De Wikipedia, la enciclopedia libre
Saltar a navegación Saltar a búsqueda
Un diagrama que representa la población sujeta a un gradiente selectivo de frecuencias fenotípicas o genotípicas (una clina). Cada extremo del gradiente experimenta diferentes condiciones selectivas (selección divergente). El aislamiento reproductivo se produce tras la formación de una zona híbrida. En la mayoría de los casos, la zona híbrida puede eliminarse debido a una desventaja selectiva. Esto completa efectivamente el proceso de especiación.

En la especiación parapátrica , dos subpoblaciones de una especie desarrollan un aislamiento reproductivo entre sí mientras continúan intercambiando genes . Este modo de especiación tiene tres características distintivas: 1) el apareamiento ocurre de forma no aleatoria, 2) el flujo de genes ocurre de manera desigual y 3) las poblaciones existen en rangos geográficos continuos o discontinuos. Este patrón de distribución puede ser el resultado de una dispersión desigual , barreras geográficas incompletas o expresiones de comportamiento divergentes , entre otras cosas. La especiación parapátrica predice que a menudo existirán zonas híbridas en la unión entre las dos poblaciones.

En biogeografía , los términos parapatric y parapatry se utilizan a menudo para describir la relación entre organismos cuyos rangos no se superponen significativamente pero que son inmediatamente adyacentes entre sí; no ocurren juntos excepto en una zona de contacto estrecha. La parapatría es una distribución geográfica opuesta a la simpatría (misma área) y la alopatría o peripatría (dos casos similares de áreas distintas).

Se han propuesto varias "formas" de parapatry y se comentan a continuación. Coyne y Orr en Speciation clasifican estas formas en tres grupos: clinal (gradientes ambientales), "escalón" (poblaciones discretas) y especiación estasipatrica de acuerdo con la mayor parte de la literatura sobre especiación parapátrica. [1] : 111 En adelante, los modelos se subdividen siguiendo un formato similar.

Charles Darwin fue el primero en proponer este modo de especiación. No fue hasta 1930 cuando Ronald Fisher publicó La teoría genética de la selección natural donde esbozó un modelo teórico verbal de especiación clinal . En 1981, Joseph Felsenstein propuso un modelo alternativo de "población discreta" (el "modelo de trampolín). Desde Darwin, se ha llevado a cabo una gran cantidad de investigación sobre la especiación parapátrica, concluyendo que sus mecanismos son teóricamente plausibles" y ha ciertamente ocurrió en la naturaleza ". [1] : 124

Modelos [ editar ]

Los modelos matemáticos, los estudios de laboratorio y la evidencia observacional apoyan la existencia de la ocurrencia de la especiación parapátrica en la naturaleza. Las cualidades de parapatry implican una barrera extrínseca parcial durante la divergencia; [2] lo que lleva a una dificultad para determinar si este modo de especiación realmente ocurrió, o si un modo alternativo (en particular, la especiación alopátrica ) puede explicar los datos. Este problema plantea la pregunta sin respuesta en cuanto a su frecuencia general en la naturaleza. [1] : 124

La especiación parapátrica puede entenderse como un nivel de flujo de genes entre poblaciones en alopatría (y peripatría), en simpatría y a medio camino entre las dos en parapatría. [3] Intrínseco a esto, la parapatry cubre todo el continuo; representado como . Algunos biólogos rechazan esta delimitación, abogando por el desuso del término "parapátrico" rotundamente, "porque muchas distribuciones espaciales diferentes pueden resultar en niveles intermedios de flujo de genes". [4] Otros defienden esta posición y sugieren el abandono de los esquemas de clasificación geográfica (modos geográficos de especiación) por completo. [5]

Se ha demostrado que la selección natural es el principal impulsor de la especiación parapátrica (entre otros modos), [6] y la fuerza de la selección durante la divergencia es a menudo un factor importante. [7] La especiación parapátrica también puede resultar del aislamiento reproductivo causado por la selección social : individuos que interactúan de manera altruista . [8]

Gradientes ambientales [ editar ]

Debido a la naturaleza continua de una distribución de población parapátrica, los nichos de población a menudo se superpondrán, produciendo un continuo en el papel ecológico de la especie a través de un gradiente ambiental. [9] Mientras que en la especiación alopátrica o peripatrica, en la que las poblaciones geográficamente aisladas pueden evolucionar en aislamiento reproductivo sin flujo de genes, el flujo de genes reducido de la especiación parapátrica a menudo producirá una clina en la que una variación en las presiones evolutivas provoca un cambio en las frecuencias alélicas dentro del acervo genético entre poblaciones. Este gradiente ambiental finalmente da como resultado especies hermanas genéticamente distintas.

La concepción original de Fisher de la especiación clinal se basó en (a diferencia de la mayoría de las investigaciones modernas sobre especiación) el concepto de especie morfológica . [1] : 113 Con esta interpretación, su modelo teórico verbal puede producir efectivamente una nueva especie; de los cuales se confirmó posteriormente matemáticamente. [10] [1] : 113 Se han desarrollado más modelos matemáticos para demostrar la posibilidad de la especiación clinal con la mayoría basándose en, lo que Coyne y Orr afirman son, "suposiciones que son restrictivas o biológicamente irreales". [1] : 113

Caisse y Antonovics desarrollaron un modelo matemático para la especiación clinal que encontró evidencia de que "tanto la divergencia genética como el aislamiento reproductivo pueden ocurrir entre poblaciones conectadas por flujo de genes". [11] Esta investigación apoya el aislamiento clinal comparable a una especie de anillo (discutido a continuación), excepto que los extremos geográficos terminales no se encuentran para formar un anillo.

Doebeli y Dieckmann desarrollaron un modelo matemático que sugería que el contacto ecológico es un factor importante en la especiación parapátrica y que, a pesar de que el flujo de genes actúa como una barrera para la divergencia en la población local, la selección disruptiva impulsa el apareamiento selectivo ; eventualmente conduciendo a una reducción completa en el flujo de genes. Este modelo se asemeja al refuerzo con la excepción de que nunca hay un evento de contacto secundario. Los autores concluyen que "las interacciones espacialmente localizadas a lo largo de gradientes ambientales pueden facilitar la especiación a través de la selección dependiente de la frecuencia y dar como resultado patrones de segregación geográfica entre las especies emergentes". [9]Sin embargo, un estudio de Polechová y Barton cuestiona estas conclusiones. [12]

Especies de anillos [ editar ]

En una especie de anillo, los individuos pueden reproducirse con éxito (intercambiar genes) con miembros de su propia especie en poblaciones adyacentes que ocupan un hábitat adecuado alrededor de una barrera geográfica. Los individuos en los extremos de la línea no pueden reproducirse cuando entran en contacto.

El concepto de una especie de anillo se asocia con la especiación alopátrica como un caso especial; [13] sin embargo, Coyne y Orr argumentan que la concepción original de Mayr de una especie de anillo no describe la especiación alopátrica, "sino la especiación que ocurre a través de la atenuación del flujo de genes con la distancia". Sostienen que las especies de anillos proporcionan evidencia de especiación parapátrica en un sentido no convencional. [1] : 102–103 Continúan para concluir que:

Sin embargo, las especies de anillos son más convincentes que los casos de aislamiento clinal para demostrar que el flujo de genes dificulta la evolución del aislamiento reproductivo. En el aislamiento clinal, se puede argumentar que el aislamiento reproductivo fue causado por diferencias ambientales que aumentan con la distancia entre poblaciones. No se puede hacer un argumento similar para las especies de anillos porque las poblaciones más aisladas reproductivamente se encuentran en el mismo hábitat. [1] : 102

Poblaciones discretas [ editar ]

Referred to as a "stepping-stone" model by Coyne and Orr, it differs by virtue of the species population distribution pattern. Populations in discrete groups undoubtedly speciate more easily than those in a cline due to more limited gene flow.[1]:115 This allows for a population to evolve reproductive isolation as either selection or drift overpower gene flow between the populations. The smaller the discrete population, the species will likely undergo a higher rate of parapatric speciation.[14]

Several mathematical models have been developed to test whether this form of parapatric speciation can occur, providing theoretical possibility and supporting biological plausibility (dependent on the models parameters and their concordance with nature).[1]:115 Joseph Felsenstein was the first to develop a working model.[1]:115 Later, Sergey Gavrilets and colleagues developed numerous analytical and dynamical models of parapatric speciation that have contributed significantly to the quantitative study of speciation. (See the "Further reading" section)

Para-allopatric speciation[edit]

Further concepts developed by Barton and Hewitt in studying 170 hybrid zones, suggested that parapatric speciation can result from the same components that cause allopatric speciation. Called para-allopatric speciation, populations begin diverging parapatrically, fully speciating only after allopatry.[15]

Stasipatric models[edit]

One variation of parapatric speciation involves species chromosomal differences. Michael J. D. White developed the stasipatric speciation model when studying Australian morabine grasshoppers (Vandiemenella). The chromosomal structure of sub-populations of a widespread species become underdominate; leading to fixation. Subsequently, the sub-populations expand within the species larger range, hybridizing (with sterility of the offspring) in narrow hybrid zones.[16] Futuyama and Mayer contend that this form of parapatric speciation is untenable and that chromosomal rearrangements are unlikely to cause speciation.[17] Nevertheless, data does support that chromosomal rearrangements can possibly lead to reproductive isolation, but it does not mean speciation results as a consequence.[1]:259

Evidence[edit]

Laboratory evidence[edit]

Very few laboratory studies have been conducted that explicitly test for parapatric speciation. However, research concerning sympatric speciation often lends support to the occurrence of parapatry. This is due to the fact that, in symaptric speciation, gene flow within a population is unrestricted; whereas in parapatric speciation, gene flow is limited—thus allowing reproductive isolation to evolve easier.[1]:117 Ödeen and Florin complied 63 laboratory experiments conducted between the years 1950–2000 (many of which were discussed by Rice and Hostert previously[18]) concerning sympatric and parapatric speciation. They contend that the laboratory evidence is more robust than often suggested, citing laboratory populations sizes as the primary shortcoming.[19]

Observational evidence[edit]

Parapatric speciation is very difficult to observe in nature. This is due to one primary factor: patterns of parapatry can easily be explained by an alternate mode of speciation. Particularly, documenting closely related species sharing common boundaries does not imply that parapatric speciation was the mode that created this geographic distribution pattern.[1]:118 Coyne and Orr assert that the most convincing evidence of parapatric speciation comes in two forms. This is described by the following criteria:

  • Species populations that join, forming an ecotone can be interpreted as convincingly forming in parapatry if:
    • No evidence exists for a period of geographic separation between two closely related species
    • Different loci are not in agreement along the cline
    • Phylogenies including sister groups support different divergence times
  • An endemic species that exists within a specialized habitat next to its sister species that does not reside in the specialized habitat strongly suggests parapatric speciation.[1]:118–123
Anthoxanthum odoratum

This has been exemplified by the grass species Agrostis tenuis that grows on soil contaminated with high levels of copper leeched from an unused mine. Adjacent is the non-contaminated soil. The populations are evolving reproductive isolation due to differences in flowering. The same phenomenon has been found in Anthoxanthum odoratum in lead and zinc contaminated soils.[20][21] Speciation may be caused by allochrony.[22]

Clines are often cited as evidence of parapatric speciation and numerous examples have been documented to exist in nature; many of which contain hybrid zones. These clinal patterns, however, can also often be explained by allopatric speciation followed by a period of secondary contact—causing difficulty for researchers attempting to determine their origin.[1]:118[23] Thomas B. Smith and colleagues posit that large ecotones are "centers for speciation" (implying parapatric speciation) and are involved in the production of biodiversity in tropical rainforests. They cite patterns of morphologic and genetic divergence of the passerine species Andropadus virens.[24] Jiggins and Mallet surveyed a range of literature documenting every phase of parapatric speciation in nature positing that it is both possible and likely (in the studied species discussed).[25]

A study of tropical cave snails (Georissa saulae) found that cave-dwelling population descended from the above-ground population, likely speciating in parapatry.[26]

Partula snails on the island of Mo'orea have parapatrically speciated in situ after a single or a few colonization events, with some species expressing patterns of ring species.[27]

In the Tennessee cave salamander, timing of migration was used to infer the differences in gene flow between cave-dwelling and surface-dwelling continuous populations. Concentrated gene flow and mean migration time results inferred a heterogenetic distribution and continuous parapatric speciation between populations.[28]

Researchers studying Ephedra, a genus of gymnosperms in North American, found evidence of parapatric niche divergence for the sister species pairs E. californica and E. trifurca.[29]

One study of Caucasian rock lizards suggested that habitat differences may be more important in the development of reproductive isolation than isolation time. Darevskia rudis, D. valentini and D. portschinskii all hybridize with each other in their hybrid zone; however, hybridization is stronger between D. portschinskii and D. rudis, which separated earlier but live in similar habitats than between D. valentini and two other species, which separated later but live in climatically different habitats.[30]

Marine organisms[edit]

It is widely thought that parapatric speciation is far more common in oceanic species due to the low probability of the presence of full geographic barriers (required in allopatry).[31] Numerous studies conducted have documented parapatric speciation in marine organisms. Bernd Kramer and colleagues found evidence of parapatric speciation in Mormyrid fish (Pollimyrus castelnaui);[32] whereas Rocha and Bowen contend that parapatric speciation is the primary mode among coral-reef fish.[33] Evidence for a clinal model of parapatric speciation was found to occur in Salpidae.[31] Nancy Knowlton found numerous examples of parapatry in a large survey of marine organisms.[34]

See also[edit]

  • History of speciation
  • Evidence for speciation by reinforcement

References[edit]

  1. ^ a b c d e f g h i j k l m n o p Jerry A. Coyne; H. Allen Orr (2004), Speciation, Sinauer Associates, pp. 1–545, ISBN 978-0-87893-091-3
  2. ^ Roger K. Butlin, Juan Galindo, and John W. Grahame (2008), "Sympatric, parapatric or allopatric: the most important way to classify speciation?", Philosophical Transactions of the Royal Society of London B, 363 (1506): 2997–3007, doi:10.1098/rstb.2008.0076, PMC 2607313, PMID 18522915CS1 maint: multiple names: authors list (link)
  3. ^ Sergey Gavrilets (2004), Fitness landscapes and the origin of species, Princeton University Press, p. 13
  4. ^ Richard G. Harrison (2012), "The Language of Speciation", Evolution, 66 (12): 3643–3657, doi:10.1111/j.1558-5646.2012.01785.x, PMID 23206125, S2CID 31893065
  5. ^ Sara Via (2001), "Sympatric speciation in animals: the ugly duckling grows up", Trends in Ecology & Evolution, 16 (1): 381–390, doi:10.1016/S0169-5347(01)02188-7, PMID 11403871
  6. ^ J. Mallet (2001), "The Speciation Revolution", Journal of Evolutionary Biology, 14 (6): 887–888, doi:10.1046/j.1420-9101.2001.00342.x, S2CID 36627140
  7. ^ Michael Turelli, Nicholas H. Barton, and Jerry A. Coyne (2001), "Theory and speciation", Trends in Ecology & Evolution, 16 (7): 330–343, doi:10.1016/s0169-5347(01)02177-2, PMID 11403865CS1 maint: multiple names: authors list (link)
  8. ^ Michael E. Hochberg, Barry Sinervo, and Sam P. Brown (2003), "Socially Mediated Speciation", Evolution, 57 (1): 154–158, doi:10.1554/0014-3820(2003)057[0154:sms]2.0.co;2, PMID 12643576CS1 maint: multiple names: authors list (link)
  9. ^ a b Michael Doebeli and Ulf Dieckmann (2003), "Speciation along environmental gradients" (PDF), Nature, 421 (6920): 259–264, Bibcode:2003Natur.421..259D, doi:10.1038/nature01274, PMID 12529641, S2CID 2541353
  10. ^ Beverley J. Balkau and Marcus W. Feldman (1973), "Selection for migration modification", Genetics, 74 (1): 171–174, PMC 1212934, PMID 17248608
  11. ^ Michelle Caisse and Janis Antonovics (1978), "Evolution in closely adjacent plant populations", Heredity, 40 (3): 371–384, doi:10.1038/hdy.1978.44
  12. ^ Jitka Polechová and Nicholas H. Barton (2005), "Speciation Through Competition: A Critical Review", Evolution, 59 (6): 1194–1210, doi:10.1111/j.0014-3820.2005.tb01771.x, PMID 16050097, S2CID 25756555
  13. ^ A. J. Helbig (2005), "A ring of species", Heredity, 95 (2): 113–114, doi:10.1038/sj.hdy.6800679, PMID 15999143, S2CID 29782163
  14. ^ Sergey Gavrilets, Hai Li, and Michael D. Vose (2000), "Patterns of Parapatric Speciation", Evolution, 54 (4): 1126–1134, CiteSeerX 10.1.1.42.6514, doi:10.1554/0014-3820(2000)054[1126:pops]2.0.co;2, PMID 11005282CS1 maint: multiple names: authors list (link)
  15. ^ N. H. Barton and G. M. Hewitt (1989), "Adaptation, speciation and hybrid zones", Nature, 341 (6242): 497–503, Bibcode:1989Natur.341..497B, doi:10.1038/341497a0, PMID 2677747, S2CID 4360057
  16. ^ M. J. D. White (1978), Modes of Speciation, W. H. Freeman and Company
  17. ^ Douglas J. Futuyma and Gregory C. Mayer (1980), "Non-Allopatric Speciation in Animals", Systematic Biology, 29 (3): 254–271, doi:10.1093/sysbio/29.3.254
  18. ^ William R. Rice and Ellen E. Hostert (1993), "Laboratory experiments on speciation: heat have we learned in 40 years?", Evolution, 47 (6): 1637–1653, doi:10.2307/2410209, JSTOR 2410209, PMID 28568007
  19. ^ Anders Ödeen and Ann-Britt Florin (2000), "Effective population size may limit the power of laboratory experiments to demonstrate sympatric and parapatric speciation", Proc. R. Soc. Lond. B, 267 (1443): 601–606, doi:10.1098/rspb.2000.1044, PMC 1690569, PMID 10787165
  20. ^ Thomas McNeilly and Janis Antonovics (1968), "Evolution in Closely Adjacent Plant Populations. IV. Barriers to Gene Flow", Heredity, 23 (2): 205–218, doi:10.1038/hdy.1968.29
  21. ^ Janis Antonovics (2006), "Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary", Heredity, 97 (1): 33–37, doi:10.1038/sj.hdy.6800835, PMID 16639420, S2CID 12291411
  22. ^ Rebecca S. Taylor and Vicki L. Friesen (2017), "The role of allochrony in speciation", Molecular Ecology, 26 (13): 3330–3342, doi:10.1111/mec.14126, PMID 28370658, S2CID 46852358
  23. ^ N. H. Barton and G. M. Hewitt (1985), "Analysis of Hybrid Zones", Annual Review of Ecology and Systematics, 16: 113–148, doi:10.1146/annurev.ecolsys.16.1.113
  24. ^ Thomas B. Smith; et al. (1997), "A Role for Ecotones in Generating Rainforest Biodiversity", Science, 276 (5320): 1855–1857, doi:10.1126/science.276.5320.1855
  25. ^ Chris D. Jiggins and James Mallet (2000), "Bimodal hybrid zones and speciation", Trends in Ecology & Evolution, 15 (6): 250–255, doi:10.1016/s0169-5347(00)01873-5, PMID 10802556
  26. ^ M. Schilthuizen, A. S. Cabanban, and M. Haase (2004), "Possible speciation with gene flow in tropical cave snails", Journal of Zoological Systematics and Evolutionary Research, 43 (2): 133–138, doi:10.1111/j.1439-0469.2004.00289.xCS1 maint: multiple names: authors list (link)
  27. ^ J. Murray and B. Clarke (1980), "The genus Partula on Moorea: speciation in progress", Proceedings of the Royal Society B, 211 (1182): 83–117, Bibcode:1980RSPSB.211...83M, doi:10.1098/rspb.1980.0159, S2CID 85343279
  28. ^ M. L. Niemiller, B. M. Fitzpatrick, and B. T. Miller (2008), "Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies", Molecular Ecology, 17 (9): 2258–2275, doi:10.1111/j.1365-294X.2008.03750.x, PMID 18410292, S2CID 20761880CS1 maint: multiple names: authors list (link)
  29. ^ I. Loera, V. Sosa, and S. M. Ickert-Bond (2012), "Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra", Molecular Phylogenetics and Evolution, 65 (2): 437–450, doi:10.1016/j.ympev.2012.06.025, PMID 22776548CS1 maint: multiple names: authors list (link)
  30. ^ David Tarkhnishvili, Marine Murtskhvaladze, and Alexander Gavashelishvili (2013), "Speciation in Caucasian lizards: climatic dissimilarity of the habitats is more important than isolation time", Biological Journal of the Linnean Society, 109 (4): 876–892, doi:10.1111/bij.12092CS1 maint: multiple names: authors list (link)
  31. ^ a b John C. Briggs (1999), "Modes of Speciation: Marine Indo-West Pacific", Bulletin of Marine Science, 65 (3): 645–656
  32. ^ Bernd Kramer; et al. (2003), "Evidence for parapatric speciation in the Mormyrid fish, Pollimyrus castelnaui (Boulenger, 1911), from the Okavango–Upper Zambezi River Systems: P. marianne sp. nov., defined by electric organ discharges, morphology and genetics", Environmental Biology of Fishes, 67: 47–70, doi:10.1023/A:1024448918070, S2CID 25826083
  33. ^ L. A. Rocha and B. W. Bowen (2008), "Speciation in coral-reef fishes", Journal of Fish Biology, 72 (5): 1101–1121, doi:10.1111/j.1095-8649.2007.01770.x
  34. ^ Nancy Knowlton (1993), "Sibling Species in the Sea", Annual Review of Ecology and Systematics, 24: 189–216, doi:10.1146/annurev.es.24.110193.001201

Further reading[edit]

Quantitative speciation research

  • Joseph Felsenstein (1981), "Skepticism Towards Santa Rosalia, or Why are There so Few Kinds of Animals?", Evolution, 35 (1): 124–138, doi:10.2307/2407946, JSTOR 2407946, PMID 28563447
  • Sergey Gavrilets, Li Hai, and Michael D. Vose (1998), "Rapid Parapatric Speciation on Holey Adaptive Landscapes", Proceedings of the Royal Society B, 265 (1405): 1483–1489, arXiv:adap-org/9807006, Bibcode:1998adap.org..7006G, doi:10.1098/rspb.1998.0461, PMC 1689320, PMID 9744103CS1 maint: multiple names: authors list (link)
  • Sergey Gavrilets (2000), "Waiting Time to Parapatric Speciation", Proceedings of the Royal Society B, 267 (1461): 2483–2492, doi:10.1098/rspb.2000.1309, PMC 1690850, PMID 11197123
  • Sergey Gavrilets (2003), "Perspective: Models of Speciation: What Have We Learned in 40 Years?", Evolution, 57 (10): 2197–2215, doi:10.1111/j.0014-3820.2003.tb00233.x, PMID 14628909, S2CID 2936776
  • Claudia Bank, Reinhard Bürger, and Joachim Hermisson (2012), "The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model", Genetics, 191 (3): 845–863, doi:10.1534/genetics.111.137513, PMC 3389979, PMID 22542972CS1 maint: multiple names: authors list (link)