Trichodesmium


Trichodesmium contortum
Trichodesmium erythraeum
Trichodesmium hildebrandtii
Trichodesmium radians
Trichodesmium tenue
Trichodesmium thiebautii

Trichodesmium, also called sea sawdust, is a genus of filamentous cyanobacteria. They are found in nutrient poor tropical and subtropical ocean waters (particularly around Australia and in the Red Sea, where they were first described by Captain Cook). Trichodesmium is a diazotroph; that is, it fixes atmospheric nitrogen into ammonium, a nutrient used by other organisms. Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen fixation in marine systems globally.[1] Trichodesmium is the only known diazotroph able to fix nitrogen in daylight under aerobic conditions without the use of heterocysts.[2]

Trichodesmium can live as individual filaments, with tens to hundreds of cells strung together, or in colonies consisting of tens to hundreds of filaments clustered together.[3] These colonies are visible to the naked eye and sometimes form blooms, which can be extensive on surface waters. These large blooms led to widespread recognition as "sea sawdust/straw"; in fact, the Red Sea gets most of its eponymous colouration from the corresponding pigment in Trichodesmium erythraeum. Colonies of Trichodesmium provide a pseudobenthic substrate for many small oceanic organisms including bacteria, diatoms, dinoflagellates, protozoa, and copepods (which are its primary predator); in this way, the genus can support complex microenvironments.

Trichodesmium erythraeum – described by Ehrenberg in 1830.[4] T. erythraeum is the species responsible for discoloring the Red Sea during blooms. This is the only sequenced genome in the genus thus far and is the focus of most laboratory studies (Trichodesmium IMS 101).

Like most cyanobacteria, Trichodesmium has a gram negative cell wall. However, unlike other aerobic diazotrophs, heterocysts (structures found in cyanobacteria which protect nitrogenase from oxygenation) are lacking in Trichodesmium. This is a unique characteristic among aerobic diazotrophs which fix nitrogen in daylight. Photosynthesis occurs using phycoerythrin - light-harvesting phycobiliprotein which is normally found within heterocysts in other diazotrophs.

Instead of having localized stacks of thylakoids, Trichodesmium has unstacked thylakoids found throughout the cell. Trichodesmium is highly vacuolated and the content and size of the vacuoles shows diurnal variation. Large gas vesicles (either along the periphery as seen in T. erythaeum or found distributed throughout the cell as seen in T. thiebautii) allow Trichodesmium to regulate buoyancy in the water column. These gas vesicles can withstand high pressure, presumably those up to 100 – 200 m in the water column, allowing Trichodesmium to move vertically through the water column harvesting nutrients.[7]


Illustration
Trichodesmium erythraeum bloom, between Vanuatu and New Caledonia, SW Pacific Ocean.
Examples of Trichodesmium colonies sorted into morphological classes
(A) radial puffs, (B) non-radial puffs, (C) tufts.[11]
Colonies of marine cyanobacteria Trichodesmium
interact with other bacteria to acquire iron from dust
a. The N2-fixing Trichodesmium spp., which commonly occurs in tropical and sub-tropical waters, is of large environmental significance in fertilizing the ocean with important nutrients.
b. Trichodesmium can establish massive blooms in nutrient poor ocean regions with high dust deposition, partly due to their unique ability to capture dust, center it, and subsequently dissolve it.
c. Proposed dust-bound Fe acquisition pathway: Bacteria residing within the colonies produce siderophores (C-I) that react with the dust particles in the colony core and generate dissolved Fe (C-II). This dissolved Fe, complexed by siderophores, is then acquired by both Trichodesmium and its resident bacteria (C-III), resulting in a mutual benefit to both partners of the consortium.[12]