400 MPa ultimate strength and 0.6*400=240 MPa yield strength. High-strength steel bolts have property class 8.8, which is 800 MPa ultimate strength and 0.8*800=640 MPa yield strength or above.

The same type of screw or bolt can be made in many different grades of material. For critical high-tensile-strength applications, low-grade bolts may fail, resulting in damage or injury. On SAE-standard bolts, a distinctive pattern of marking is impressed on the heads to allow inspection and validation of the strength of the bolt.[44] However, low-cost counterfeit fasteners may be found with actual strength far less than indicated by the markings. Such inferior fasteners are a danger to life and property when used in aircraft, automobiles, heavy trucks, and similar critical applications.[45]

Metric

The international standards for metric externally threaded fasteners are ISO 898-1 for property classes produced from carbon steels and ISO 3506-1 for property classes produced from corrosion resistant steels.

Inch

There are many standards governing the material and mechanical properties of imperial sized externally threaded fasteners. Some of the most common consensus standards for grades produced from carbon steels are ASTM A193, ASTM A307, ASTM A354, ASTM F3125, and SAE J429. Some of the most common consensus standards for grades produced from corrosion resistant steels are ASTM F593 & ASTM A193.

(a) pan, (b) dome (button), (c) round, (d) truss (mushroom), (e) flat (countersunk), (f) oval (raised head)
Combination flanged-hex/Phillips-head screw used in computers
Pan head
A low disc with a rounded, high outer edge with large surface area.
Button or dome head
Cylindrical with a rounded top.
Round head
A dome-shaped head used for decoration. [60]
Mushroom or Truss head
Lower-profile dome designed to prevent tampering.
Countersunk or flat head
Conical, with flat outer face and tapering inner face allowing it to sink into the material. The angle of the screw is measured as the aperture of the cone.
Oval or raised head
A decorative screw head with a countersunk bottom and rounded top. [60] Also known as "raised countersunk" in the UK.
Bugle head
Similar to countersunk, but there is a smooth progression from the shank to the angle of the head, similar to the bell of a bugle.
Cheese head
Disc with cylindrical outer edge, height approximately half the head diameter.
Fillister head
Cylindrical, but with a slightly convex top surface. Height to diameter ratio is larger than cheese head.
Flanged head
A flanged head can be any of the above head styles (except the countersunk styles) with the addition of an integrated flange at the base of the head. This eliminates the need for a flat washer.

Some varieties of screw are manufactured with a break-away head, which snaps off when adequate torque is applied. This prevents tampering and also provides an easily inspectable joint to guarantee proper assembly. An example of this is the shear bolts used on vehicle steering columns, to secure the ignition switch.

Modern screws employ a wide variety of drive designs, each requiring a different kind of tool to drive in or extract them. The most common screw drives are the slotted and Phillips in the US; hex, Robertson, and Torx are also common in some applications, and Pozidriv has almost completely replaced Phillips in Europe. Some types of drive are intended for automatic assembly in mass-production of such items as automobiles. More exotic screw drive types may be used in situations where tampering is undesirable, such as in electronic appliances that should not be serviced by the home repair person.

"> Play media
An electric driver screws a self-tapping phillips head screw into wood

The hand tool used to drive in most screws is called a screwdriver. A power tool that does the same job is a power screwdriver; power drills may also be used with screw-driving attachments. Where the holding power of the screwed joint is critical, torque-measuring and torque-limiting screwdrivers are used to ensure sufficient but not excessive force is developed by the screw. The hand tool for driving hex head threaded fasteners is a spanner (UK usage) or wrench (US usage), while a nut setter is used with a power screw driver.

There are many systems for specifying the dimensions of screws, but in much of the world the ISO metric screw thread preferred series has displaced the many older systems. Other relatively common systems include the British Standard Whitworth, BA system (British Association), and the Unified Thread Standard.

ISO metric screw thread

The basic principles of the ISO metric screw thread are defined in international standard ISO 68-1 and preferred combinations of diameter and pitch are listed in ISO 261. The smaller subset of diameter and pitch combinations commonly used in screws, nuts and bolts is given in ISO 262. The most commonly used pitch value for each diameter is the coarse pitch. For some diameters, one or two additional fine pitch variants are also specified, for special applications such as threads in thin-walled pipes. ISO metric screw threads are designated by the letter M followed by the major diameter of the thread in millimetres (e.g. M8). If the thread does not use the normal coarse pitch (e.g. 1.25 mm in the case of M8), then the pitch in millimeters is also appended with a multiplication sign (e.g. "M8×1" if the screw thread has an outer diameter of 8 mm and advances by 1 mm per 360° rotation).

The nominal diameter of a metric screw is the outer diameter of the thread. The tapped hole (or nut) into which the screw fits, has an internal diameter which is the size of the screw minus the pitch of the thread. Thus, an M6 screw, which has a pitch of 1 mm, is made by threading a 6 mm shank, and the nut or threaded hole is made by tapping threads into a hole of 5 mm diameter (6 mm - 1 mm).

Metric hexagon bolts, screws and nuts are specified, for example, in International Standards ISO 4014, ISO 4017, and ISO 4032. The following table lists the relationship given in these standards between the thread size and the maximum width across the hexagonal flats (wrench size):

In addition, the following non-preferred intermediate sizes are specified:

Bear in mind that these are just examples and the width across flats is different for structural bolts, flanged bolts, and also varies by standards organization.

Whitworth

The first person to create a standard (in about 1841) was the English engineer Sir Joseph Whitworth. Whitworth screw sizes are still used, both for repairing old machinery and where a coarser thread than the metric fastener thread is required. Whitworth became British Standard Whitworth, abbreviated to BSW (BS 84:1956) and the British Standard Fine (BSF) thread was introduced in 1908 because the Whitworth thread was too coarse for some applications. The thread angle was 55°, and the depth and pitch varied with the diameter of the thread (i.e., the bigger the bolt, the coarser the thread). Spanners for Whitworth bolts are marked with the size of the bolt, not the distance across the flats of the screw head.

The most common use of a Whitworth pitch nowadays is in all UK scaffolding. Additionally, the standard photographic tripod thread, which for small cameras is 1/4" Whitworth (20 tpi) and for medium/large format cameras is 3/8" Whitworth (16 tpi). It is also used for microphone stands and their appropriate clips, again in both sizes, along with "thread adapters" to allow the smaller size to attach to items requiring the larger thread. Note that while 1/4" UNC bolts fit 1/4" BSW camera tripod bushes, yield strength is reduced by the different thread angles of 60° and 55° respectively.

British Association screw thread

British Association (BA) screw threads, named after the British Association for Advancement of Science, were devised in 1884 and standardised in 1903. Screws were described as "2BA", "4BA" etc., the odd numbers being rarely used, except in equipment made prior to the 1970s for telephone exchanges in the UK. This equipment made extensive use of odd-numbered BA screws, in order—it may be suspected—to reduce theft. BA threads are specified by British Standard BS 93:1951 "Specification for British Association (B.A.) screw threads with tolerances for sizes 0 B.A. to 16 B.A."

While not related to ISO metric screws, the sizes were actually defined in metric terms, a 0BA thread having a 6 mm diameter and 1 mm pitch. Other threads in the BA series are related to 0BA in a geometric series with the common factors 0.9 and 1.2. For example, a 4BA thread has pitch  mm (0.65 mm) and diameter  mm (3.62 mm). Although 0BA has the same diameter and pitch as ISO M6, the threads have different forms and are not compatible.

BA threads are still common in some niche applications. Certain types of fine machinery, such as moving-coil meters and clocks, tend to have BA threads wherever they are manufactured. BA sizes were also used extensively in aircraft, especially those manufactured in the United Kingdom. BA sizing is still used in railway signalling, mainly for the termination of electrical equipment and cabling.

BA threads are extensively used in Model Engineering where the smaller hex head sizes make scale fastenings easier to represent. As a result, many UK Model Engineering suppliers still carry stocks of BA fasteners up to typically 8BA and 10BA. 5BA is also commonly used as it can be threaded onto 1/8 rod.[61]

Unified Thread Standard

The Unified Thread Standard (UTS) is most commonly used in the United States, but is also extensively used in Canada and occasionally in other countries. The size of a UTS screw is described using the following format: X-Y, where X is the nominal size (the hole or slot size in standard manufacturing practice through which the shank of the screw can easily be pushed) and Y is the threads per inch (TPI). For sizes 14 inch and larger the size is given as a fraction; for sizes less than this an integer is used, ranging from 0 to 16. The integer sizes can be converted to the actual diameter by using the formula 0.060 + (0.013 × number). For example, a #4 screw is 0.060 + (0.013 × 4) = 0.060 + 0.052 = 0.112 inches in diameter. There are also screw sizes smaller than "0" (zero or ought). The sizes are 00, 000, 0000 which are usually referred to as two ought, three ought, and four ought. Most eyeglasses have the bows screwed to the frame with 00-72 (pronounced double ought – seventy two) size screws. To calculate the major diameter of "ought" size screws count the number of 0's and multiply this number by 0.013 and subtract from 0.060. For example, the major diameter of a 000-72 screw thread is .060 – (3 x .013) = 0.060 - 0.039 = .021 inches. For most size screws there are multiple TPI available, with the most common being designated a Unified Coarse Thread (UNC or UN) and Unified Fine Thread (UNF or UF). Note: In countries other than the United States and Canada, the ISO Metric Screw Thread System is primarily used today. Unlike most other countries the United States and Canada still use the Unified (Inch) Thread System. However, both are moving over to the ISO Metric System. It is estimated that approximately 60% of screw threads in use in the United States are still inch based.[62]

Bolt Forming.svg
Screw (bolt) 13-n.PNG

There are three steps in manufacturing a screw: heading, thread rolling, and coating. Screws are normally made from wire, which is supplied in large coils, or round bar stock for larger screws. The wire or rod is then cut to the proper length for the type of screw being made; this workpiece is known as a blank. It is then cold headed, which is a cold working process. Heading produces the head of the screw. The shape of the die in the machine dictates what features are pressed into the screw head; for example a flat head screw uses a flat die. For more complicated shapes two heading processes are required to get all of the features into the screw head. This production method is used because heading has a very high production rate, and produces virtually no waste material. Slotted head screws require an extra step to cut the slot in the head; this is done on a slotting machine. These machines are essentially stripped down milling machines designed to process as many blanks as possible.

The blanks are then polished[citation needed] again prior to threading. The threads are usually produced via thread rolling; however, some are cut. The workpiece is then tumble finished with wood and leather media to do final cleaning and polishing.[citation needed] For most screws, a coating, such as electroplating with zinc (galvanizing) or applying black oxide, is applied to prevent corrosion.

A lathe of 1871, equipped with leadscrew and change gears for single-point screw-cutting.
A Brown & Sharpe single- spindle screw machine.

While a recent hypothesis attributes the Archimedes' screw to Sennacherib, King of Assyria, archaeological finds and pictorial evidence only appear in the Hellenistic period and the standard view holds the device to be a Greek invention, most probably by the 3rd century BC polymath Archimedes.[63][dubious ] Though resembling a screw, this is not a screw in the usual sense of the word.

Earlier, the screw had been described by the Greek mathematician Archytas of Tarentum (428–350 BC). By the 1st century BC, wooden screws were commonly used throughout the Mediterranean world in screw presses for pressing olive oil from olives and pressing juice from grapes in winemaking. Metal screws used as fasteners were rare in Europe before the 15th century, if known at all.[64]

Rybczynski has shown[65] that handheld screwdrivers (formerly called "turnscrews" in English, in more direct parallel to their original French name, tournevis[66]) have existed since medieval times (the 1580s at the latest), although they probably did not become truly widespread until after 1800, once threaded fasteners had become commodified, as detailed below.

There were many forms of fastening in use before threaded fasteners became widespread. They tended to involve carpentry and smithing rather than machining, and they involved concepts such as dowels and pins, wedging, mortises and tenons, dovetails, nailing (with or without clenching the nail ends), forge welding, and many kinds of binding with cord made of leather or fiber, using many kinds of knots. Prior to the mid-19th century, cotter pins or pin bolts, and "clinch bolts" (now called rivets), were used in shipbuilding. Glues also existed, although not in the profusion seen today.

The metal screw did not become a common fastener until machine tools for their mass production were developed toward the end of the 18th century. This development blossomed in the 1760s and 1770s[67] along two separate paths that soon converged:[68] the mass production of wood screws (meaning screws made of metal to be used in wood) in a specialized, single-purpose, high-volume-production machine tool; and the low-count, toolroom-style production of machine screws (V-thread) with easy selection among various pitches (whatever the machinist happened to need on any given day).

The first path was pioneered by brothers Job and William Wyatt of Staffordshire, UK,[69] who patented in 1760 a machine that we might today best call a screw machine of an early and prescient sort. It made use of a leadscrew to guide the cutter to produce the desired pitch,[69] and the slot was cut with a rotary file while the main spindle held still (presaging live tools on lathes 250 years later). Not until 1776 did the Wyatt brothers have a wood-screw factory up and running.[69] Their enterprise failed, but new owners soon made it prosper, and in the 1780s they were producing 16,000 screws a day with only 30 employees[70]—the kind of industrial productivity and output volume that would later be characteristic of modern industry but was revolutionary at the time.

Meanwhile, English instrument maker Jesse Ramsden (1735–1800) was working on the toolmaking and instrument-making end of the screw-cutting problem, and in 1777 he invented the first satisfactory screw-cutting lathe.[62] The British engineer Henry Maudslay (1771–1831) gained fame by popularizing such lathes with his screw-cutting lathes of 1797 and 1800, containing the trifecta of leadscrew, slide rest, and change-gear gear train, all in the right proportions for industrial machining. In a sense he unified the paths of the Wyatts and Ramsden and did for machine screws what had already been done for wood screws, i.e., significant easing of production spurring commodification. His firm would remain a leader in machine tools for decades afterward. A misquoting of James Nasmyth popularized the notion that Maudslay had invented the slide rest, but this was incorrect; however, his lathes helped to popularize it.

These developments of the 1760–1800 era, with the Wyatts and Maudslay being arguably the most important drivers, caused great increase in the use of threaded fasteners. Standardization of threadforms began almost immediately, but it was not quickly completed; it has been an evolving process ever since. Further improvements to the mass production of screws continued to push unit prices lower and lower for decades to come, throughout the 19th century.[71]

In 1821, the first screw factory in the United States was built by Hardman Philips on Moshannon Creek, near Philipsburg for the manufacture of blunt metal screws. An expert in screw manufacture, Thomas Lever was brought over from England to run the factory. The mill was run by steam and water power, and the fuel used was hardwood charcoal. The screws were made from wire prepared by “rolling and wire drawing apparatus” from iron manufactured at a nearby forge. The screw mill was not a commercial success. It eventually failed due to competition from the lower cost, gimlet-pointed screw and ceased operations in 1836. [72]

The American development of the turret lathe (1840s) and of automatic screw machines derived from it (1870s) drastically reduced the unit cost of threaded fasteners by increasingly automating the machine tool control. This cost reduction spurred ever greater use of screws.

Throughout the 19th century, the most commonly used forms of screw head (that is, drive types) were simple internal-wrenching straight slots and external-wrenching squares and hexagons. These were easy to machine and served most applications adequately. Rybczynski describes a flurry of patents for alternative drive types in the 1860s through 1890s,[73] but explains that these were patented but not manufactured due to the difficulties and expense of doing so at the time. In 1908, Canadian P. L. Robertson was the first to make the internal-wrenching square socket drive a practical reality by developing just the right design (slight taper angles and overall proportions) to allow the head to be stamped easily but successfully, with the metal cold forming as desired rather than being sheared or displaced in unwanted ways.[73] Practical manufacture of the internal-wrenching hexagon drive (hex socket) shortly followed in 1911.[74][75]

In the early 1930s, the Phillips-head screw was popularized by American Henry F. Phillips.[76]

Threadform standardization further improved in the late 1940s, when the ISO metric screw thread and the Unified Thread Standard were defined.

Precision screws, for controlling motion rather than fastening, developed around the turn of the 19th century, were one of the central technical advances, along with flat surfaces, that enabled the industrial revolution.[77] They are key components of micrometers and lathes.

Alternative fastening methods are:

  • nails
  • rivets
  • pins (dowel pins, taper pins, roll pins, spring pins, cotter pins)
  • pinned shafts (keyed shafts, woodruff keys, gibb-headed key)
  • screw bolt, pin bolt or cotter bolt, and clench bolt- as used in clinker boat building
  • welding
  • soldering
  • brazing
  • joinery (mortise & tenon, dovetailing, box joints, lap joints)
  • gluing
  • taping
  • clinch fastening

  • Bolted joint
  • Dowel
  • Fastener
  • Gender of connectors and fasteners
  • Syndesmotic screw
  • Tap and die
    • Die head
  • Thread angle
  • Threaded fastener
  • Threaded insert
  • Threaded rod (e.g. studs, allthread)
  • Threading
  • Thread-locking compound
  • Thread pitch gauge
  • Wall plug

  1. ^ Smith 1990, p. 39.
  2. ^ Blake, A. (1986). What Every Engineer Should Know about Threaded Fasteners: Materials and Design. What Every Engineer Should Know. Taylor & Francis. p. 9. ISBN 978-0-8493-8379-3. Retrieved 2021-01-24.
  3. ^ McManus, C. (2002). Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms and Cultures. Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms, and Cultures. Harvard University Press. p. 46. ISBN 978-0-674-01613-2.
  4. ^ Anderson, J.G. (1983). Technical Shop Mathematics. Industrial Press. p. 200. ISBN 978-0-8311-1145-8.
  5. ^ Oberg et al. 2000, p. 1492.
  6. ^ "Cambridge Dictionary of American English". Cambridge University Press. Retrieved 2008-12-03.
  7. ^ "allwords". Retrieved 2008-12-03.
  8. ^ "Merriam Webster Dictionary bolt". Retrieved 2008-12-03.
  9. ^ "Compact Oxford English Dictionary bolt". Oxford. Retrieved 2008-12-03.
  10. ^ "Cambridge Advanced Learner's Dictionary bolt". Cambridge University Press. Retrieved 2008-12-03.
  11. ^ "The Fastener Resource Center - Know your Bolts". Retrieved 2011-03-13.
  12. ^ a b White, Christopher. "Observations on the Development of Wood Screws in North America" (PDF).
  13. ^ "Making 18th c wood screws".
  14. ^ "Iron Age, Volume 44". 1889.
  15. ^ Moxon, Joseph (1703). Mechanic Exercises: Or the Doctrine of Handy-Works. Mendham, NJ.
  16. ^ Oberg et al. 2000, pp. 1568–1598.
  17. ^ Oberg et al. 2000, p. 1496.
  18. ^ "Distinguishing Bolts from Screws page 7" (PDF). Retrieved 2018-07-23.
  19. ^ "National Institute of Standards and Technology - NIST". NIST. Archived from the original on 2011-07-21.
  20. ^ B18.2.1 - 1996 Square and Hex Bolts and Screws, Inch Series - Print-Book
  21. ^ "autorepair.com Glossary - lug bolt". Retrieved 2009-01-13.
  22. ^ "autozone.com Glossary - head bolt". Retrieved 2010-10-13.
  23. ^ Merriam-Webster's Unabridged Dictionary, Merriam-Webster.
  24. ^ Oberg et al. 2000, p. 1497.
  25. ^ U.S. Customs and Border Protection Agency (CBP) (July 2012), What Every Member of the Trade Community Should Know About: Distinguishing Bolts from Screws, An Informed Compliance Publication (2011-02 ed.), Washington, D.C., USA: CBP.gov.
  26. ^ a b Dyke's Automobile and Gasoline Engine Encyclopedia page 701, A.L. Dyke, 1919, retrieved 2009-01-13.
  27. ^ https://www.aspenfasteners.com/Concrete-Screws-Tapcon-Style-s/2.htm
  28. ^ "Tricks of the Trade". Motorcycle Mechanics. London: Fetter Publications. 2 (12): 60. September 1960.
  29. ^ "coach screw definition". dictionary.com. Retrieved 2010-01-19.
  30. ^ Soled, Julius (1957), Fasteners handbooks, Reinhold, p. 151.
  31. ^ "Fine thread drywall screws". Mutual Screw & Fastener Supply. Retrieved 2011-03-16.
  32. ^ Oberg, Horton & Ryffel 2000, pp. 1599–1605.
  33. ^ Samuel, Andrew (1999), Introduction to Engineering Design, Oxford: Butterworth-Heinemann, p. 213, ISBN 0-7506-4282-3
  34. ^ Anthony, Gardner Chase (1910), Machine Drawing, D. C. Heath, p. 16.
  35. ^ Woolley, Joseph William; Meredith, Roy Brodhead (1913), Shop sketching, McGraw-Hill, pp. 40–41.
  36. ^ "elevator head definition". myword.info.
  37. ^ Colvin & Stanley 1914, p. 569.
  38. ^ Plow bolts, retrieved 2008-12-25.
  39. ^ The Meaning of "plow head, plow bolt" at MyWord.info
  40. ^ Huth, pp. 166–167.
  41. ^ "All About Screws" (PDF). Curious Inventor. Retrieved 17 October 2013.
  42. ^ "Glossary". Retrieved 17 October 2013.
  43. ^ Brenner, Harry S. (1977). Parmley, Robert O. (ed.). Standard Handbook of Fastening and Joining (5 ed.). New York: McGraw-Hill. p. Chapter 1 page 10. ISBN 0-07-048511-9.
  44. ^ "How to Recognize Metric and SAE Bolts", Chilton DIY, Retrieved April 26, 2016.
  45. ^ "Fraudulent/Counterfeit Electronic Parts", SAE International, Retrieved April 26, 2016.
  46. ^ Metric Handbook, archived from the original on 2007-10-31, retrieved 2009-06-06.
  47. ^ Mechanical properties of bolts, screws, and studs according DIN-ISO 898, part 1 (PDF), retrieved 2009-06-06.
  48. ^ a b c Bolt grade markings and strength chart, retrieved 2009-05-29.
  49. ^ a b ASTM F568M - 07, 2007, retrieved 2009-06-06.
  50. ^ a b c d Metric structural fasteners, archived from the original on 1999-04-21, retrieved 2009-06-06.
  51. ^ a b ASTM A325M - 09, retrieved 2009-06-13.
  52. ^ a b ASTM A490M - 09, 2009, retrieved 2009-06-06.
  53. ^ Mechanical Methods of Joining, retrieved 2009-06-06.
  54. ^ a b c d e f g h i Grade Markings: Carbon Steel Bolts, retrieved 2009-05-30.
  55. ^ a b c d e f Hardware, bulk — Technical information, retrieved 2009-05-30.
  56. ^ a b c d e f g h ASTM, SAE and ISO grade markings and mechanical properties for steel fasteners, retrieved 2009-06-06.
  57. ^ a b c Fastener identification marking (PDF), retrieved 2009-06-23.
  58. ^ a b Other markings may be used to denote atmospheric corrosion resistant material
  59. ^ a b c FastenalTechnicalReferenceGuide (PDF), retrieved 2010-04-30.
  60. ^ a b Mitchell, George (1995), Carpentry and Joinery (3rd ed.), Cengage Learning, p. 205, ISBN 978-1-84480-079-7.
  61. ^ http://www.threadcheck.com/technical-documents/thread-systems.pdf
  62. ^ a b Rybczynski 2000, pp. 97–99.
  63. ^ Stephanie Dalley and John Peter Oleson (January 2003). "Sennacherib, Archimedes, and the Water Screw: The Context of Invention in the Ancient World", Technology and Culture 44 (1).
  64. ^ Am_Wood_Screws (PDF), retrieved 2010-04-30.
  65. ^ Rybczynski 2000, pp. 34, 66, 90.
  66. ^ Rybczynski 2000, pp. 32–36, 44.
  67. ^ Rybczynski 2000, pp. 75–99.
  68. ^ Rybczynski 2000, p. 99.
  69. ^ a b c Rybczynski 2000, p. 75.
  70. ^ Rybczynski 2000, p. 76.
  71. ^ Rybczynski 2000, pp. 76–78.
  72. ^ J. Thomas Mitchell (3 February 2009). Centre County: From Its Earliest Settlement to the Year 1915. Penn State Press. pp. 39–. ISBN 978-0-271-04499-6.
  73. ^ a b Rybczynski 2000, pp. 79–81.
  74. ^ U.S. Patent 161,390.
  75. ^ Hallowell 1951, pp. 51–59.
  76. ^ See:
    • Henry F. Phillips and Thomas M. Fitzpatrick, "Screw," U.S. Patent no. 2,046,839 (filed: January 15, 1935; issued: July 7, 1936).
    • Henry F. Phillips and Thomas M. Fitzpatrick, "Screw driver," U.S. Patent no. 2,046,840 (filed: January 15, 1935; issued: July 7, 1936).
  77. ^ Rybczynski 2000, p. 104.

Bibliography

  • Bickford, John H.; Nassar, Sayed (1998), Handbook of bolts and bolted joints, CRC Press, ISBN 978-0-8247-9977-9.
  • Colvin, Fred Herbert; Stanley, Frank Arthur (1914), American Machinists' Handbook and Dictionary of Shop Terms (2nd ed.), McGraw-Hill.
  • Hallowell, Howard Thomas, Sr (1951), How a Farm Boy Built a Successful Corporation: An Autobiography, Jenkintown, Pennsylvania, USA: Standard Pressed Steel Company, LCCN 52001275, OCLC 521866.
  • Huth, Mark W. (2003), Basic Principles for Construction, Cengage Learning, ISBN 1-4018-3837-5.
  • Oberg, Erik; Jones, Franklin D.; Horton, Holbrook L.; Ryffel, Henry H. (2000), Machinery's Handbook (26th ed.), New York: Industrial Press Inc., ISBN 0-8311-2635-3.
  • Rybczynski, Witold (2000), One Good Turn: A Natural History of the Screwdriver and the Screw, Scribner, ISBN 978-0-684-86729-8, LCCN 00036988, OCLC 462234518. Various republications (paperback, e-book, braille, etc).
  • Ryffel, Henry H.; et al. (1988), Machinery's Handbook (23rd ed.), New York: Industrial Press, ISBN 978-0-8311-1200-4.
  • Smith, Carroll (1990), Carroll Smith's Nuts, Bolts, Fasteners, and Plumbing Handbook, MotorBooks/MBI Publishing Company, ISBN 0-87938-406-9.

  • How the World Got Screwed
  • NASA-RP-1228 Fastener Design Manual
  • Imperial/Metric fastening sizes comparison
  • "Hold Everything", February 1946, Popular Science" article section on screws and screw fastener technology developed during World War Two
  • How to feed screws and dowels