De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Hawkmoth colibrí bebiendo de Dianthus , siendo la polinización un ejemplo clásico de mutualismo

El mutualismo describe la interacción ecológica entre dos o más especies donde cada especie tiene un beneficio neto. [1] El mutualismo es un tipo común de interacción ecológica. Ejemplos destacados incluyen la mayoría de las plantas vasculares involucradas en interacciones mutualistas con micorrizas , plantas con flores que son polinizadas por animales, plantas vasculares que son dispersadas por animales y corales con zooxantelas , entre muchos otros. El mutualismo se puede contrastar con la competencia interespecífica , en la que cada especie experimenta una reducción de su aptitud y explotación o parasitismo., en el que una especie se beneficia a "expensas" de la otra.

El término mutualismo fue introducido por Pierre-Joseph van Beneden en su libro de 1876 Animal Parasites and Messmates para significar "ayuda mutua entre especies". [2] [3]

El mutualismo a menudo se combina con otros dos tipos de fenómenos ecológicos: cooperación y simbiosis . La cooperación se refiere más comúnmente a aumentos en la aptitud a través de interacciones intraespecíficas (intraespecíficas), aunque se ha utilizado (especialmente en el pasado) para referirse a interacciones mutualistas, y a veces se usa para referirse a interacciones mutualistas que no son obligatorias. [4] La simbiosis involucra a dos especies que viven en estrecho contacto físico durante un largo período de su existencia y pueden ser mutualistas, parasitarias o comensales., por lo que las relaciones simbióticas no siempre son mutualistas y las interacciones mutualistas no siempre son simbióticas. A pesar de una definición diferente entre interacciones mutualistas y simbiosis, mutualista y simbiosis se han utilizado en gran medida indistintamente en el pasado y ha persistido la confusión sobre su uso. [5]

El mutualismo juega un papel clave en la ecología y la evolución . Por ejemplo, las interacciones mutualistas son vitales para la función de los ecosistemas terrestres , ya que aproximadamente el 80% de las especies de plantas terrestres dependen de las relaciones micorrízicas con los hongos para proporcionarles compuestos inorgánicos y oligoelementos. [6] Como otro ejemplo, la estimación de árboles de bosques tropicales con mutualismos de dispersión de semillas con animales varía entre el 70% y el 90%. [ cita requerida ] . Además, se cree que el mutualismo ha impulsado la evolución de gran parte de la diversidad biológica que vemos, como las formas florales (importantes para la polinizaciónmutualismos) y coevolución entre grupos de especies. [7] El mutualismo también se ha relacionado con importantes eventos evolutivos, como la evolución de la célula eucariota ( simbiogénesis ) o la colonización de la tierra por plantas en asociación con hongos micorrízicos.

A pesar de la importancia del mutualismo tanto en la evolución como en la ecología, algunos autores han argumentado que el mutualismo ha sido menos estudiado que otras interacciones interespecíficas como la depredación o el parasitismo, siendo el argumento principal una menor consagración de libros de texto de ecología y biología hacia el mutualismo. [8] Otros autores han argumentado que este no es el caso cuando se considera la literatura de investigación primaria. [9]

Tipos [ editar ]

Relaciones recurso-recurso [ editar ]

Las relaciones mutualistas se pueden considerar como una forma de "trueque biológico" [10] en las asociaciones de micorrizas entre las raíces de las plantas y los hongos , en las que la planta proporciona carbohidratos al hongo a cambio principalmente de fosfato pero también de compuestos nitrogenados . Otros ejemplos incluyen las bacterias rizobios que fijan nitrógeno para las plantas leguminosas (familia Fabaceae) a cambio de carbohidratos que contienen energía . [11]

Relaciones servicio-recurso [ editar ]

El picabueyes de pico rojo come garrapatas en el pelaje del impala , en una simbiosis de limpieza .

Las relaciones entre servicios y recursos son comunes. Tres tipos importantes son la polinización, la simbiosis de limpieza y la zoocoria.

En la polinización , una planta intercambia recursos alimenticios en forma de néctar o polen para el servicio de la dispersión del polen.

Los fagófilos se alimentan (recurso) de ectoparásitos , proporcionando así un servicio anti-plagas, como en la simbiosis de limpieza .Elacatinus y Gobiosoma , géneros de gobios , se alimentan de ectoparásitos de sus clientes mientras los limpian. [12]

Zoochory es la dispersión de semillas de plantas por animales. Esto es similar a la polinización en que la planta produce recursos alimenticios (por ejemplo, frutos carnosos, exceso de semillas) para los animales que dispersan las semillas (servicio).

Otro tipo es la protección de los pulgones contra las hormigas , donde los pulgones intercambian melaza rica en azúcar (un subproducto de su modo de alimentarse de la savia de las plantas ) a cambio de defenderse contra depredadores como las mariquitas .

Relaciones servicio-servicio [ editar ]

El pez payaso Ocellaris y las anémonas de mar de Ritter viven en una simbiosis de servicio mutuo, el pez aleja al pez mariposa y los tentáculos de la anémona protegen al pez de los depredadores.

Strict service-service interactions are very rare, for reasons that are far from clear.[10] One example is the relationship between sea anemones and anemone fish in the family Pomacentridae: the anemones provide the fish with protection from predators (which cannot tolerate the stings of the anemone's tentacles) and the fish defend the anemones against butterflyfish (family Chaetodontidae), which eat anemones. However, in common with many mutualisms, there is more than one aspect to it: in the anemonefish-anemone mutualism, waste ammonia from the fish feeds the symbiotic algae that are found in the anemone's tentacles.[13][14] Therefore, what appears to be a service-service mutualism in fact has a service-resource component. A second example is that of the relationship between some ants in the genus Pseudomyrmex and trees in the genus Acacia, such as the whistling thorn and bullhorn acacia. The ants nest inside the plant's thorns. In exchange for shelter, the ants protect acacias from attack by herbivores (which they frequently eat, introducing a resource component to this service-service relationship) and competition from other plants by trimming back vegetation that would shade the acacia. In addition, another service-resource component is present, as the ants regularly feed on lipid-rich food-bodies called Beltian bodies that are on the Acacia plant.[15]

In the neotropics, the ant Myrmelachista schumanni makes its nest in special cavities in Duroia hirsute. Plants in the vicinity that belong to other species are killed with formic acid. This selective gardening can be so aggressive that small areas of the rainforest are dominated by Duroia hirsute. These peculiar patches are known by local people as "devil's gardens".[16]

In some of these relationships, the cost of the ant's protection can be quite expensive. Cordia sp. trees in the Amazonian rainforest have a kind of partnership with Allomerus sp. ants, which make their nests in modified leaves. To increase the amount of living space available, the ants will destroy the tree's flower buds. The flowers die and leaves develop instead, providing the ants with more dwellings. Another type of Allomerus sp. ant lives with the Hirtella sp. tree in the same forests, but in this relationship, the tree has turned the tables on the ants. When the tree is ready to produce flowers, the ant abodes on certain branches begin to wither and shrink, forcing the occupants to flee, leaving the tree's flowers to develop free from ant attack.[16]

The term "species group" can be used to describe the manner in which individual organisms group together. In this non-taxonomic context one can refer to "same-species groups" and "mixed-species groups." While same-species groups are the norm, examples of mixed-species groups abound. For example, zebra (Equus burchelli) and wildebeest (Connochaetes taurinus) can remain in association during periods of long distance migration across the Serengeti as a strategy for thwarting predators. Cercopithecus mitis and Cercopithecus ascanius, species of monkey in the Kakamega Forest of Kenya, can stay in close proximity and travel along exactly the same routes through the forest for periods of up to 12 hours. These mixed-species groups cannot be explained by the coincidence of sharing the same habitat. Rather, they are created by the active behavioural choice of at least one of the species in question.[17]

Mathematical modeling[edit]

Mathematical treatments of mutualisms, like the study of mutualisms in general, has lagged behind those of predation, or predator-prey, consumer-resource, interactions. In models of mutualisms, the terms "type I" and "type II" functional responses refer to the linear and saturating relationships, respectively, between benefit provided to an individual of species 1 (y-axis) on the density of species 2 (x-axis).

Type I functional response[edit]

One of the simplest frameworks for modeling species interactions is the Lotka–Volterra equations.[18] In this model, the change in population density of the two mutualists is quantified as:

where

  • = the population densities.
  • = the intrinsic growth rate of the population.
  • = the negative effect of within-species crowding.
  • = the beneficial effect of a mutualistic partner's density.

Mutualism is in essence the logistic growth equation + mutualistic interaction. The mutualistic interaction term represents the increase in population growth of species one as a result of the presence of greater numbers of species two, and vice versa. As the mutualistic term is always positive, it may lead to unrealistic unbounded growth as it happens with the simple model.[19] So, it is important to include a saturation mechanism to avoid the problem.

Type II functional response[edit]

In 1989, David Hamilton Wright modified the Lotka–Volterra equations by adding a new term, βM/K, to represent a mutualistic relationship.[20] Wright also considered the concept of saturation, which means that with higher densities, there are decreasing benefits of further increases of the mutualist population. Without saturation, species' densities would increase indefinitely. Because that isn't possible due to environmental constraints and carrying capacity, a model that includes saturation would be more accurate. Wright's mathematical theory is based on the premise of a simple two-species mutualism model in which the benefits of mutualism become saturated due to limits posed by handling time. Wright defines handling time as the time needed to process a food item, from the initial interaction to the start of a search for new food items and assumes that processing of food and searching for food are mutually exclusive. Mutualists that display foraging behavior are exposed to the restrictions on handling time. Mutualism can be associated with symbiosis.

Handling time interactionsIn 1959, C. S. Holling performed his classic disc experiment that assumed the following: that (1), the number of food items captured is proportional to the allotted searching time; and (2), that there is a variable of handling time that exists separately from the notion of search time. He then developed an equation for the Type II functional response, which showed that the feeding rate is equivalent to

where,

  • a=the instantaneous discovery rate
  • x=food item density
  • TH=handling time

The equation that incorporates Type II functional response and mutualism is:

where

  • N and M=densities of the two mutualists
  • r=intrinsic rate of increase of N
  • c=coefficient measuring negative intraspecific interaction. This is equivalent to inverse of the carrying capacity, 1/K, of N, in the logistic equation.
  • a=instantaneous discovery rate
  • b=coefficient converting encounters with M to new units of N

or, equivalently,

where

  • X=1/a TH
  • β=b/TH

This model is most effectively applied to free-living species that encounter a number of individuals of the mutualist part in the course of their existences. Wright notes that models of biological mutualism tend to be similar qualitatively, in that the featured isoclines generally have a positive decreasing slope, and by and large similar isocline diagrams. Mutualistic interactions are best visualized as positively sloped isoclines, which can be explained by the fact that the saturation of benefits accorded to mutualism or restrictions posed by outside factors contribute to a decreasing slope.

The type II functional response is visualized as the graph of vs. M.

Structure of networks[edit]

Mutualistic networks made up out of the interaction between plants and pollinators were found to have a similar structure in very different ecosystems on different continents, consisting of entirely different species.[21] The structure of these mutualistic networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions and on the community carrying capacity.[22]

Mathematical models that examine the consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant-pollinator networks are organized minimizes competition between pollinators,[23] reduce the spread of indirect effects and thus enhance ecosystem stability[24] and may even lead to strong indirect facilitation between pollinators when conditions are harsh.[25] This means that pollinator species together can survive under harsh conditions. But it also means that pollinator species collapse simultaneously when conditions pass a critical point.[26] This simultaneous collapse occurs, because pollinator species depend on each other when surviving under difficult conditions.[25]

Such a community-wide collapse, involving many pollinator species, can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy. The improvement in conditions needed for pollinators to recover could be substantially larger than the improvement needed to return to conditions at which the pollinator community collapsed.[25]

Humans[edit]

Dogs and sheep were among the first animals to be domesticated.

Humans are involved in mutualisms with other species: their gut flora is essential for efficient digestion.[27] Infestations of head lice might have been beneficial for humans by fostering an immune response that helps to reduce the threat of body louse borne lethal diseases.[28]

Some relationships between humans and domesticated animals and plants are to different degrees mutualistic. For example, agricultural varieties of maize provide food for humans and are unable to reproduce without human intervention because the leafy sheath does not fall open, and the seedhead (the "corn on the cob") does not shatter to scatter the seeds naturally.[29]

In traditional agriculture, some plants have mutualist as companion plants, providing each other with shelter, soil fertility and/or natural pest control. For example, beans may grow up cornstalks as a trellis, while fixing nitrogen in the soil for the corn, a phenomenon that is used in Three Sisters farming.[30]

One researcher has proposed that the key advantage Homo sapiens had over Neanderthals in competing over similar habitats was the former's mutualism with dogs.[31]

Evolution of mutualism[edit]

Mutualism breakdown[edit]

Mutualisms are not static, and can be lost by evolution.[32] Sachs and Simms (2006) suggest that this can occur via 4 main pathways:

  1. One mutualist shifts to parasitism, and no longer benefits its partner,[32] such as headlice[citation needed]
  2. One partner abandons the mutualism and lives autonomously[32]
  3. One partner may go extinct[32]
  4. A partner may be switched to another species[33]

There are many examples of mutualism breakdown. For example, plant lineages inhabiting nutrient-rich environments have evolutionarily abandoned mycorrhizal mutualisms many times independently.[34]

Measuring and defining mutualism[edit]

Measuring the exact fitness benefit to the individuals in a mutualistic relationship is not always straightforward, particularly when the individuals can receive benefits from a variety of species, for example most plant-pollinator mutualisms. It is therefore common to categorise mutualisms according to the closeness of the association, using terms such as obligate and facultative. Defining "closeness", however, is also problematic. It can refer to mutual dependency (the species cannot live without one another) or the biological intimacy of the relationship in relation to physical closeness (e.g., one species living within the tissues of the other species).[10]

See also[edit]

  • Arbuscular mycorrhiza
  • Co-adaptation
  • Coevolution
  • Ecological facilitation
  • Frugivore
  • Greater honeyguide – has a mutualism with humans
  • Interspecies communication
  • Müllerian mimicry
  • Mutualisms and conservation
  • Mutual Aid: A Factor of Evolution
  • Symbiogenesis

References[edit]

  1. ^ Bronstein, Judith (2015). Mutualism. Oxford University Press.
  2. ^ Van Beneden, Pierre-Joseph (1876). Animal Parasites and Messmates. London: Henry S. King.
  3. ^ Bronstein, J. L. (2015). The study of mutualism. Mutualism. Oxford University Press. ISBN 9780199675654.[page needed]
  4. ^ Bronstein, Judith (2015). Mutualism. Oxford University Press.
  5. ^ Douglas, Angela E. (December 2014). The Symbiotic Habit. United States: Princeton University Press. ISBN 9780691113425.
  6. ^ Wang, B. (2006). "Phylogenetic distribution and evolution of mycorrhizas in land plants". Mycorrhiza. 16: 299-363. doi:10.1007/s00572-005-0033-6.
  7. ^ Thompson, J. N. 2005 The geographic mosaic of coevolution. Chicago, IL: University of Chicago Press.
  8. ^ Keddy, Paul A. (1989). Competition. Springer. ISBN 978-0-412-31360-8.
  9. ^ Bronstein, Judith L. (March 1994). "Our current understanding of mutualism". The Quarterly Review of Biology. 69 (1): 31-51. doi:10.1086/418432.
  10. ^ a b c Ollerton, J. 2006. "Biological Barter": Interactions of Specialization Compared across Different Mutualisms. pp. 411–435 in: Waser, N.M. & Ollerton, J. (Eds) Plant-Pollinator Interactions: From Specialization to Generalization. University of Chicago Press.
  11. ^ Denison, RF; Kiers, ET (2004). "Why are most rhizobia beneficial to their plant hosts, rather than parasitic". Microbes and Infection. 6 (13): 1235–1239. doi:10.1016/j.micinf.2004.08.005. PMID 15488744.
  12. ^ M.C. Soares; I.M. Côté; S.C. Cardoso & R.Bshary (August 2008). "The cleaning goby mutualism: a system without punishment, partner switching or tactile stimulation" (PDF). Journal of Zoology. 276 (3): 306–312. doi:10.1111/j.1469-7998.2008.00489.x.
  13. ^ Porat, D.; Chadwick-Furman, N. E. (2004). "Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival". Hydrobiologia. 530 (1–3): 513–520. doi:10.1007/s10750-004-2688-y.
  14. ^ Porat, D.; Chadwick-Furman, N. E. (2005). "Effects of anemonefish on giant sea anemones: ammonium uptake, zooxanthella content and tissue regeneration". Mar. Freshw.Behav. Phys. 38: 43–51. doi:10.1080/10236240500057929.
  15. ^ "Swollen Thorn Acacias". www2.palomar.edu. Retrieved 22 February 2019.
  16. ^ a b Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.
  17. ^ Tosh CR, Jackson AL, Ruxton GD (March 2007). "Individuals from different-looking animal species may group together to confuse shared predators: simulations with artificial neural networks". Proc. Biol. Sci. 274 (1611): 827–32. doi:10.1098/rspb.2006.3760. PMC 2093981. PMID 17251090.
  18. ^ May, R., 1981. Models for Two Interacting Populations. In: May, R.M., Theoretical Ecology. Principles and Applications, 2nd ed. pp. 78–104.
  19. ^ García-Algarra, Javier (2014). "Rethinking the logistic approach for population dynamics of mutualistic interactions" (PDF). Journal of Theoretical Biology. 363: 332–343. arXiv:1305.5411. doi:10.1016/j.jtbi.2014.08.039. PMID 25173080.
  20. ^ Wright, David Hamilton (1989). "A Simple, Stable Model of Mutualism Incorporating Handling Time". The American Naturalist. 134 (4): 664–667. doi:10.1086/285003.
  21. ^ Bascompte, J.; Jordano, P.; Melián, C. J.; Olesen, J. M. (2003). "The nested assembly of plant–animal mutualistic networks". Proceedings of the National Academy of Sciences. 100 (16): 9383–9387. Bibcode:2003PNAS..100.9383B. doi:10.1073/pnas.1633576100. PMC 170927. PMID 12881488.
  22. ^ Suweis, S.; Simini, F.; Banavar, J; Maritan, A. (2013). "Emergence of structural and dynamical properties of ecological mutualistic networks". Nature. 500 (7463): 449–452. arXiv:1308.4807. Bibcode:2013Natur.500..449S. doi:10.1038/nature12438. PMID 23969462.
  23. ^ Bastolla, U.; Fortuna, M. A.; Pascual-García, A.; Ferrera, A.; Luque, B.; Bascompte, J. (2009). "The architecture of mutualistic networks minimizes competition and increases biodiversity". Nature. 458 (7241): 1018–1020. Bibcode:2009Natur.458.1018B. doi:10.1038/nature07950. PMID 19396144.
  24. ^ Suweis, S., Grilli, J., Banavar, J. R., Allesina, S., & Maritan, A. (2015) Effect of localization on the stability of mutualistic ecological networks. "Nature Communications", 6
  25. ^ a b c Lever, J. J.; Nes, E. H.; Scheffer, M.; Bascompte, J. (2014). "The sudden collapse of pollinator communities". Ecology Letters. 17 (3): 350–359. doi:10.1111/ele.12236. hdl:10261/91808. PMID 24386999.
  26. ^ Garcia-Algarra, J.; Pasotr, J. M.; Iriondo, J. M.; Galeano, J. (2017). "Ranking of critical species to preserve the functionality of mutualistic networks using the k-core decomposition". PeerJ. 5: e3321. doi:10.7717/peerj.3321. PMC 5438587. PMID 28533969.
  27. ^ Sears CL (October 2005). "A dynamic partnership: celebrating our gut flora". Anaerobe. 11 (5): 247–51. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579.
  28. ^ Rozsa, L; Apari, P. (2012). "Why infest the loved ones – inherent human behaviour indicates former mutualism with head lice" (PDF). Parasitology. 139 (6): 696–700. doi:10.1017/s0031182012000017. PMID 22309598.
  29. ^ "Symbiosis – Symbioses Between Humans And Other Species". Net Industries. Retrieved 9 December 2012.
  30. ^ Mt. Pleasant, Jane (2006). "The science behind the Three Sisters mound system: An agronomic assessment of an indigenous agricultural system in the northeast". In John E. Staller; Robert H. Tykot; Bruce F. Benz (eds.). Histories of maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Amsterdam. pp. 529–537.
  31. ^ Shipman, Pat (2015). The Invaders: How Humans and Their Dogs Drove Neanderthals to Extinction. Cambridge, Maryland: Harvard University Press.
  32. ^ a b c d Sachs JL, Simms EL (2006). "Pathways to mutualism breakdown". TREE. 21 (10): 585–592. doi:10.1016/j.tree.2006.06.018.
  33. ^ Werner, G. D. A. et al. (2018) 'Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown', bioRxiv, p. 242834
  34. ^ Wang, B. and Qiu, Y.-L. (2006) 'Phylogenetic distribution and evolution of mycorrhizas in land plants.', Mycorrhiza, 16(5), pp. 299–363.

Further references[edit]

  • Angier, Natalie (22 July 2016). "African Tribesmen Can Talk Birds into Helping Them Find Honey". The New York Times.
  • Bascompte, J.; Jordano, P.; Melián, C. J.; Olesen, J. M. (2003). "The nested assembly of plant–animal mutualistic networks". Proceedings of the National Academy of Sciences. 100 (16): 9383–9387. Bibcode:2003PNAS..100.9383B. doi:10.1073/pnas.1633576100. PMC 170927. PMID 12881488.
  • Bastolla, U.; Fortuna, M. A.; Pascual-García, A.; Ferrera, A.; Luque, B.; Bascompte, J. (2009). "The architecture of mutualistic networks minimizes competition and increases biodiversity". Nature. 458 (7241): 1018–1020. Bibcode:2009Natur.458.1018B. doi:10.1038/nature07950. PMID 19396144.* Breton, Lorraine M.; Addicott, John F. (1992). "Density-Dependent Mutualism in an Aphid-Ant Interaction". Ecology. 73 (6): 2175–2180. doi:10.2307/1941465. JSTOR 1941465.
  • Bronstein, JL (1994). "Our current understanding of mutualism". Quarterly Review of Biology. 69 (1): 31–51. doi:10.1086/418432.
  • Bronstein, JL (2001). "The exploitation of mutualisms". Ecology Letters. 4 (3): 277–287. doi:10.1046/j.1461-0248.2001.00218.x.
  • Bronstein JL. 2001. The costs of mutualism. American Zoologist 41 (4): 825-839 S
  • Bronstein, JL; Alarcon, R; Geber, M (2006). "The evolution of plant-insect mutualisms". New Phytologist. 172 (3): 412–28. doi:10.1111/j.1469-8137.2006.01864.x. PMID 17083673.
  • Denison, RF; Kiers, ET (2004). "Why are most rhizobia beneficial to their plant hosts, rather than parasitic?". Microbes and Infection. 6 (13): 1235–1239. doi:10.1016/j.micinf.2004.08.005. PMID 15488744.
  • DeVries, PJ; Baker, I (1989). "Butterfly exploitation of an ant-plant mutualism: Adding insult of herbivory". Journal of the New York Entomological Society. 97 (3): 332–340.
  • Hoeksema, J.D.; Bruna, E.M. (2000). "Pursuing the big questions about interspecific mutualism: a review of theoretical approaches". Oecologia. 125 (3): 321–330. Bibcode:2000Oecol.125..321H. doi:10.1007/s004420000496. PMID 28547326.
  • Jahn, G.C.; Beardsley, J.W. (2000). "Interactions of ants (Hymenoptera: Formicidae) and mealybugs (Homoptera: Pseudococcidae) on pineapple". Proceedings of the Hawaiian Entomological Society. 34: 181–185.
  • Jahn, Gary C.; Beardsley, J. W.; González-Hernández, H. (2003). "A review of the association of ants with mealybug wilt disease of pineapple" (PDF). Proceedings of the Hawaiian Entomological Society. 36: 9–28.
  • Lever, J. J.; Nes, E. H.; Scheffer, M.; Bascompte, J. (2014). "The sudden collapse of pollinator communities". Ecology Letters. 17 (3): 350–359. doi:10.1111/ele.12236. hdl:10261/91808. PMID 24386999.
  • Noe, R.; Hammerstein, P. (1994). "Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating". Behavioral Ecology and Sociobiology. 35: 1–11. doi:10.1007/bf00167053.
  • Ollerton, J. 2006. "Biological Barter": Patterns of Specialization Compared across Different Mutualisms. pp. 411–435 in: Waser, N.M. & Ollerton, J. (Eds) Plant-Pollinator Interactions: From Specialization to Generalization. University of Chicago Press. ISBN 978-0-226-87400-5
  • Paszkowski, U (2006). "Mutualism and parasitism: the yin and yang of plant symbioses". Current Opinion in Plant Biology. 9 (4): 364–370. doi:10.1016/j.pbi.2006.05.008. PMID 16713732.
  • Porat, D.; Chadwick-Furman, N. E. (2004). "Effects of anemonefish on giant sea anemones:expansion behavior, growth, and survival". Hydrobiologia. 530 (1–3): 513–520. doi:10.1007/s10750-004-2688-y.
  • Porat, D.; Chadwick-Furman, N. E. (2005). "Effects of anemonefish on giant sea anemones: ammonium uptake, zooxanthella content and tissue regeneration". Mar. Freshw. Behav. Phys. 38: 43–51. doi:10.1080/10236240500057929.
  • Thompson, J. N. 2005. The Geographic Mosaic of Coevolution. University of Chicago Press. ISBN 978-0-226-79762-5
  • Wright, David Hamilton (1989). "A Simple, Stable Model of Mutualism Incorporating Handling Time". The American Naturalist. 134 (4): 664–667. doi:10.1086/285003.

Further reading[edit]

  • Boucher, D. G.; James, S.; Keeler, K. (1984). "The ecology of mutualism". Annual Review of Ecology and Systematics. 13: 315–347. doi:10.1146/annurev.es.13.110182.001531.
  • Boucher, D. H. (editor) (1985) The Biology of Mutualism : Ecology and Evolution London : Croom Helm 388 p. ISBN 0-7099-3238-3