Insect


Insects (from Latin insectum) are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of jointed legs, compound eyes and one pair of antennae. Insects are the most diverse group of animals; they include more than a million described species and represent more than half of all known living organisms.[1][2] The total number of extant species is estimated at between six and ten million;[1][3][4] potentially over 90% of the animal life forms on Earth are insects.[4][5] Insects may be found in nearly all environments, although only a small number of species reside in the oceans, which are dominated by another arthropod group, crustaceans, which recent research has indicated insects are nested within.

Nearly all insects hatch from eggs. Insect growth is constrained by the inelastic exoskeleton and development involves a series of molts. The immature stages often differ from the adults in structure, habit and habitat, and can include a passive pupal stage in those groups that undergo four-stage metamorphosis. Insects that undergo three-stage metamorphosis lack a pupal stage and adults develop through a series of nymphal stages.[6] The higher level relationship of the insects is unclear. Fossilized insects of enormous size have been found from the Paleozoic Era, including giant dragonflies with wingspans of 55 to 70 cm (22 to 28 in). The most diverse insect groups appear to have coevolved with flowering plants.

Adult insects typically move about by walking, flying, or sometimes swimming. As it allows for rapid yet stable movement, many insects adopt a tripedal gait in which they walk with their legs touching the ground in alternating triangles, composed of the front and rear on one side with the middle on the other side. Insects are the only invertebrates to have evolved flight, and all flying insects derive from one common ancestor. Many insects spend at least part of their lives under water, with larval adaptations that include gills, and some adult insects are aquatic and have adaptations for swimming. Some species, such as water striders, are capable of walking on the surface of water. Insects are mostly solitary, but some, such as certain bees, ants and termites, are social and live in large, well-organized colonies. Some insects, such as earwigs, show maternal care, guarding their eggs and young. Insects can communicate with each other in a variety of ways. Male moths can sense the pheromones of female moths over great distances. Other species communicate with sounds: crickets stridulate, or rub their wings together, to attract a mate and repel other males. Lampyrid beetles communicate with light.

Humans regard certain insects as pests, and attempt to control them using insecticides, and a host of other techniques. Some insects damage crops by feeding on sap, leaves, fruits, or wood. Some species are parasitic, and may vector diseases. Some insects perform complex ecological roles; blow-flies, for example, help consume carrion but also spread diseases. Insect pollinators are essential to the life cycle of many flowering plant species on which most organisms, including humans, are at least partly dependent; without them, the terrestrial portion of the biosphere would be devastated.[7] Many insects are considered ecologically beneficial as predators and a few provide direct economic benefit. Silkworms produce silk and honey bees produce honey and both have been domesticated by humans. Insects are consumed as food in 80% of the world's nations, by people in roughly 3000 ethnic groups.[8][9] Human activities also have effects on insect biodiversity.


Evolution has produced enormous variety in insects. Pictured are some possible shapes of antennae.
A pie chart of described eukaryote species, showing just over half of these to be insects
Insects with population trends documented by the International Union for Conservation of Nature, for orders Collembola, Hymenoptera, Lepidoptera, Odonata, and Orthoptera. Of 203 insect species that had such documented population trends in 2013, 33% were in decline.[47]
Insect morphology
A- Head B- Thorax C- Abdomen
  1. antenna
  2. ocelli (lower)
  3. ocelli (upper)
  4. compound eye
  5. brain (cerebral ganglia)
  6. prothorax
  7. dorsal blood vessel
  8. tracheal tubes (trunk with spiracle)
  9. mesothorax
  10. metathorax
  11. forewing
  12. hindwing
  13. mid-gut (stomach)
  14. dorsal tube (Heart)
  15. ovary
  16. hind-gut (intestine, rectum & anus)
  17. anus
  18. oviduct
  19. nerve chord (abdominal ganglia)
  20. Malpighian tubes
  21. tarsal pads
  22. claws
  23. tarsus
  24. tibia
  25. femur
  26. trochanter
  27. fore-gut (crop, gizzard)
  28. thoracic ganglion
  29. coxa
  30. salivary gland
  31. subesophageal ganglion
  32. mouthparts
Stylized diagram of insect digestive tract showing malpighian tubule, from an insect of the order Orthoptera
Bumblebee defecating. Note the contraction of the abdomen to provide internal pressure
The tube-like heart (green) of the mosquito Anopheles gambiae extends horizontally across the body, interlinked with the diamond-shaped wing muscles (also green) and surrounded by pericardial cells (red). Blue depicts cell nuclei.
A pair of grasshoppers mating.
The different forms of the male (top) and female (bottom) tussock moth Orgyia recens is an example of sexual dimorphism in insects.
This southern hawker dragonfly molts its exoskeleton several times during its life as a nymph; shown is the final molt to become a winged adult (eclosion).
Gulf fritillary life cycle, an example of holometabolism.
Most insects have compound eyes and two antennae.
Cricket in garage with familiar call.
A cathedral mound created by termites (Isoptera).
White-lined sphinx moth feeding in flight
Basic motion of the insect wing in insect with an indirect flight mechanism scheme of dorsoventral cut through a thorax segment with
a wings
b joints
c dorsoventral muscles
d longitudinal muscles.
Play media
Spatial and temporal stepping pattern of walking desert ants performing an alternating tripod gait. Recording rate: 500 fps, Playback rate: 10 fps.
The backswimmer Notonecta glauca underwater, showing its paddle-like hindleg adaptation
Perhaps one of the most well-known examples of mimicry, the viceroy butterfly (top) appears very similar to the monarch butterfly (bottom).[128]
European honey bee carrying pollen in a pollen basket back to the hive
Aedes aegypti, a parasite, is the vector of dengue fever and yellow fever
Because they help flowering plants to cross-pollinate, some insects are critical to agriculture. This European honey bee is gathering nectar while pollen collects on its body.
A robberfly with its prey, a hoverfly. Insectivorous relationships such as these help control insect populations.
The common fruit fly Drosophila melanogaster is one of the most widely used organisms in biological research.