De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

En la teoría de categorías , un coequalizador (o coecualizador ) es una generalización de un cociente por una relación de equivalencia con objetos en una categoría arbitraria . Es la construcción categórica dual al ecualizador .

Definición [ editar ]

A coequalizer es un colimit del diagrama que consta de dos objetos X y Y y dos paralelas morfismos f , g  : XY .

Más explícitamente, un coecualizador se puede definir como un objeto Q junto con un morfismo q  : YQ tal que qf = qg . Además, el par ( Q , q ) debe ser universal en el sentido de que dado cualquier otro par ( Q ′, q ′) existe un morfismo único u  : QQ ′ tal que uq = q ′. Esta información puede ser capturada por los siguientesdiagrama conmutativo :

Coequalizer-01.png

Como ocurre con todas las construcciones universales , un coequalizador, si existe, es único hasta un isomorfismo único (por eso, por abuso del lenguaje, a veces se habla del coequalizador de dos flechas paralelas).

Se puede demostrar que un coequalizador q es un epimorfismo en cualquier categoría.

Ejemplos [ editar ]

  • For abelian groups the coequalizer is particularly simple. It is just the factor group Y / im(fg). (This is the cokernel of the morphism fg; see the next section).
  • In the category of topological spaces, the circle object can be viewed as the coequalizer of the two inclusion maps from the standard 0-simplex to the standard 1-simplex.
  • Coequalizers can be large: There are exactly two functors from the category 1 having one object and one identity arrow, to the category 2 with two objects and one non-identity arrow going between them. The coequalizer of these two functors is the monoid of natural numbers under addition, considered as a one-object category. In particular, this shows that while every coequalizing arrow is epic, it is not necessarily surjective.

Properties[edit]

  • Every coequalizer is an epimorphism.
  • In a topos, every epimorphism is the coequalizer of its kernel pair.

Special cases[edit]

In categories with zero morphisms, one can define a cokernel of a morphism f as the coequalizer of f and the parallel zero morphism.

In preadditive categories it makes sense to add and subtract morphisms (the hom-sets actually form abelian groups). In such categories, one can define the coequalizer of two morphisms f and g as the cokernel of their difference:

coeq(f, g) = coker(gf).

A stronger notion is that of an absolute coequalizer, this is a coequalizer that is preserved under all functors. Formally, an absolute coequalizer of a pair of parallel arrows f, g : XY in a category C is a coequalizer as defined above, but with the added property that given any functor F: CD, F(Q) together with F(q) is the coequalizer of F(f) and F(g) in the category D. Split coequalizers are examples of absolute coequalizers.

See also[edit]

  • Coproduct
  • Pushout

Notes[edit]

  1. ^ Barr, Michael; Wells, Charles (1998). Category theory for computing science (PDF). p. 278. Archived from the original (PDF) on March 4, 2016. Retrieved July 25, 2013. CS1 maint: discouraged parameter (link)

References[edit]

  • Saunders Mac Lane: Categories for the Working Mathematician, Second Edition, 1998.
  • Coequalizers - page 65
  • Absolute coequalizers - page 149

External links[edit]

  • Interactive Web page which generates examples of coequalizers in the category of finite sets. Written by Jocelyn Paine.