Natural science


Natural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation.[1] Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances.

Natural science can be divided into two main branches: life science and physical science. Life science is alternatively known as biology, and physical science is subdivided into branches: physics, chemistry, earth science, and astronomy. These branches of natural science may be further divided into more specialized branches (also known as fields). As empirical sciences, natural sciences use tools from the formal sciences, such as mathematics and logic, converting information about nature into measurements which can be explained as clear statements of the "laws of nature".[2]

Modern natural science succeeded more classical approaches to natural philosophy, usually traced to Taoist traditions in Asia and in Europe to ancient Greece. Galileo, Descartes, Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain necessary in natural science.[3] Systematic data collection, including discovery science, succeeded natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on.[4] Today, "natural history" suggests observational descriptions aimed at popular audiences.[5]

Philosophers of science have suggested several criteria, including Karl Popper's controversial falsifiability criterion, to help them differentiate scientific endeavors from non-scientific ones. Validity, accuracy, and quality control, such as peer review and repeatability of findings, are amongst the most respected criteria in today's global scientific community.

In natural science, impossibility assertions come to be widely accepted as overwhelmingly probable rather than considered proved to the point of being unchallengeable. The basis for this strong acceptance is a combination of extensive evidence of something not occurring, combined with an underlying theory, very successful in making predictions, whose assumptions lead logically to the conclusion that something is impossible. While an impossibility assertion in natural science can never be absolutely proved, it could be refuted by the observation of a single counterexample. Such a counterexample would require that the assumptions underlying the theory that implied the impossibility be re-examined.

This field encompasses a diverse set of disciplines that examines phenomena related to living organisms. The scale of study can range from sub-component biophysics up to complex ecologies. Biology is concerned with the characteristics, classification and behaviors of organisms, as well as how species were formed and their interactions with each other and the environment.


The natural sciences seek to understand how the world and universe around us works. There are five major branches: chemistry, astronomy, Earth science, physics, and biology.
Onion (Allium) cells in different phases of the cell cycle. Growth in an 'organism' is carefully controlled by regulating the cell cycle.
This structural formula for molecule caffeine shows a graphical representation of how the atoms are arranged.
The orbitals of the hydrogen atom are descriptions of the probability distributions of an electron bound to a proton. Their mathematical descriptions are standard problems in quantum mechanics, an important branch of physics.
Uncrewed and crewed spacecraft missions have been used to image distant locations within the Solar System, such as this Apollo 11 view of Daedalus crater on the far side of the Moon.
The materials paradigm represented as a tetrahedron
Aristotle's view of inheritance, as a model of the transmission of patterns of movement of the body fluids from parents to child, and of Aristotelian form from the father
Plato (left) and Aristotle in a 1509 painting by Raphael. Plato rejected inquiry into natural philosophy as against religion, while his student, Aristotle, created a body of work on the natural world that influenced generations of scholars.
Isaac Newton is widely regarded as one of the most influential scientists of all time.
The Michelson–Morley experiment was used to disprove that light propagated through a luminiferous aether. This 19th-century concept was then superseded by Albert Einstein's special theory of relativity.