De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Trinitrotolueno ( / ˌ t r aɪ ˌ n aɪ t r oʊ t ɒ lj u i n / ; [4] [5] TNT ), o más específicamente 2,4,6-trinitrotolueno , es un compuesto químico con la fórmula C 6 H 2 (NO 2 ) 3 CH 3 . Este sólido amarillo se usa ocasionalmente como reactivo en síntesis química, pero es más conocido como material explosivo.con propiedades de manejo convenientes. El rendimiento explosivo de TNT se considera la convención comparativa estándar de bombas y la destructividad de explosivos . En química, el TNT se utiliza para generar sales de transferencia de carga .

Historia [ editar ]

Trozos de TNT de grado explosivo
Trinitrotolueno derritiéndose a 81 ° C (178 ° F)
Proyectiles de artillería M107 . Todos están etiquetados para indicar un llenado de " Comp B " (mezcla de TNT y RDX ) y tienen espoletas instaladas
Análisis de la producción de TNT por rama del ejército alemán entre 1941 y el primer trimestre de 1944 expresado en miles de toneladas por mes
Detonación de la carga explosiva TNT de 500 toneladas como parte de la Operación Sailor Hat en 1965. La onda expansiva que pasó dejó una superficie de agua blanca y una nube de condensación blanca es visible en lo alto.

El TNT fue preparado por primera vez en 1863 por el químico alemán Julius Wilbrand [6] y originalmente se usó como tinte amarillo. Su potencial como explosivo no fue reconocido durante tres décadas, principalmente porque era demasiado difícil de detonar porque era menos sensible que las alternativas. Sus propiedades explosivas fueron descubiertas por primera vez por otro químico alemán, Carl Häussermann, en 1891. [7] El TNT se puede verter de manera segura en estado líquido en las carcasas de proyectiles, y es tan insensible que estaba exento de la Ley de Explosivos del Reino Unido de 1875 y no se consideró un explosivo para su fabricación y almacenamiento. [8]

Las fuerzas armadas alemanas lo adoptaron como relleno para proyectiles de artillería en 1902. Los proyectiles perforadores de blindaje llenos de TNT explotarían después de haber penetrado el blindaje de los buques capitales británicos , mientras que los proyectiles rellenos de Lyddite británicos tendían a explotar al golpear el blindaje, por lo que gastando gran parte de su energía fuera de la nave. [8] Los británicos comenzaron a reemplazar Lyddite con TNT en 1907. [ cita requerida ]

La Armada de los Estados Unidos continuó llenando proyectiles perforadores de blindaje con explosivo D después de que algunas otras naciones cambiaron a TNT, pero comenzó a llenar minas navales , bombas , cargas de profundidad y ojivas de torpedos con cargas explosivas de TNT de grado B crudo con el color del azúcar moreno. y requiere una carga de refuerzo explosiva de TNT granular cristalizado grado A para la detonación. Los proyectiles altamente explosivos se llenaron con TNT de grado A , que se convirtió en el preferido para otros usos a medida que se dispuso de capacidad química industrial para eliminar el xileno.e hidrocarburos similares de la materia prima de tolueno y otros subproductos del isómero nitrotolueno de las reacciones de nitración. [9]

Preparación [ editar ]

En la industria, TNT se produce en un proceso de tres pasos. Primero, el tolueno se nitra con una mezcla de ácido sulfúrico y nítrico para producir mononitrotolueno (MNT). El MNT se separa y luego se renitra a dinitrotolueno (DNT). En el paso final, el DNT se nitra a trinitrotolueno (TNT) usando una mezcla anhidra de ácido nítrico y oleum . El proceso de fabricación consume ácido nítrico, pero el ácido sulfúrico diluido puede reconcentrarse y reutilizarse. Después de la nitración, el TNT se estabiliza mediante un proceso llamado sulfitación, donde el TNT crudo se trata con sulfito de sodio acuoso.solución para eliminar isómeros menos estables de TNT y otros productos de reacción no deseados. El agua de enjuague de la sulfitación se conoce como agua roja y es un contaminante significativo y un producto de desecho de la fabricación de TNT. [10]

El control de los óxidos de nitrógeno en la alimentación de ácido nítrico es muy importante porque el dióxido de nitrógeno libre puede resultar en la oxidación del grupo metilo del tolueno. Esta reacción es altamente exotérmica y conlleva el riesgo de una reacción descontrolada que conduzca a una explosión. [ cita requerida ]

En el laboratorio, el 2,4,6-trinitrotolueno se produce mediante un proceso de dos pasos. Se utiliza una mezcla nitrante de ácidos nítrico y sulfúrico concentrados para nitrar el tolueno a una mezcla de isómeros de mono y di-nitrotolueno, con un enfriamiento cuidadoso para mantener la temperatura. A continuación, los toluenos nitrados se separan, se lavan con bicarbonato de sodio diluido para eliminar los óxidos de nitrógeno y luego se nitran cuidadosamente con una mezcla de ácido nítrico fumante y ácido sulfúrico. [ cita requerida ]

Aplicaciones [ editar ]

TNT es uno de los explosivos más utilizados para aplicaciones militares, industriales y mineras. El TNT se ha utilizado junto con la fracturación hidráulica , un proceso utilizado para recuperar petróleo y gas de formaciones de esquisto. La técnica consiste en desplazar y detonar nitroglicerina en fracturas inducidas hidráulicamente, seguidas de disparos de pozo utilizando TNT granulado. [11]

El TNT se valora en parte debido a su insensibilidad a los golpes y la fricción, con un riesgo reducido de detonación accidental en comparación con explosivos más sensibles como la nitroglicerina . El TNT se derrite a 80 ° C (176 ° F), muy por debajo de la temperatura a la que detonará espontáneamente, lo que permite verterlo o combinarlo de forma segura con otros explosivos. TNT no absorbe ni se disuelve en agua, lo que permite su uso eficaz en ambientes húmedos. Para detonar, el TNT debe activarse mediante una onda de presión de un explosivo de arranque, llamado refuerzo explosivo .

Aunque los bloques de TNT están disponibles en varios tamaños (por ejemplo, 250 g, 500 g, 1000 g), se encuentra más comúnmente en mezclas explosivas sinérgicas que comprenden un porcentaje variable de TNT más otros ingredientes. Ejemplos de mezclas explosivas que contienen TNT incluyen:

  • Amatex : ( nitrato de amonio y RDX ) [12]
  • Amatol : (nitrato de amonio [13] )
  • Amonal : (nitrato de amonio y polvo de aluminio más a veces carbón vegetal).
  • Baratol : ( nitrato de bario y cera [14] )
  • Composición B (RDX y cera de parafina [15] )
  • Composición H6
  • Ciclotol (RDX) [16]
  • Ednatol
  • Hexanite[17] (hexanitrodiphenylamine[18][19])
  • Minol
  • Octol
  • Pentolite
  • Picratol
  • Tetrytol
  • Torpex
  • Tritonal

Explosive character[edit]

Upon detonation, TNT undergoes a decomposition equivalent to the reaction

2 C7H5N3O6 → 3 N2 + 5 H2 + 12 CO + 2 C

plus some of the reactions

H
2
+ CO → H
2
O
+ C

and

2CO → CO
2
+ C.

The reaction is exothermic but has a high activation energy in the gas phase (~62 kcal/mol). The condensed phases (solid or liquid) show markedly lower activation energies of roughly 35 kcal/mol due to unique bimolecular decomposition routes at elevated densities.[20] Because of the production of carbon, TNT explosions have a sooty appearance. Because TNT has an excess of carbon, explosive mixtures with oxygen-rich compounds can yield more energy per kilogram than TNT alone. During the 20th century, amatol, a mixture of TNT with ammonium nitrate was a widely used military explosive.[citation needed]

TNT can be detonated with a high velocity initiator or by efficient concussion.[21] For many years, TNT used to be the reference point for the Figure of Insensitivity. TNT had a rating of exactly 100 on the "F of I" scale. The reference has since been changed to a more sensitive explosive called RDX, which has an F of I rating of 80.[citation needed]

Energy content[edit]

Cross-sectional view of Oerlikon 20 mm cannon shells (dating from circa 1945) showing color codes for TNT and pentolite fillings

The heat of detonation utilized by NIST to define a tonne of TNT equivalent is 1000 cal/g or 1000 kcal/kg, 4.184 MJ/kg or 4.184 GJ/ton.[22] The energy density of TNT is used as a reference point for many other explosives, including nuclear weapons, the energy content of which is measured in equivalent kilotons (~4.184 terajoules or 4.184 TJ or 1.162 GWh) or megatons (~4.184 petajoules or 4.184 PJ or 1.162 TWh) of TNT. The heat of combustion however is 14.5 megajoules per kilogram or 14.5 MJ/kg or 4.027 kWh/kg, which requires that some of the carbon in TNT react with atmospheric oxygen, which does not occur in the initial event.[23]

For comparison, gunpowder contains 3 megajoules per kilogram, dynamite contains 7.5 megajoules per kilogram, and gasoline contains 47.2 megajoules per kilogram (though gasoline requires an oxidant, so an optimized gasoline and O2 mixture contains 10.4 megajoules per kilogram).[citation needed]

Detection[edit]

Various methods can be used to detect TNT, including optical and electrochemical sensors and explosive-sniffing dogs. In 2013, researchers from the Indian Institutes of Technology using noble-metal quantum clusters could detect TNT at the sub-zeptomolar (10−18 mol/m3) level.[24]

Safety and toxicity[edit]

TNT is poisonous, and skin contact can cause skin irritation, causing the skin to turn a bright yellow-orange color. During the First World War, female munition workers who handled the chemical found that their skin turned bright yellow, which resulted in their acquiring the nickname "canary girls" or simply "canaries".[25]

People exposed to TNT over a prolonged period tend to experience anemia and abnormal liver functions. Blood and liver effects, spleen enlargement and other harmful effects on the immune system have also been found in animals that ingested or breathed trinitrotoluene. There is evidence that TNT adversely affects male fertility.[26] TNT is listed as a possible human carcinogen, with carcinogenic effects demonstrated in animal experiments with rats, although effects upon humans so far amount to none (according to IRIS of March 15, 2000).[27] Consumption of TNT produces red urine through the presence of breakdown products and not blood as sometimes believed.[28]

Some military testing grounds are contaminated with wastewater from munitions programs, including contamination of surface and subsurface waters which may be colored pink because of the presence of TNT. Such contamination, called "pink water", may be difficult and expensive to remedy.[citation needed]

TNT is prone to exudation of dinitrotoluenes and other isomers of trinitrotoluene when projectiles containing TNT are stored at higher temperatures in warmer climates. Exudation of impurities leads to formation of pores and cracks (which in turn cause increased shock sensitivity). Migration of the exudated liquid into the fuse screw thread can form fire channels, increasing the risk of accidental detonation. Fuse malfunction can also result from the liquid migrating into the fuse mechanism.[29] Calcium silicate is mixed with TNT to mitigate the tendency towards exudation.[30]

Pink and red water[edit]

Pink water and red water are two distinct types of wastewater related to trinitrotoluene.[31] [32] Pink water is produced from equipment washing processes after munitions filling or demilitarization operations, and as such is generally saturated with the maximum amount of TNT that will dissolve in water (about 150 parts per million (ppm).) However it has an indefinite composition that depends on the exact process; in particular, it may also contain cyclotrimethylenetrinitramine (RDX) if the plant uses TNT/RDX mixtures, or HMX if TNT/HMX is used. Red water (also known as "Sellite water") is produced during the process used to purify the crude TNT. It has a complex composition containing more than a dozen aromatic compounds, but the principal components are inorganic salts (sodium sulfate, sodium sulfite sodium nitrate and sodium nitrate) and sulfonated nitroaromatics.[citation needed]

Pink water is actually colorless at the time of generation, whereas red water can be colorless or a very pale red. The color is produced by photolytic reactions under the influence of sunlight. Despite the names, red and pink water are not necessarily different shades; the colour depends mainly on duration of solar exposure. If exposed long enough, "pink" water will become dark brown.[citation needed]

Because of the toxicity of TNT, discharge of pink water to the environment has been prohibited in the US and many other countries for decades, but ground contamination may exist in very old plants. However, RDX and tetryl contamination is usually considered more problematic, as TNT has very low soil mobility. Red water is significantly more toxic and as such it has always been considered a hazardous waste. It has traditionally been disposed of by evaporation to dryness (as the toxic components are not volatile), followed by incineration. Much research has been conducted to develop better disposal processes.[citation needed]

Ecological impact[edit]

Because of its suitability in construction and demolition, TNT has become the most widely used explosive and thus its toxicity is the most characterized and reported. Residual TNT from manufacture, storage, and use can pollute water, soil, atmosphere, and biosphere.[citation needed]

The concentration of TNT in contaminated soil can reach 50 g/kg of soil, where the highest concentrations can be found on or near the surface. In Sept. of 2001, the United States Environmental Protection Agency (USEPA) declared TNT a pollutant whose removal is priority.[33] The USEPA maintains that TNT levels in soil should not exceed 17.2 gram per kilogram of soil and 0.01 milligrams per liter of water.[34]

Aqueous solubility[edit]

Dissolution is a measure of the rate that solid TNT in contact with water is dissolved. The relatively low aqueous solubility of TNT causes the dissolution of solid particles to be continuously released to the environment over extended periods of time.[35] Studies have shown that the TNT dissolved slower in saline water than in freshwater. However, when salinity was altered, TNT dissolved at the same speed (Figure 2).[36] Because TNT is moderately soluble in water, it can migrate through subsurface soil, and cause groundwater contamination.[37]

Soil adsorption[edit]

Adsorption is a measure of the distribution between soluble and sediment adsorbed contaminants following attainment of equilibrium. TNT and its transformation products are known to adsorb to surface soils and sediments, where they undergo reactive transformation or remained stored.[38] The movement or organic contaminants through soils is a function of their ability to associate with the mobile phase (water) and a stationary phase (soil). Materials that associate strongly with soils move slowly through soil. Materials that associate strongly with water move through water with rates approaching that of ground water movement.

The association constant for TNT with a soil is 2.7 to 11 liters per kilogram of soil.[39] This means that TNT has a one- to tenfold tendency to adhere to soil particulates than not when introduced into the soil.[35] Hydrogen bonding and ion exchange are two suggested mechanisms of adsorption between the nitro functional groups and soil colloids.

The number of functional groups on TNT influences the ability to adsorb into soil. Adsorption coefficient values have been shown to increase with an increase in the number of amino groups. Thus, adsorption of the TNT decomposition product 2,4-diamino-6-nitrotoluene (2,4-DANT) was greater than that for 4-amino-2,6-dinitrotoluene (4-ADNT), which was greater than that for TNT.[35] Lower adsorption coefficients for 2,6-DNT compared to 2,4-DNT can be attributed to the steric hindrance of the NO2 group in the ortho position.

Research has shown that in freshwater environments, with a high abundances of Ca2+, the adsorption of TNT and its transformation products to soils and sediments may be lower than observed in a saline environment, dominated by K+ and Na+. Therefore, when considering the adsorption of TNT, the type of soil or sediment and the ionic composition and strength of the ground water are important factors.[40]

The association constants for TNT and its degradation products with clays have been determined. Clay minerals have a significant effect on the adsorption of energetic compounds. Soil properties, such as organic carbon content and cation exchange capacity had significant impacts of the adsorption coefficients reported in the table below.

Additional studies have shown that the mobility of TNT degradation products is likely to be lower "than TNT in subsurface environments where specific adsorption to clay minerals dominates the sorption process."[40] Thus, the mobility of TNT and its transformation products are dependent on the characteristics of the sorbent.[40] The mobility of TNT in groundwater and soil has been extrapolated from "sorption and desorption isotherm models determined with humic acids, in aquifer sediments, and soils".[40] From these models, it is predicted that TNT has a low retention and transports readily in the environment.[33]

Compared to other explosives, TNT has a higher association constant with soil, meaning it adheres more with soil than with water. Conversely, other explosives, such as RDX and HMX with low association constants (ranging from 0.06 to 7.3 L/kg and 0 to 1.6 L/kg respectively) can move more rapidly in water.[35]

Chemical breakdown[edit]

TNT is a reactive molecule and is particularly prone to react with reduced components of sediments or photodegradation in the presence of sunlight. TNT is thermodynamically and kinetically capable of reacting with a wide number of components of many environmental systems. This includes wholly abiotic reactants, like photons, hydrogen sulfide, Fe2+, or microbial communities, both oxic and anoxic.[citation needed]

Soils with high clay contents or small particle sizes and high total organic carbon content have been shown to promote TNT transformation. Possible TNT transformations include reduction of one, two, or three nitro-moieties to amines and coupling of amino transformation products to form dimers. Formation of the two monoamino transformation products, 2-ADNT and 4-ADNT are energetically favored, and therefore are observed in contaminated soils and ground water. The diamino products are energetically less favorable, and even less likely are the triamino products.[citation needed]

The transformation of TNT is significantly enhanced under anaerobic conditions as well as under highly reducing conditions. TNT transformations in soils can occur both biologically and abiotically.[40]

Photolysis is a major process that impacts the transformation of energetic compounds. The alteration of a molecule in photolysis occurs in the presence of direct absorption of light energy by the transfer of energy from a photosensitized compound. Phototransformation of TNT "results in the formation of nitrobenzenes, benzaldehydes, azodicarboxylic acids, and nitrophenols, as a result of the oxidation of methyl groups, reduction of nitro groups, and dimer formation."[35]

Evidence of the photolysis of TNT has been seen due to the color change to pink of the wastewaters when exposed to sunlight. Photolysis was more rapid in river water than in distilled water. Ultimately, photolysis affects the fate of TNT primarily in the aquatic environment but could also affect the reaction when exposed to sunlight on the soil surface.[40]

Biodegradation[edit]

The ligninolytic physiological phase and manganese peroxidase system of fungi can cause a very limited amount of mineralization of TNT in a liquid culture; though not in soil. An organism capable of the remediation of large amounts of TNT in soil has yet to be discovered.[41] Both wild and transgenic plants can phytoremediate explosives from soil and water.[42]

TNT in popular culture[edit]

  • In the game Angry Birds, TNT is shown as a wooden box, which when struck, explodes.
  • In the game Minecraft, TNT is shown as many red dynamite sticks packaged together. TNT in Minecraft is crafted from sand and gunpowder, and explodes with a delay after being ignited with fire.
  • In the game Donkey Kong Country and its sequels, wooden barrels filled with TNT can be thrown at enemies to cause an explosion. TNT barrels can also be used to break through walls and access hidden areas.
  • In the Crash Bandicoot games, TNT Boxes are boxes that will kill the player if they spin into them, but jumping on them will begin a countdown that will explode the box.

See also[edit]

  • TNT equivalent
  • RE factor
  • List of explosives used during World War II
  • Dynamite
  • IMX-101
  • Table of explosive detonation velocities
  • Phlegmatized
  • Environmental fate of TNT

References[edit]

  1. ^ 2,4,6-Trinitrotoluene. inchem.org[dead link]
  2. ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0641". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ a b "2,4,6-Trinitrotoluene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ "Trinitrotoluene". Merriam-Webster Dictionary.
  5. ^ "Trinitrotoluene". Dictionary.com Unabridged. Random House.
  6. ^ Wilbrand, J. (1863). "Notiz über Trinitrotoluol". Annalen der Chemie und Pharmacie. 128 (2): 178–179. doi:10.1002/jlac.18631280206.
  7. ^ Peter O. K. Krehl (2008). History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. Springer Science & Business Media. p. 404. ISBN 978-3-540-30421-0.
  8. ^ a b Brown GI (1998). The Big Bang: a History of Explosives. Sutton Publishing. pp. 151–153. ISBN 978-0-7509-1878-7.
  9. ^ Fairfield AP (1921). Naval Ordnance. Lord Baltimore Press. pp. 49–52.
  10. ^ Urbanski T (1964). Chemistry and Technology of Explosives. 1. Pergamon Press. pp. 389–91. ISBN 978-0-08-010238-2.
  11. ^ Miller, J. S.; Johansen, R. T. (1976). "Fracturing Oil Shale with Explosives for In Situ Recovery" (PDF). Shale Oil, Tar Sand and Related Fuel Sources: 151. Bibcode:1976sots.rept...98M. Retrieved 27 March 2015.
  12. ^ Campbell J (1985). Naval weapons of World War Two. London: Conway Maritime Press. p. 100. ISBN 978-0-85177-329-2.
  13. ^ U.S. Explosive Ordnance, Bureau of Ordnance. Washington, D.C.: U.S. Department of the Navy. 1947. p. 580.
  14. ^ "Explosives - Compounds". www.globalsecurity.org.
  15. ^ Military Specification MIL-C-401
  16. ^ Cooper PW (1996). Explosives Engineering. Wiley-VCH. ISBN 978-0-471-18636-6.
  17. ^ DEPARTMENT OF THE TREASURY:Bureau of Alcohol, Tobacco and Firearms GlobalSecurity.org Retrieved 2011-12-02
  18. ^ [secondary source] webpages:submarine torpedo explosive Retrieved 2011-12-02
  19. ^ scribd.com website showing copy of a North American Intelligence document see:page 167 Retrieved 2011-12-02
  20. ^ Furman, David; Kosloff, Ronnie; Dubnikova, Faina; Zybin, Sergey V.; Goddard, William A.; Rom, Naomi; Hirshberg, Barak; Zeiri, Yehuda (6 March 2014). "Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms". Journal of the American Chemical Society. American Chemical Society (ACS). 136 (11): 4192–4200. doi:10.1021/ja410020f. ISSN 0002-7863.
  21. ^ Merck Index, 13th Edition, 9801
  22. ^ "NIST Guide to SI Units - Appendix B8. Factors for Units". February 3, 2006. Archived from the original on 2006-02-03.
  23. ^ Babrauskas, Vytenis (2003). Ignition Handbook. Issaquah, WA: Fire Science Publishers/Society of Fire Protection Engineers. p. 453. ISBN 978-0-9728111-3-2.
  24. ^ Grad, Paul (April 2013). "Quantum clusters serve as ultra-sensitive detectors". Chemical Engineering.
  25. ^ "The Canary Girls: The workers the war turned yellow". BBC News. 2017-05-20. Retrieved 2021-02-07.
  26. ^ Toxicological Profile for 2,4,6-Trinitrotoluene. atsdr.cdc.gov
  27. ^ "2,4,6-Trinitrotoluene". www.nlm.nih.gov.
  28. ^ "2,4,6-Trinitrotoluene" (PDF). Agency for Toxic Substances and Disease Registry. Retrieved 2010-05-17.
  29. ^ Akhavan J (2004). The Chemistry of Explosives. Royal Society of Chemistry. pp. 11–. ISBN 978-0-85404-640-9.
  30. ^ "Explosive & Propellant Additives". islandgroup.com. Archived from the original on 2016-03-04. Retrieved 2014-06-07.
  31. ^ "Explosives and the Environment". GlobalSecurity.org. Retrieved 11 February 2011.
  32. ^ Yinon, Jehuda (1990). Toxicity and metabolism of explosives. CRC Press. p. 176. ISBN 0-8493-5128-6.
  33. ^ a b Esteve-Núñez A, Caballero A, Ramos JL (2001). "Biological degradation of 2,4,6-trinitrotoluene". Microbiol. Mol. Biol. Rev. 65 (3): 335–52, table of contents. doi:10.1128/MMBR.65.3.335-352.2001. PMC 99030. PMID 11527999.
  34. ^ Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010). "Application of advanced oxidation processes for TNT removal: A review". J. Hazard. Mater. 178 (1–3): 10–28. doi:10.1016/j.jhazmat.2010.02.042. PMID 20347218.
  35. ^ a b c d e Pichte J (2012). "Distribution and Fate of Military Explosives and Propellants in Soil: A Review". Applied and Environmental Soil Science. 2012: 1–33. doi:10.1155/2012/617236.
  36. ^ Brannon JM, Price CB, Yost SL, Hayes C, Porter B (2005). "Comparison of environmental fate and transport process descriptors of explosives in saline and freshwater systems". Mar. Pollut. Bull. 50 (3): 247–51. doi:10.1016/j.marpolbul.2004.10.008. PMID 15757688.
  37. ^ Halasz A, Groom C, Zhou E, Paquet L, Beaulieu C, Deschamps S, Corriveau A, Thiboutot S, Ampleman G, Dubois C, Hawari J (2002). "Detection of explosives and their degradation products in soil environments". J Chromatogr A. 963 (1–2): 411–8. doi:10.1016/S0021-9673(02)00553-8. PMID 12187997.
  38. ^ Douglas TA, Johnson L, Walsh M, Collins C (2009). "A time series investigation of the stability of nitramine and nitroaromatic explosives in surface water samples at ambient temperature". Chemosphere. 76 (1): 1–8. Bibcode:2009Chmsp..76....1D. doi:10.1016/j.chemosphere.2009.02.050. PMID 19329139.
  39. ^ Haderlein SB, Weissmahr KW, Schwarzenbach RP (January 1996). "Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals". Environmental Science & Technology. 30 (2): 612–622. Bibcode:1996EnST...30..612H. doi:10.1021/es9503701.
  40. ^ a b c d e f Pennington JC, Brannon JM (February 2002). "Environmental fate of explosives". Thermochimica Acta. 384 (1–2): 163–172. doi:10.1016/S0040-6031(01)00801-2.
  41. ^ Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000). "Microbial degradation of explosives: biotransformation versus mineralization". Appl. Microbiol. Biotechnol. 54 (5): 605–18. doi:10.1007/s002530000445. PMID 11131384. S2CID 22362850.
  42. ^ Panz K, Miksch K (2012). "Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants". J. Environ. Manage. 113: 85–92. doi:10.1016/j.jenvman.2012.08.016. PMID 22996005.

External links[edit]

  • Dynamite and TNT at The Periodic Table of Videos (University of Nottingham)
  • free software website sonicbomb.com containing a video bank and additionally pages for discussion of nuclear device testing[permanent dead link] Video showing detonation [Published on 2005-12-20] : Operation Blowdown
  • youtube.com video showing the shockwave and typical black smoke cloud from detonation of 160 kilograms of pure TNT
  • CDC – NIOSH Pocket Guide to Chemical Hazards