Densidad natural


De Wikipedia, la enciclopedia libre
  (Redirigido desde Densidad asintótica superior )
Saltar a navegación Saltar a búsqueda

En teoría de números , la densidad natural (también conocida como densidad asintótica o densidad aritmética ) es un método para medir qué tan "grande" es un subconjunto del conjunto de números naturales . Se basa principalmente en la probabilidad de encontrar miembros del subconjunto deseado al peinar el intervalo [1,  n ] a medida que n crece.

Intuitivamente, se piensa que hay más enteros positivos que cuadrados perfectos , ya que todo cuadrado perfecto ya es positivo, y además existen muchos otros enteros positivos. Sin embargo, el conjunto de números enteros positivos no es de hecho mayor que el conjunto de cuadrados perfectos: ambos conjuntos son infinitos y contables y, por lo tanto, se pueden poner en correspondencia uno a uno . Sin embargo, si se pasa por los números naturales, los cuadrados se vuelven cada vez más escasos. La noción de densidad natural hace que esta intuición sea precisa para muchos, pero no todos, subconjuntos de los naturales (Ver densidad de Schnirelmann , que es similar a la densidad natural pero definida para todos los subconjuntos de ).

Si se selecciona aleatoriamente un número entero del intervalo [1,  n ], entonces la probabilidad de que pertenezca a A es la razón entre el número de elementos de A en [1,  n ] y el número total de elementos en [1,  n ]. Si esta probabilidad tiende a algún límite como n tiende a infinito, entonces este límite se conoce como la densidad asintótica de A . Esta noción se puede entender como una especie de probabilidad de elegir un número de la serie A . De hecho, la densidad asintótica (así como algunos otros tipos de densidades) se estudia en la teoría probabilística de números .

Definición

Un subconjunto A de enteros positivos tiene densidad natural α si la proporción de elementos de A entre todos los números naturales de 1 an converge a α cuando n tiende a infinito.

Más explícitamente, si uno define para cualquier número natural n la función de conteo a ( n ) como el número de elementos de A menor o igual que n , entonces la densidad natural de A siendo α significa exactamente que [1]

a ( n ) / n → α cuando n → ∞.

De la definición se deduce que si un conjunto A tiene una densidad natural α entonces 0 ≤ α ≤ 1.

Densidad asintótica superior e inferior

Sea un subconjunto del conjunto de números naturales para cualquier put y .

Defina la densidad asintótica superior (también llamada "densidad superior") de por

donde lim sup es el límite superior . también se conoce simplemente como la densidad superior de

De manera similar, la densidad asintótica más baja (también llamada "densidad más baja") de , se define por

donde lim inf es el límite inferior . Se puede decir que tiene densidad asintótica si , en cuyo caso es igual a este valor común.

Esta definición se puede reformular de la siguiente manera:

si existe este límite. [2]

Se puede probar que las definiciones implican que lo siguiente también es válido. Si se escribiera un subconjunto de como una secuencia creciente indexada por los números naturales

entonces

y si existe el límite.

Una noción algo más débil de densidad es la densidad de Banach superior ; dado un conjunto , definir como

Propiedades y ejemplos

  • Si d ( A ) existe para algún conjunto A , y A c denota su conjunto complementario con respecto a entonces d ( A c ) = 1 -  d ( A ).
    • Corolario:
  • Si y existen, entonces
  • Si es el conjunto de todos los cuadrados, entonces d ( A ) = 0.
  • Si es el conjunto de todos los números pares, entonces d ( A ) = 0.5. De manera similar, para cualquier progresión aritmética obtenemos
  • El conjunto de todos los números enteros libres de cuadrados tiene densidad Más generalmente, el conjunto de todos los números n- ésimo libres de potencia para cualquier n natural tiene densidad donde es la función zeta de Riemann .
  • El conjunto de números abundantes tiene una densidad distinta de cero. [3] Marc Deléglise demostró en 1998 que la densidad del conjunto de números abundantes y números perfectos está entre 0,2474 y 0,2480. [4]
  • El conjunto
de números cuya expansión binaria contiene un número impar de dígitos es un ejemplo de un conjunto que no tiene una densidad asintótica, ya que la densidad superior de este conjunto es
mientras que su menor densidad es
  • El conjunto de números cuya expansión decimal comienza con el dígito 1 tampoco tiene densidad natural: la densidad más baja es 1/9 y la densidad superior es 5/9. [1] (Ver la ley de Benford ).
  • Considere una secuencia de equidistributed en y definir una familia monótona de conjuntos:
Entonces, por definición, para todos .

Otras funciones de densidad

Otras funciones de densidad en subconjuntos de los números naturales pueden definirse de forma análoga. Por ejemplo, la densidad logarítmica de un conjunto A se define como el límite (si existe)

Las densidades logarítmicas superior e inferior también se definen de forma análoga.

Para el conjunto de múltiplos de una secuencia entera, el teorema de Davenport-Erd establece que la densidad natural, cuando existe, es igual a la densidad logarítmica. [5]

Notas

  1. a b Tenenbaum (1995) p.261
  2. ^ Nathanson (2000) págs. 256-257
  3. ^ Hall, Richard R .; Tenenbaum, Gérald (1988). Divisores . Cambridge Tracts in Mathematics. 90 . Cambridge: Cambridge University Press . pags. 95. ISBN 978-0-521-34056-4. Zbl  0653.10001 .
  4. ^ Deléglise, Marc (1998). "Límites para la densidad de números enteros abundantes" . Matemática experimental . 7 (2): 137–143. CiteSeerX 10.1.1.36.8272 . doi : 10.1080 / 10586458.1998.10504363 . ISSN 1058-6458 . Señor 1677091 . Zbl 0923.11127 .    
  5. ^ Hall, Richard R. (1996), Conjuntos de múltiplos , Cambridge Tracts in Mathematics, 118 , Cambridge University Press, Cambridge, Teorema 0.2, p. 5, doi : 10.1017 / CBO9780511566011 , ISBN 978-0-521-40424-2, MR  1414678

Ver también

  • Densidad de Dirichlet

Referencias

  • Nathanson, Melvyn B. (2000). Métodos elementales en teoría de números . Textos de Posgrado en Matemáticas. 195 . Springer-Verlag . ISBN 978-0387989129. Zbl  0953.11002 .
  • Niven, Ivan (1951). "La densidad asintótica de secuencias" . Boletín de la Sociedad Matemática Estadounidense . 57 (6): 420–434. doi : 10.1090 / s0002-9904-1951-09543-9 . Señor  0044561 . Zbl  0044.03603 .
  • Steuding, Jörn (2002). "Teoría probabilística de números" (PDF) . Archivado desde el original (PDF) el 22 de diciembre de 2011 . Consultado el 16 de noviembre de 2014 .
  • Tenenbaum, Gérald (1995). Introducción a la teoría de números analítica y probabilística . Estudios de Cambridge en Matemáticas Avanzadas. 46 . Prensa de la Universidad de Cambridge . Zbl  0831.11001 .

Este artículo incorpora material de densidad asintótica en PlanetMath , que tiene la licencia Creative Commons Attribution / Share-Alike License .

Obtenido de " https://en.wikipedia.org/w/index.php?title=Natural_density&oldid=1030909459 "