De Wikipedia, la enciclopedia libre
  (Redirigido desde el punto de acumulación )
Saltar a navegación Saltar a búsqueda

En matemáticas , un punto límite (o punto de clúster o punto de acumulación ) de un conjunto en un espacio topológico es un punto que puede ser "aproximada" por puntos de en el sentido de que cada barrio de con respecto a la topología en también contiene un punto de otro que no sea él mismo. Un punto límite de un conjunto no tiene por qué ser en sí mismo un elemento de

Los puntos límite no deben confundirse con los puntos adherentes para los que cada vecindario de contiene un punto de . A diferencia de los puntos límite, este punto de puede ser él mismo. Un punto límite se puede caracterizar como un punto adherente que no es un punto aislado .

Los puntos límite tampoco deben confundirse con los puntos límite . Por ejemplo, es un punto límite (pero no un punto límite) del conjunto en con topología estándar . Sin embargo, es un punto límite (aunque no un punto límite) del intervalo en con topología estándar (para un ejemplo menos trivial de un punto límite, consulte la primera subtítulo). [1] [2] [3]

Este concepto generaliza provechosamente la noción de límite y es la base de conceptos como conjunto cerrado y cierre topológico . De hecho, un conjunto se cierra si y solo si contiene todos sus puntos límite, y la operación de cierre topológico puede considerarse como una operación que enriquece un conjunto al unirlo con sus puntos límite.

Con respecto a la topología euclidiana habitual , la secuencia de números racionales no tiene límite (es decir, no converge), pero tiene dos puntos de acumulación (que aquí se consideran puntos límite ), a saber. -1 y +1. Así, pensando en conjuntos, estos puntos son puntos límite del conjunto

También existe un concepto estrechamente relacionado para las secuencias . Un punto de agrupamiento (o punto de acumulación ) de una secuencia en un espacio topológico es un punto tal que, para cada vecindario de hay infinitos números naturales tales que este concepto se generaliza a redes y filtros .

Definición [ editar ]

Sea un subconjunto de un espacio topológico Un punto en es un punto límite (o punto de agrupación o punto de acumulación ) de si cada vecindario de contiene al menos un punto de diferente de sí mismo.

No importa si restringimos la condición a vecindarios abiertos solamente. A menudo es conveniente usar la forma de "vecindad abierta" de la definición para mostrar que un punto es un punto límite y usar la forma de "vecindad general" de la definición para derivar hechos de un punto límite conocido.

Si es un espacio (que son todos los espacios métricos ), entonces es un punto límite de si y solo si cada vecindario de contiene infinitos puntos de De hecho, los espacios se caracterizan por esta propiedad. T 1 {\displaystyle T_{1}}

Si es un espacio de Fréchet-Urysohn (que son todos los espacios métricos y los primeros espacios contables ), entonces es un punto límite de si y solo si hay una secuencia de puntos en cuyo límite es De hecho, los espacios de Fréchet-Urysohn se caracterizan por esta propiedad.

El conjunto de puntos límite de se denomina conjunto derivado de

Tipos de punto límite [ editar ]

Si cada vecindario de contiene un número infinito de puntos de, entonces hay un tipo específico de punto límite llamado punto de acumulación ω de

Si cada vecindario de contiene incontables puntos de, entonces hay un tipo específico de punto límite llamado punto de condensación de

Si cada vecindario de satisface, entonces hay un tipo específico de punto límite llamado punto de acumulación completo de

Para secuencias y redes [ editar ]

Una secuencia que enumera todos los números racionales positivos . Cada número real positivo es un punto de agrupación.

En un espacio topológico se dice que un punto es un punto de agrupamiento (o punto de acumulación ) de una secuencia si, para cada vecindario de hay infinitos tales que Es equivalente a decir que para cada vecindario de y cada hay algunos tales que Si es un espacio métrico o un primer espacio contable (o, más generalmente, un espacio de Fréchet-Urysohn ), entonces es un punto de agrupación de si y solo si es un límite de alguna subsecuencia de El conjunto de todos los puntos de agrupación de una secuencia a veces se denomina conjunto límite .

Tenga en cuenta que ya existe la noción de límite de una secuencia para significar un punto al que la secuencia converge (es decir, cada vecindario de contiene todos, excepto un número finito de elementos de la secuencia). Es por eso que no usamos el término punto límite de una secuencia como sinónimo de punto de acumulación de la secuencia.

El concepto de red generaliza la idea de secuencia . Una red es una función donde hay un conjunto dirigido y es un espacio topológico. Se dice que un punto es un punto de clúster (o punto de acumulación ) de la red si, para cada vecindario de y cada uno de los que hay , de manera equivalente, si tiene una subred que converge a los puntos de Cluster en las redes abarcan la idea de ambos puntos de condensación y puntos de acumulación ω. La agrupación en clústeres y los puntos límite también se definen para los filtros .

Relación entre el punto de acumulación de una secuencia y el punto de acumulación de un conjunto [ editar ]

Cada secuencia en es, por definición, solo un mapa para que su imagen se pueda definir de la manera habitual.

  • Si existe un elemento que ocurre infinitas veces en la secuencia, es un punto de acumulación de la secuencia. Pero no es necesario que sea un punto de acumulación del conjunto correspondiente Por ejemplo, si la secuencia es la secuencia constante con valor que tenemos y es un punto aislado de y no un punto de acumulación de
  • Si ningún elemento aparece infinitas veces en la secuencia, por ejemplo, si todos los elementos son distintos, cualquier punto de acumulación de la secuencia es un punto de acumulación del conjunto asociado.

Por el contrario, dado un conjunto infinito contable en podemos enumerar todos los elementos de de muchas formas, incluso con repeticiones, y así asociar con él muchas secuencias que satisfagan

  • Cualquier punto de acumulación de es un punto de acumulación de cualquiera de las secuencias correspondientes (porque cualquier vecindad del punto contendrá una cantidad infinita de elementos de y, por lo tanto, también una cantidad infinita de términos en cualquier secuencia asociada).
  • Un punto que no es un punto de -acumulación de no puede ser un punto de acumulación de ninguna de las secuencias asociadas sin repeticiones infinitas (porque tiene una vecindad que contiene solo un número finito (posiblemente incluso ninguno) de puntos de y esa vecindad solo puede contener un número finito de términos de tales secuencias).

Propiedades [ editar ]

Cada límite de una secuencia no constante es un punto de acumulación de la secuencia. Y por definición, cada punto límite es un punto adherente .

El cierre de un conjunto es una unión disjunta de sus puntos límite y puntos aislados :

Un punto es un punto límite de si y solo si está en el cierre de

Si usamos para denotar el conjunto de puntos límite de entonces tenemos la siguiente caracterización del cierre de : El cierre de es igual a la unión de y Este hecho a veces se toma como la definición de cierre .

Un corolario de este resultado nos da una caracterización de conjuntos cerrados: un conjunto es cerrado si y solo si contiene todos sus puntos límite.

Ningún punto aislado es un punto límite de ningún conjunto.

Un espacio es discreto si y solo si ningún subconjunto de tiene un punto límite.

Si un espacio tiene la topología trivial y es un subconjunto de con más de un elemento, entonces todos los elementos de son puntos límite de Si es un singleton, entonces cada punto de es un punto límite de

Ver también [ editar ]

  • Punto adherente  : un punto que pertenece al cierre de algún subconjunto de un espacio topológico.
  • Punto de condensación
  • Filtro convergente
  • Conjunto derivado (matemáticas)
  • Filtros en topología  : uso de filtros para describir y caracterizar todas las nociones y resultados topológicos básicos.
  • Punto aislado
  • Límite de una función  : punto al que convergen las funciones en la topología
  • Límite de una secuencia  : valor al que "tienden" los términos de una secuencia.
  • Límite posterior

Citas [ editar ]

  1. ^ "Diferencia entre el punto límite y el punto límite" . 2021-01-13.
  2. ^ "Qué es un punto límite" . 2021-01-13.
  3. ^ "Ejemplos de puntos de acumulación" . 2021-01-13.

Referencias [ editar ]

  • "Punto límite de un conjunto" , Enciclopedia de Matemáticas , EMS Press , 2001 [1994]