De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda

Orthomyxoviridae (ὀρθός, orthós , griego para "recto"; μύξα, mýxa , griego para " moco ") [1] es una familia de virus de ARN de sentido negativo . Incluye siete géneros : Alphainfluenzavirus , Betainfluenzavirus , Deltainfluenzavirus , Gammainfluenzavirus , Isavirus , Thogotovirus y Quaranjavirus . Los primeros cuatro géneros contienen virus que causan influenza en aves (ver también influenza aviar) y mamíferos , incluidos los seres humanos. Los isavirus infectan al salmón ; los togotovirus son arbovirus que infectan a vertebrados e invertebrados (como garrapatas y mosquitos ). [2] [3] [4] Los Quaranjavirus también son arbovirus, que infectan a vertebrados (aves) e invertebrados ( artrópodos ).

Los cuatro géneros de virus de la influenza que infectan a los vertebrados, que se identifican por diferencias antigénicas en su nucleoproteína y proteína de matriz , son los siguientes:

  • El virus de la alfainfluenza infecta a los seres humanos, otros mamíferos y aves, y causa todas las pandemias de gripe
  • Betainfluenzavirus infecta a humanos y focas
  • El virus deltainfluenza infecta a los cerdos y al ganado
  • El gammainfluenzavirus infecta a humanos, cerdos y perros .

Estructura [ editar ]

Estructura del virus de la influenza A

El virión del virus de la influenza es pleomórfico ; la envoltura viral puede presentarse en formas esféricas y filamentosas. En general, la morfología del virus es elipsoidal con partículas de 100 a 120  nm de diámetro o filamentosa con partículas de 80 a 100 nm de diámetro y hasta 20 µm de longitud. [5] Hay aproximadamente 500 proyecciones de superficie en forma de púas distintas en la envoltura, cada una de las cuales se proyecta a 10–14 nm de la superficie con densidades de superficie variables. El pico principal de glucoproteína (HA) está interpuesto de forma irregular por grupos de picos de neuraminidasa (NA), con una proporción de HA a NA de aproximadamente 10 a 1. [6]

La envoltura viral compuesta por una membrana de bicapa lipídica en la que se anclan los picos de glicoproteína encierra las nucleocápsidas ; nucleoproteínas de diferentes clases de tamaño con un bucle en cada extremo; la disposición dentro del virión es incierta. Las proteínas ribonucleares son filamentosas y caen en el rango de 50 a 130 nm de largo y 9 a 15 nm de diámetro con simetría helicoidal.

Genoma [ editar ]

Genomas del virus de la influenza. Los segmentos se traducen en polimerasa (PB1, PB2 y PA), hemaglutinina (HA), neuramindasa (NA), nucleoproteína (NP), proteína de membrana (M) y proteína no estructural (NS).

Los virus de la familia Orthomyxoviridae contienen de seis a ocho segmentos de ARN monocatenario lineal de sentido negativo. Tienen una longitud total del genoma de 10.000 a 14.600 nucleótidos (nt). [7] El genoma de la influenza A , por ejemplo, tiene ocho piezas de ARN de sentido negativo segmentado (13,5 kilobases en total). [8]

Las proteínas mejor caracterizadas del virus de la influenza son la hemaglutinina y la neuraminidasa , dos glicoproteínas grandes que se encuentran en el exterior de las partículas virales. La hemaglutinina es una lectina que media la unión del virus a las células diana y la entrada del genoma viral en la célula diana. [9] En contraste, la neuraminidasa es una enzima involucrada en la liberación del virus de la progenie de las células infectadas, al escindir los azúcares que se unen a las partículas virales maduras. La hemaglutinina (H) y la neuraminidasa (N) proteínas son dianas clave para los anticuerpos y los fármacos antivirales, [10] [11]y se utilizan para clasificar los diferentes serotipos de virus de influenza A, de ahí el H y N en H5N1 .

La secuencia del genoma tiene secuencias terminales repetidas; repetido en ambos extremos. Terminal se repite en el extremo 5 'de 12 a 13 nucleótidos de longitud. Secuencias de nucleótidos del extremo 3 'idénticas; lo mismo en géneros de la misma familia; la mayoría en ARN (segmentos), o en todas las especies de ARN. Terminal se repite en el extremo 3 'de 9 a 11 nucleótidos de longitud. El ácido nucleico encapsidado es únicamente genómico. Cada virión puede contener copias interferentes defectuosas. En la influenza A (H1N1), PB1-F2 se produce a partir de un marco de lectura alternativo en PB1. Los genes M y NS producen dos genes diferentes mediante un empalme alternativo . [12]

Ciclo de replicación [ editar ]

Infección y replicación del virus de la influenza. Los pasos de este proceso se analizan en el texto.

Por lo general, la influenza se transmite de mamíferos infectados a través del aire al toser o estornudar, creando aerosoles que contienen el virus, y de aves infectadas a través de sus excrementos . La influenza también puede transmitirse por saliva , secreciones nasales , heces y sangre . Las infecciones ocurren por contacto con estos fluidos corporales o con superficies contaminadas. Fuera de un huésped, los virus de la gripe pueden permanecer infecciosos durante aproximadamente una semana a la temperatura del cuerpo humano, más de 30 días a 0 ° C (32 ° F) e indefinidamente a temperaturas muy bajas (como los lagos en el noreste de Siberia ). Se pueden inactivar fácilmente con desinfectantes y detergentes..[13][14][15]

The viruses bind to a cell through interactions between its hemagglutinin glycoprotein and sialic acid sugars on the surfaces of epithelial cells in the lung and throat (Stage 1 in infection figure).[16] The cell imports the virus by endocytosis. In the acidic endosome, part of the hemagglutinin protein fuses the viral envelope with the vacuole's membrane, releasing the viral RNA (vRNA) molecules, accessory proteins and RNA-dependent RNA polymerase into the cytoplasm (Stage 2).[17] These proteins and vRNA form a complex that is transported into the cell nucleus, where the RNA-dependent RNA polymerase begins transcribing complementary positive-sense cRNA (Steps 3a and b).[18] The cRNA is either exported into the cytoplasm and translated (step 4), or remains in the nucleus. Newly synthesised viral proteins are either secreted through the Golgi apparatus onto the cell surface (in the case of neuraminidase and hemagglutinin, step 5b) or transported back into the nucleus to bind vRNA and form new viral genome particles (step 5a). Other viral proteins have multiple actions in the host cell, including degrading cellular mRNA and using the released nucleotides for vRNA synthesis and also inhibiting translation of host-cell mRNAs.[19]

Negative-sense vRNAs that form the genomes of future viruses, RNA-dependent RNA transcriptase, and other viral proteins are assembled into a virion. Hemagglutinin and neuraminidase molecules cluster into a bulge in the cell membrane. The vRNA and viral core proteins leave the nucleus and enter this membrane protrusion (step 6). The mature virus buds off from the cell in a sphere of host phospholipid membrane, acquiring hemagglutinin and neuraminidase with this membrane coat (step 7).[20] As before, the viruses adhere to the cell through hemagglutinin; the mature viruses detach once their neuraminidase has cleaved sialic acid residues from the host cell.[16] After the release of new influenza virus, the host cell dies.

Transcription of mRNAs initiated by viral polymerase using cap snatching

Orthomyxoviridae viruses are one of two RNA viruses that replicate in the nucleus (the other being retroviridae). This is because the machinery of orthomyxo viruses cannot make their own mRNAs. They use cellular RNAs as primers for initiating the viral mRNA synthesis in a process known as cap snatching.[21] Once in the nucleus, the RNA Polymerase Protein PB2 finds a cellular pre-mRNA and binds to its 5′ capped end. Then RNA Polymerase PA cleaves off the cellular mRNA near the 5′ end and uses this capped fragment as a primer for transcribing the rest of the viral RNA genome in viral mRNA.[22] This is due to the need of mRNA to have a 5′ cap in order to be recognized by the cell's ribosome for translation.

Since RNA proofreading enzymes are absent, the RNA-dependent RNA transcriptase makes a single nucleotide insertion error roughly every 10 thousand nucleotides, which is the approximate length of the influenza vRNA. Hence, nearly every newly manufactured influenza virus will contain a mutation in its genome.[23] The separation of the genome into eight separate segments of vRNA allows mixing (reassortment) of the genes if more than one variety of influenza virus has infected the same cell (superinfection). The resulting alteration in the genome segments packaged into viral progeny confers new behavior, sometimes the ability to infect new host species or to overcome protective immunity of host populations to its old genome (in which case it is called an antigenic shift).[10]

Classification[edit]

In a phylogenetic-based taxonomy, the category RNA virus includes the subcategory negative-sense ssRNA virus, which includes the order Articulavirales, and the family Orthomyxoviridae. The genera-associated species and serotypes of Orthomyxoviridae are shown in the following table.

Types[edit]

There are four genera of influenza virus, each containing only a single species, or type. Influenza A and C infect a variety of species (including humans), while influenza B almost exclusively infects humans, and influenza D infects cattle and pigs.[26][27][28]

Influenza A[edit]

Diagram of influenza nomenclature

Influenza A viruses are further classified, based on the viral surface proteins hemagglutinin (HA or H) and neuraminidase (NA or N). Sixteen H subtypes (or serotypes) and nine N subtypes of influenza A virus have been identified.

Further variation exists; thus, specific influenza strain isolates are identified by a standard nomenclature specifying virus type, geographical location where first isolated, sequential number of isolation, year of isolation, and HA and NA subtype.[29][30]

Examples of the nomenclature are:

  1. A/Brisbane/59/2007 (H1N1)
  2. A/Moscow/10/99 (H3N2).

The type A viruses are the most virulent human pathogens among the three influenza types and cause the most severe disease. The serotypes that have been confirmed in humans, ordered by the number of known human pandemic deaths, are:

  • H1N1 caused "Spanish flu" in 1918 and "Swine flu" in 2009.[31]
  • H2N2 caused "Asian Flu".
  • H3N2 caused "Hong Kong Flu".
  • H5N1, "avian" or "bird flu".[32]
  • H7N7 has unusual zoonotic potential.[33]
  • H1N2 infects pigs and humans.[34]
  • H9N2, H7N2, H7N3, H10N7.

Influenza B[edit]

Host range of influenza viruses

Influenza B virus is almost exclusively a human pathogen, and is less common than influenza A. The only other animal known to be susceptible to influenza B infection is the seal.[42] This type of influenza mutates at a rate 2–3 times lower than type A[43] and consequently is less genetically diverse, with only one influenza B serotype.[26] As a result of this lack of antigenic diversity, a degree of immunity to influenza B is usually acquired at an early age. However, influenza B mutates enough that lasting immunity is not possible.[44] This reduced rate of antigenic change, combined with its limited host range (inhibiting cross species antigenic shift), ensures that pandemics of influenza B do not occur.[45]

Influenza C[edit]

The influenza C virus infects humans and pigs, and can cause severe illness and local epidemics.[46] However, influenza C is less common than the other types and usually causes mild disease in children.[47][48]

Influenza D[edit]

This is a genus that was classified in 2016, the members of which were first isolated in 2011.[49] This genus appears to be most closely related to Influenza C, from which it diverged several hundred years ago.[50] There are at least two extant strains of this genus.[51] The main hosts appear to be cattle, but the virus has been known to infect pigs as well.

Viability and disinfection[edit]

Mammalian influenza viruses tend to be labile, but can survive several hours in mucus.[52] Avian influenza virus can survive for 100 days in distilled water at room temperature, and 200 days at 17 °C (63 °F). The avian virus is inactivated more quickly in manure, but can survive for up to 2 weeks in feces on cages. Avian influenza viruses can survive indefinitely when frozen.[52] Influenza viruses are susceptible to bleach, 70% ethanol, aldehydes, oxidizing agents, and quaternary ammonium compounds. They are inactivated by heat of 133 °F (56 °C) for minimum of 60 minutes, as well as by low pH <2.[52]

Vaccination and prophylaxis[edit]

Targets of anti-influenza agents that are licensed or under investigation

Vaccines and drugs are available for the prophylaxis and treatment of influenza virus infections. Vaccines are composed of either inactivated or live attenuated virions of the H1N1 and H3N2 human influenza A viruses, as well as those of influenza B viruses. Because the antigenicities of the wild viruses evolve, vaccines are reformulated annually by updating the seed strains.

When the antigenicities of the seed strains and wild viruses do not match, vaccines fail to protect the vaccinees. In addition, even when they do match, escape mutants are often generated.

Drugs available for the treatment of influenza include Amantadine and Rimantadine, which inhibit the uncoating of virions by interfering with M2, and Oseltamivir (marketed under the brand name Tamiflu), Zanamivir, and Peramivir, which inhibit the release of virions from infected cells by interfering with NA. However, escape mutants are often generated for the former drug and less frequently for the latter drug.[53]

See also[edit]

  • Dog flu
  • Influenza-like illness

References[edit]

  1. ^ International Committee on Taxonomy of Viruses Index of Viruses — Orthomyxovirus (2006). In: ICTVdB—The Universal Virus Database, version 4. Büchen-Osmond, C (Ed), Columbia University, New York.
  2. ^ Jones LD, Nuttall PA (1989). "Non-viraemic transmission of Thogoto virus: influence of time and distance". Trans. R. Soc. Trop. Med. Hyg. 83 (5): 712–14. doi:10.1016/0035-9203(89)90405-7. PMID 2617637.
  3. ^ Ely B (1999). "Infectious Salmon Anaemia". Mill Hill Essays. National Institute for Medical Research. Archived from the original on 2007-08-24. Retrieved 2007-09-14.
  4. ^ Raynard RS, Murray AG, Gregory A (2001). "Infectious salmon anaemia virus in wild fish from Scotland". Dis. Aquat. Org. 46 (2): 93–100. doi:10.3354/dao046093. PMID 11678233.
  5. ^ Noda T (2012-01-03). "Native morphology of influenza virions". Frontiers in Microbiology. 2: 269. doi:10.3389/fmicb.2011.00269. PMC 3249889. PMID 22291683.
  6. ^ Einav T, Gentles LE, Bloom JD (2020-07-23). "SnapShot: Influenza by the Numbers" (PDF). Cell. 182 (2): 532. PMID 32707094.
  7. ^ "ICTV Ninth Report; 2009 Taxonomy Release: Orthomyxoviridae". ICTV. ICTV. Retrieved 19 September 2020.
  8. ^ Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL (October 2005). "Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution". Nature. 437 (7062): 1162–6. Bibcode:2005Natur.437.1162G. doi:10.1038/nature04239. PMID 16208317.
  9. ^ Suzuki Y (March 2005). "Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses". Biological & Pharmaceutical Bulletin. 28 (3): 399–408. doi:10.1248/bpb.28.399. PMID 15744059.
  10. ^ a b c Hilleman MR (August 2002). "Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control". Vaccine. 20 (25–26): 3068–87. doi:10.1016/S0264-410X(02)00254-2. PMID 12163258.
  11. ^ Wilson JC, von Itzstein M (July 2003). "Recent strategies in the search for new anti-influenza therapies". Current Drug Targets. 4 (5): 389–408. doi:10.2174/1389450033491019. PMID 12816348.
  12. ^ Bouvier NM, Palese P (September 2008). "The biology of influenza viruses". Vaccine. 26 Suppl 4: D49–53. doi:10.1016/j.vaccine.2008.07.039. PMC 3074182. PMID 19230160.
  13. ^ Suarez DL, Spackman E, Senne DA, Bulaga L, Welsch AC, Froberg K (2003). "The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR". Avian Diseases. 47 (3 Suppl): 1091–5. doi:10.1637/0005-2086-47.s3.1091. PMID 14575118.
  14. ^ "Avian Influenza (Bird Flu) Implications for Human Disease. Physical characteristics of influenza A viruses". CIDRAP - Center for Infectious Disease Research and Policy. University of Minnesota.
  15. ^ "Flu viruses 'can live for decades' on ice". The New Zealand Herald. Reuters. November 30, 2006. Retrieved November 1, 2011.
  16. ^ a b Wagner R, Matrosovich M, Klenk H (May–Jun 2002). "Functional balance between haemagglutinin and neuraminidase in influenza virus infections". Rev Med Virol. 12 (3): 159–66. doi:10.1002/rmv.352. PMID 11987141.
  17. ^ Lakadamyali M, Rust M, Babcock H, Zhuang X (Aug 5, 2003). "Visualizing infection of individual influenza viruses". Proc Natl Acad Sci USA. 100 (16): 9280–85. Bibcode:2003PNAS..100.9280L. doi:10.1073/pnas.0832269100. PMC 170909. PMID 12883000.
  18. ^ Cros J, Palese P (September 2003). "Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses". Virus Res. 95 (1–2): 3–12. doi:10.1016/S0168-1702(03)00159-X. PMID 12921991.
  19. ^ Kash J, Goodman A, Korth M, Katze M (July 2006). "Hijacking of the host-cell response and translational control during influenza virus infection". Virus Res. 119 (1): 111–20. doi:10.1016/j.virusres.2005.10.013. PMID 16630668.
  20. ^ Nayak D, Hui E, Barman S (December 2004). "Assembly and budding of influenza virus". Virus Res. 106 (2): 147–65. doi:10.1016/j.virusres.2004.08.012. PMC 7172797. PMID 15567494.
  21. ^ "Cap Snatching". ViralZone. expasy. Retrieved 11 September 2014.
  22. ^ Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (April 2009). "The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit". Nature. 458 (7240): 914–8. Bibcode:2009Natur.458..914D. doi:10.1038/nature07745. PMID 19194459.
  23. ^ Drake J (May 1, 1993). "Rates of spontaneous mutation among RNA viruses". Proc Natl Acad Sci USA. 90 (9): 4171–5. Bibcode:1993PNAS...90.4171D. doi:10.1073/pnas.90.9.4171. PMC 46468. PMID 8387212.
  24. ^ Biere B, Bauer B, Schweiger B (April 2010). "Differentiation of influenza B virus lineages Yamagata and Victoria by real-time PCR" (PDF). Journal of Clinical Microbiology. 48 (4): 1425–7. doi:10.1128/JCM.02116-09. PMC 2849545. PMID 20107085.
  25. ^ ICTV Taxonomy History, ICTV, 2014, archived from the original on 2 April 2015, retrieved 6 June 2006
  26. ^ a b Hay A, Gregory V, Douglas A, Lin Y (Dec 29, 2001). "The evolution of human influenza viruses". Philos Trans R Soc Lond B Biol Sci. 356 (1416): 1861–70. doi:10.1098/rstb.2001.0999. PMC 1088562. PMID 11779385.
  27. ^ "Avian Influenza (Bird Flu)". Centers for Disease Control and Prevention. Retrieved 2007-09-15.
  28. ^ Kumar, Binod; Asha, Kumari; Khanna, Madhu; Ronsard, Larance; Meseko, Clement Adebajo; Sanicas, Melvin (April 2018). "The emerging influenza virus threat: status and new prospects for its therapy and control". Archives of Virology. 163 (4): 831–844. doi:10.1007/s00705-018-3708-y. ISSN 1432-8798. PMC 7087104. PMID 29322273.
  29. ^ Atkinson W, Hamborsky J, McIntyre L, Wolfe S, eds. (2007). Epidemiology and Prevention of Vaccine-Preventable Diseases (10th ed.). Washington DC: Centers for Disease Control and Prevention.
  30. ^ "Avian Influenza (Bird Flu): Implications for Human Disease". Center for Infectious Disease Research & Policy, University of Minnesota. 2007-06-27. Retrieved 2007-09-14.
  31. ^ Wang TT, Palese P (June 2009). "Unraveling the Mystery of Swine Influenza Virus". Cell. 137 (6): 983–85. doi:10.1016/j.cell.2009.05.032. PMID 19524497.
  32. ^ Taubenberger, JK, Morens, DM (April 2009). "Pandemic influenza – including a risk assessment of H5N1". Rev. Sci. Tech. Off. Int. Epiz. 28 (1): 187–202. doi:10.20506/rst.28.1.1879. PMC 2720801. PMID 19618626.
  33. ^ Fouchier R, Schneeberger P, Rozendaal F, Broekman J, Kemink S, Munster V, Kuiken T, Rimmelzwaan G, Schutten M, Van Doornum G, Koch G, Bosman A, Koopmans M, Osterhaus A (2004). "Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome". Proc Natl Acad Sci USA. 101 (5): 1356–61. Bibcode:2004PNAS..101.1356F. doi:10.1073/pnas.0308352100. PMC 337057. PMID 14745020.
  34. ^ Malik-Peiris JS, Poon LL, Guan Y (July 2009). "Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans". J Clin Virol. 45 (3): 169–173. doi:10.1016/j.jcv.2009.06.006. PMC 4894826. PMID 19540800.
  35. ^ Potter CW (October 2001). "A history of influenza". Journal of Applied Microbiology. 91 (4): 572–9. doi:10.1046/j.1365-2672.2001.01492.x. PMID 11576290.
  36. ^ "Ten things you need to know about pandemic influenza". World Health Organization. 14 October 2005. Archived from the original on 23 September 2009. Retrieved 26 September 2009.
  37. ^ Valleron AJ, Cori A, Valtat S, Meurisse S, Carrat F, Boëlle PY (May 2010). "Transmissibility and geographic spread of the 1889 influenza pandemic". Proc. Natl. Acad. Sci. USA. 107 (19): 8778–81. Bibcode:2010PNAS..107.8778V. doi:10.1073/pnas.1000886107. PMC 2889325. PMID 20421481.
  38. ^ Mills CE, Robins JM, Lipsitch M (December 2004). "Transmissibility of 1918 pandemic influenza". Nature. 432 (7019): 904–06. Bibcode:2004Natur.432..904M. doi:10.1038/nature03063. PMC 7095078. PMID 15602562.
  39. ^ Donaldson LJ, Rutter PD, Ellis BM, et al. (2009). "Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study". BMJ. 339: b5213. doi:10.1136/bmj.b5213. PMC 2791802. PMID 20007665.
  40. ^ "ECDC Daily Update – Pandemic (H1N1) 2009 – January 18, 2010" (PDF). European Centre for Disease Prevention and Control. 2010-01-18. Archived from the original (PDF) on January 22, 2010. Retrieved 2010-01-18.
  41. ^ Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, Bandaranayake D, Breiman RF, Brooks WA, Buchy P, Feikin DR, Fowler KB, Gordon A, Hien NT, Horby P, Huang QS, Katz MA, Krishnan A, Lal R, Montgomery JM, Mølbak K, Pebody R, Presanis AM, Razuri H, Steens A, Tinoco YO, Wallinga J, Yu H, Vong S, Bresee J, Widdowson MA (September 2012). "Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study". The Lancet. Infectious Diseases (Submitted manuscript). 12 (9): 687–95. doi:10.1016/S1473-3099(12)70121-4. PMID 22738893.
  42. ^ Osterhaus AD, Rimmelzwaan GF, Martina BE, Bestebroer TM, Fouchier RA (May 2000). "Influenza B virus in seals". Science. 288 (5468): 1051–3. Bibcode:2000Sci...288.1051O. doi:10.1126/science.288.5468.1051. PMID 10807575.
  43. ^ Nobusawa E, Sato K (April 2006). "Comparison of the mutation rates of human influenza A and B viruses". Journal of Virology. 80 (7): 3675–8. doi:10.1128/JVI.80.7.3675-3678.2006. PMC 1440390. PMID 16537638.
  44. ^ Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (March 1992). "Evolution and ecology of influenza A viruses". Microbiological Reviews. 56 (1): 152–79. doi:10.1128/MMBR.56.1.152-179.1992. PMC 372859. PMID 1579108.
  45. ^ Zambon MC (November 1999). "Epidemiology and pathogenesis of influenza". The Journal of Antimicrobial Chemotherapy. 44 Suppl B (Suppl B): 3–9. doi:10.1093/jac/44.suppl_2.3. PMID 10877456.
  46. ^ Matsuzaki Y, Sugawara K, Mizuta K, Tsuchiya E, Muraki Y, Hongo S, Suzuki H, Nakamura K (2002). "Antigenic and genetic characterization of influenza C viruses which caused two outbreaks in Yamagata City, Japan, in 1996 and 1998". J Clin Microbiol. 40 (2): 422–29. doi:10.1128/JCM.40.2.422-429.2002. PMC 153379. PMID 11825952.
  47. ^ Matsuzaki Y, Katsushima N, Nagai Y, Shoji M, Itagaki T, Sakamoto M, Kitaoka S, Mizuta K, Nishimura H (May 1, 2006). "Clinical features of influenza C virus infection in children". J Infect Dis. 193 (9): 1229–35. doi:10.1086/502973. PMID 16586359.
  48. ^ Katagiri S, Ohizumi A, Homma M (July 1983). "An outbreak of type C influenza in a children's home". J Infect Dis. 148 (1): 51–56. doi:10.1093/infdis/148.1.51. PMID 6309999.
  49. ^ Hause BM, Ducatez M, Collin EA, Ran Z, Liu R, Sheng Z, Armien A, Kaplan B, Chakravarty S, Hoppe AD, Webby RJ, Simonson RR, Li F (February 2013). "Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses". PLOS Pathogens. 9 (2): e1003176. doi:10.1371/journal.ppat.1003176. PMC 3567177. PMID 23408893.
  50. ^ Sheng Z, Ran Z, Wang D, Hoppe AD, Simonson R, Chakravarty S, Hause BM, Li F (February 2014). "Genomic and evolutionary characterization of a novel influenza-C-like virus from swine". Archives of Virology. 159 (2): 249–55. doi:10.1007/s00705-013-1815-3. PMC 5714291. PMID 23942954.
  51. ^ Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F (January 2015). "Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle". Journal of Virology. 89 (2): 1036–42. doi:10.1128/JVI.02718-14. PMC 4300623. PMID 25355894.
  52. ^ a b c Spickler AR (February 2016). "Influenza" (PDF). The Center for Food Security and Public Health. Iowa State University. p. 7.
  53. ^ Suzuki Y (October 2006). "Natural selection on the influenza virus genome". Molecular Biology and Evolution. 23 (10): 1902–11. doi:10.1093/molbev/msl050. PMID 16818477.

Further reading[edit]

  • Hoyle, L. (1969). The Influenza Viruses. Virology Monographs. 4. Springer-Verlag. ISBN 978-3-211-80892-4. ISSN 0083-6591. OCLC 4053391.

External links[edit]

  • Health-EU Portal EU work to prepare a global response to influenza.
  • Influenza Research Database Database of influenza genomic sequences and related information.
  • European Commission—Public Health EU coordination on Pandemic (H1N1) 2009
  • 3D Influenza-virus-related structures from the EM Data Bank(EMDB)
  • Viralzone: Orthomyxoviridae
  • ICTV